1
|
Verma A, Bharatiya P, Jaitak A, Nigam V, Monga V. Advances in the design, discovery, and optimization of aurora kinase inhibitors as anticancer agents. Expert Opin Drug Discov 2025; 20:475-497. [PMID: 40094219 DOI: 10.1080/17460441.2025.2481272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 03/13/2025] [Accepted: 03/14/2025] [Indexed: 03/19/2025]
Abstract
INTRODUCTION Aurora kinases (AKs) play key roles during carcinogenesis and show a close relationship with many cellular effects including mitotic entry, spindle assembly and chromosomal alignment biorientation. Indeed, elevated levels of AKs have been reported in several different tumor types, leading research scientists to investigate ways that we can target AKs for the purpose of developing new anticancer therapeutics. AREA COVERED This review examines the design, discovery, and development of Aurora kinase inhibitors (AKIs) as anticancer agents and delineates their roles in cancer progression or development. Various databases like PubMed, Scopus, Google scholar, SciFinder were used to search the relevant information. This article provides a comprehensive overview of recent advances in the medicinal chemistry of AKIs including the candidates under clinical development and list of patents filed. In addition, their mechanistic findings, SARs, and in silico studies have also been discussed to offer prospects in this field. EXPERT OPINION The integration of artificial intelligence and computational approaches is poised to accelerate the development of AKIs as anticancer agents. However, the associated challenges currently hindering its impact in drug development must be overcome before drugs can successfully translate from early drug development into clinical practice.
Collapse
Affiliation(s)
- Anubhav Verma
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, India
| | - Pradhuman Bharatiya
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, India
| | - Aashish Jaitak
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, India
| | - Vaibhav Nigam
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, India
| | - Vikramdeep Monga
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, India
| |
Collapse
|
2
|
Yevale D, Teraiya N, Lalwani T, Dalasaniya M, Patel SK, Dixit N, Sangani CB, Kumar S, Mulukuri NVLS, Huang T, Duan YT, Zhang J. Discovery of new pyrazole-4-carboxamide analogues as potential anticancer agents targeting dual aurora kinase A and B. Eur J Med Chem 2024; 280:116917. [PMID: 39388904 DOI: 10.1016/j.ejmech.2024.116917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/21/2024] [Accepted: 09/25/2024] [Indexed: 10/12/2024]
Abstract
Aurora kinases A and B are critical regulators of cell division and cytokinesis. Abnormal expression of Aurora kinases A and B causes chromosomal instability and disrupts several tumor suppressor and oncoprotein-controlled pathways. As a result, there has been a spike in interest in developing inhibitors against these kinases as anticancer treatments. This paper addresses the discovery, anticancer evaluation and druggability study of new pyrazole-4-carboxamide analogues as kinases inhibitors. Among the compounds, 6k demonstrated the highest cytotoxicity against HeLa and HepG2 cells, with IC50 of 0.43 μM and 0.67 μM, respectively. It selectively inhibited Aurora kinases A and B, with IC50 values of 16.3 nM and 20.2 nM, respectively, in comparison to other kinases. Molecular investigations revealed that 6k induced the inhibition of phosphorylated Thr288 (Aurora kinase A) and phosphorylated Histone H3 (Aurora kinase B), confirming its mechanism of action. Beside, compound 6k arrested the cell cycle at the G2/M phase by modulating cyclinB1 and cdc2 protein levels and increasing the Sub-G1 cell population. It also significantly increased polyploidization (>8 N) and abnormal mitosis, likely due to Aurora kinase inhibition. Furthermore, 6k boosted apoptosis through the intrinsic route, with elevated levels of p53, Bak, Bax, cleaved caspase-3, and cleaved PARP. Moreover, docking and MD simulations validated kinase inhibition-induced anticancer effects. Additionally, 6k satisfied drug-likeness parameters and remained stable in the in vitro metabolism. These findings indicate that 6k warrants further in vivo pharmacokinetic and pharmacodynamics investigations.
Collapse
Affiliation(s)
- Digambar Yevale
- Henan Provincial Key Laboratory of Pediatric Hematology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450018, China; Department of Chemistry, Shri M.M Patel Institute of Sciences and Research, Kadi Sarva Vishwavidyalaya, Gandhinagar, Gujarat, 382016, India
| | - Nishith Teraiya
- Department of Pharmaceutical Chemistry, K B Institute of Pharmaceutical Education and Research, Kadi Sarva Vishvavidhyalay, Gandhinagar, Gujarat, 382023, India
| | - Twinkle Lalwani
- Piramal Pharma Limited, Plot No. 18, Pharmaceutical Special Economic Zone, Village-Matoda, Taluka- Sanand, Ahmedabad, Gujarat, 382213, India
| | - Mayur Dalasaniya
- Piramal Pharma Limited, Plot No. 18, Pharmaceutical Special Economic Zone, Village-Matoda, Taluka- Sanand, Ahmedabad, Gujarat, 382213, India
| | - Saumya K Patel
- Department of Botany, Bioinformatics and Climate Change Impacts Management, School of Science, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Nandan Dixit
- Department of Botany, Bioinformatics and Climate Change Impacts Management, School of Science, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Chetan B Sangani
- Department of Chemistry, Government Science College, Sector-15, Gandhinagar, Gujarat University, Gujarat, 382016, India.
| | - Sujeet Kumar
- Department of Pharmaceutical Chemistry and Pharmacognosy, Nitte College of Pharmaceutical Sciences, Bangalore, Karnataka, 560064, India
| | - N V L Sirisha Mulukuri
- Department of Pharmaceutical Chemistry and Pharmacognosy, Nitte College of Pharmaceutical Sciences, Bangalore, Karnataka, 560064, India
| | - Tao Huang
- Medical School, Huanghe Science and Technology University, Zhengzhou, China
| | - Yong-Tao Duan
- Henan Provincial Key Laboratory of Pediatric Hematology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450018, China.
| | - Jie Zhang
- Henan Provincial Key Laboratory of Pediatric Hematology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450018, China.
| |
Collapse
|
3
|
Yevale DB, Teraiya N, Lalwani TD, Ameta RK, Sangani CB. A novel class of pyrazole analogues as aurora kinase A inhibitor: design, synthesis, and anticancer evaluation. Bioorg Chem 2023; 141:106901. [PMID: 37797455 DOI: 10.1016/j.bioorg.2023.106901] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/04/2023] [Accepted: 09/29/2023] [Indexed: 10/07/2023]
Abstract
Pyrazole, as a small molecule, was discovered for higher cytotoxicity and affinity towards Aurora-A kinase. Based on these facts, a novel pyrazole substituted at the 4th position was designed, synthesized, and evaluated against MCF-7, MDA-MB-23, and Vero (non-cancerous kidney cell) cell lines. Compounds5hand5eexhibited greater cytotoxicity in the series against MCF-7 and MDA-MB-231, with GI50 values of 0.12 µM and 0.63 µM, respectively, as compared to Imatinib (GI50 values of 16.08 µM and 10.36 µM). All of the compounds displayed selective cytotoxicity against cancer cells but not on normal Vero cells, supporting the design strategy to be a selective anticancer agent. Furthermore, compounds 5h and 5e inhibited Aurora-A kinase with IC50 values of 0.78 µM (4.70-fold) and 1.12 µM (2.84-fold), respectively, as compared to alisertib (IC50 = 3.36 µM). In addition, compound 5h significantly arrested the cell cycle at G2/M (34.89 %, 5.56-fold) and the apoptotic phase (25.04 %, 11.81-fold) compared to the control. It also triggered an increase in early (7.43 %) and late (14.89 %) phase apoptosis compared to vehicle (0.235 and 0.36 %, respectively), causing 37.89-fold higher total apoptosis in the annexin-V assay. These data imply that Aurora-A kinase inhibition may be linked to apoptosis induction and cell cycle arrest. Furthermore, their higher docking score in the study confirmed evidence of Aurora-kinase suppression. It was observed that fluorine and imidazole increased the H-bond and lipophilic interactions with the binding residue. Also, the substitution of electron-rich and lipophilic groups increased hydrophobic interactions. Moreover, the three-atom linkage (CH2NHCH2) expanded compound 5h to fill the cavity. Based on current findings, it is concluded that compounds 5h and 5e with strong Aurora-A kinase suppression may be promising anticancer agents.
Collapse
Affiliation(s)
- Digambar B Yevale
- Department of Chemistry, Shri M.M Patel Institute of Sciences and Research, Kadi Sarva Vishwavidyalaya, Gandhinagar 382016, Gujarat, India; Piramal Pharma Limited, Plot No. 18, Pharmaceutical Special Economic Zone, Village-Matoda, Taluka-Sanand, Ahmedabad 382213, Gujarat, India
| | - Nishith Teraiya
- Department of Pharmaceutical Chemistry, K B Institute of Pharmaceutical Education and Research, Kadi Sarva Vishvavidhyalay, Gandhinagar, Gujarat 382023, India
| | - Twinkle D Lalwani
- Piramal Pharma Limited, Plot No. 18, Pharmaceutical Special Economic Zone, Village-Matoda, Taluka-Sanand, Ahmedabad 382213, Gujarat, India
| | - Rakesh Kumar Ameta
- Department of Chemistry, Shri M.M Patel Institute of Sciences and Research, Kadi Sarva Vishwavidyalaya, Gandhinagar 382016, Gujarat, India
| | - Chetan B Sangani
- Department of Chemistry, Shri M.M Patel Institute of Sciences and Research, Kadi Sarva Vishwavidyalaya, Gandhinagar 382016, Gujarat, India; Department of Chemistry, Government Science College, Gujarat University, Gandhinagar 382016, Gujarat, India.
| |
Collapse
|
4
|
Dorbabu A. Pyrazole/pyrazoline as an excellent pharmacophore in the design of carbonic anhydrase inhibitors (2018-2022). Arch Pharm (Weinheim) 2023; 356:e2200562. [PMID: 36599496 DOI: 10.1002/ardp.202200562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 01/06/2023]
Abstract
Carbonic anhydrase (CA) is a metalloenzyme that catalyzes the interconversion between carbon dioxide and water and dissociated ions of carbonic acid. In addition, CA performs various other functions in animals and plants, depending on the part of the living being. CAs have been found in almost all organisms. Besides, CAs are associated with several diseases, such as glaucoma, obesity, epilepsy, cancer, and so on. CAs are also involved in tumor cell growth and angiogenesis. Thus, inhibition of CA may be an attractive way of control of such diseases. Hence, CA inhibitors have been designed and developed to cure CA-associated diseases. Some examples of approved CA inhibitors are dorzolamide, methazolamide, brinzolamide, and dichlorphenamide. Furthermore, various heterocyclic scaffolds were utilized for the design of CA inhibitors. Among those, pyrazole/pyrazoline derivatives have exhibited greater potency toward CA inhibition. Hence, research that took place in the field of drug design and discovery of CA inhibition has been systematically reviewed and collated. Alongside, the structure-activity relationship has been described, followed by a description of the most potent molecules and their structural features.
Collapse
Affiliation(s)
- Atukuri Dorbabu
- SRMPP Government First Grade College, Huvina Hadagali, India
| |
Collapse
|
5
|
Priya, Jaswal S, Gupta GD, Verma SK. A Comprehension on Synthetic Strategies of Aurora kinase A and B Inhibitors. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.134935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
6
|
Alam MJ, Alam O, Naim MJ, Nawaz F, Manaithiya A, Imran M, Thabet HK, Alshehri S, Ghoneim MM, Alam P, Shakeel F. Recent Advancement in Drug Design and Discovery of Pyrazole Biomolecules as Cancer and Inflammation Therapeutics. Molecules 2022; 27:8708. [PMID: 36557840 PMCID: PMC9780894 DOI: 10.3390/molecules27248708] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 11/27/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022] Open
Abstract
Pyrazole, an important pharmacophore and a privileged scaffold of immense significance, is a five-membered heterocyclic moiety with an extensive therapeutic profile, viz., anti-inflammatory, anti-microbial, anti-anxiety, anticancer, analgesic, antipyretic, etc. Due to the expansion of pyrazolecent red pharmacological molecules at a quicker pace, there is an urgent need to put emphasis on recent literature with hitherto available information to recognize the status of this scaffold for pharmaceutical research. The reported potential pyrazole-containing compounds are highlighted in the manuscript for the treatment of cancer and inflammation, and the results are mentioned in % inhibition of inflammation, % growth inhibition, IC50, etc. Pyrazole is an important heterocyclic moiety with a strong pharmacological profile, which may act as an important pharmacophore for the drug discovery process. In the struggle to cultivate suitable anti-inflammatory and anticancer agents, chemists have now focused on pyrazole biomolecules. This review conceals the recent expansion of pyrazole biomolecules as anti-inflammatory and anticancer agents with an aim to provide better correlation among different research going around the world.
Collapse
Affiliation(s)
- Md. Jahangir Alam
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Ozair Alam
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Mohd. Javed Naim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tishk International University, Erbil 44001, Kurdistan Region, Iraq
| | - Farah Nawaz
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Ajay Manaithiya
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Mohd Imran
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | - Hamdy Khamees Thabet
- Department of Chemistry, Faculty of Arts and Sciences, Northern Border University, Rafha 91911, Saudi Arabia
| | - Sultan Alshehri
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia
| | - Prawez Alam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Faiyaz Shakeel
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
7
|
Beniwal M, Jain N, Jain S, Aggarwal N. Design, synthesis, anticancer evaluation and docking studies of novel 2-(1-isonicotinoyl-3-phenyl-1H-pyrazol-4-yl)-3-phenylthiazolidin-4-one derivatives as Aurora-A kinase inhibitors. BMC Chem 2022; 16:61. [PMID: 35978438 PMCID: PMC9382805 DOI: 10.1186/s13065-022-00852-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/26/2022] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION Aurora-A kinase is associated with the Aurora kinase family which has been considered a striking anticancer target for the treatment of human cancers. OBJECTIVE To design, synthesize, anticancer evaluation, and docking studies of novel 2-(1-isonicotinoyl-3-phenyl-1H-pyrazol-4-yl)-3-phenylthiazolidin-4-one derivatives as Aurora-A Kinase inhibitors. METHOD A total of 21 Pyrazole derivatives P (1-21) were synthesized by using the Vilsmeier Haack reagent which was characterized by FT-IR, 1H NMR, 13C NMR, and Mass spectroscopy. The synthesized derivatives were evaluated for their potential in vitro anticancer activity by MTT assay and Aurora-A kinase inhibition assay. RESULTS The cytotoxicity assay (MTT assay) showed that compound P-6 exhibited potent cytotoxicity (IC50 = 0.37-0.44 μM) against two cancer (HCT 116 and MCF-7) cell lines, which were comparable to the standard compound, VX-680. Compound P-6 also showed inhibition of Aurora-A kinase with an IC50 value of 0.11 ± 0.03 µM. A Docking study was done to compound P-6 and P-20 into the active site of Aurora A kinase, in order to get the probable binding model for further study. CONCLUSION A series of 21 novel pyrazole derivatives P(1-21) were designed, synthesized, in vitro anticancer evaluation, and docking studies for Aurora A kinase inhibition. The results established that P-6 is a prospective aspirant for the development of anticancer agents targeting Aurora-A kinase.
Collapse
Affiliation(s)
- Meenu Beniwal
- Department of Pharmaceutical Education & Research, Bhagat Phool Singh Mahila Vishwavidyalaya, Khanpur Kalan, Sonepat, Haryana, 131301, India
| | - Neelam Jain
- Department of Pharmaceutical Education & Research, Bhagat Phool Singh Mahila Vishwavidyalaya, Khanpur Kalan, Sonepat, Haryana, 131301, India
| | - Sandeep Jain
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India
| | - Navidha Aggarwal
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India. .,MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133207, India.
| |
Collapse
|
8
|
Pham EC, Thi TVL, Phan LT, Nguyen HGT, Le KN, Truong TN. Design, synthesis, antimicrobial evaluations and in silico studies of novel pyrazol-5(4H)-one and 1H-pyrazol-5-ol derivatives. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103682] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
9
|
Evaluation of Substituted Pyrazole-Based Kinase Inhibitors in One Decade (2011-2020): Current Status and Future Prospects. Molecules 2022; 27:molecules27010330. [PMID: 35011562 PMCID: PMC8747022 DOI: 10.3390/molecules27010330] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/29/2021] [Accepted: 12/31/2021] [Indexed: 11/17/2022] Open
Abstract
Pyrazole has been recognized as a pharmacologically important privileged scaffold whose derivatives produce almost all types of pharmacological activities and have attracted much attention in the last decades. Of the various pyrazole derivatives reported as potential therapeutic agents, this article focuses on pyrazole-based kinase inhibitors. Pyrazole-possessing kinase inhibitors play a crucial role in various disease areas, especially in many cancer types such as lymphoma, breast cancer, melanoma, cervical cancer, and others in addition to inflammation and neurodegenerative disorders. In this article, we reviewed the structural and biological characteristics of the pyrazole derivatives recently reported as kinase inhibitors and classified them according to their target kinases in a chronological order. We reviewed the reports including pyrazole derivatives as kinase inhibitors published during the past decade (2011-2020).
Collapse
|
10
|
Kabi AK, Sravani S, Gujjarappa R, Garg A, Vodnala N, Tyagi U, Kaldhi D, Singh V, Gupta S, Malakar CC. Overview on Biological Activities of Pyrazole Derivatives. MATERIALS HORIZONS: FROM NATURE TO NANOMATERIALS 2022:229-306. [DOI: 10.1007/978-981-16-8399-2_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
11
|
Aurora kinase inhibitors as potential anticancer agents: Recent advances. Eur J Med Chem 2021; 221:113495. [PMID: 34020340 DOI: 10.1016/j.ejmech.2021.113495] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/20/2021] [Accepted: 04/16/2021] [Indexed: 11/22/2022]
Abstract
Aurora kinases are a family of serine/threonine kinases that play a crucial role in cell proliferation through the regulation of mitotic spindles. These kinases are the regulatory proteins localized in the various phases of the cell cycle and are involved in centrosome maturation, chromosome alignment, chromosomal segregation, and cytokinesis. They have emerged as one of the validated drug targets for anticancer drug discovery as their overexpression has been implicated in the pathogenesis of various carcinomas. Inhibitors of Aurora kinases induce growth inhibition and apoptosis in a variety of tumor cells. Hence, the design and development of Aurora kinase inhibitors have been widely explored in recent years by the scientific community as potential anticancer agents. Various Aurora kinase inhibitors have been under preclinical and clinical investigations as antitumor agents. This review summarizes the recent strategies of various researchers for the design and development of Aurora kinase inhibitors belonging to different structural classes. Their bioactivity, SARs, molecular modelling, and mechanistic studies have also been described. The comprehensive compilation of research work carried out in the field will provide inevitable scope for the design and development of novel drug candidates with better selectivity and efficacy. The review is constructed after the exhaustive research in this discipline and includes the papers from 2011 to 2020.
Collapse
|
12
|
Mor S, Khatri M, Punia R, Sindhu S. Recent Progress on Anticancer Agents Incorporating Pyrazole Scaffold. Mini Rev Med Chem 2021; 22:115-163. [PMID: 33823764 DOI: 10.2174/1389557521666210325115218] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 02/01/2021] [Accepted: 02/07/2021] [Indexed: 11/22/2022]
Abstract
The search of new anticancer agents is considered as a dynamic field of medicinal chemistry. In recent years, the synthesis of compounds with anticancer potential has increased and a large number of structurally varied compounds displaying potent anticancer activities have been published. Pyrazole is an important biologically active scaffold that possessed nearly all types of biological activities. The aim of this review is to collate literature work reported by researchers to provide an overview on in vivo and in vitro anticancer activities of pyrazole based derivatives among the diverse biological activities displayed by them and also presents recent efforts made on this heterocyclic moiety regarding anticancer activities. This review has been driven from the increasing number of publications, on this issue, which have been reported in the literature since the ending of the 20th century (from 1995-to date).
Collapse
Affiliation(s)
- Satbir Mor
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar-125001, Haryana. India
| | - Mohini Khatri
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar-125001, Haryana. India
| | - Ravinder Punia
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar-125001, Haryana. India
| | - Suchita Sindhu
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar-125001, Haryana. India
| |
Collapse
|
13
|
Spectroscopic investigation, Hirshfeld surface analysis and molecular docking studies on mebendazole and its derivatives. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
14
|
Sivaramakarthikeyan R, Iniyaval S, Saravanan V, Lim WM, Mai CW, Ramalingan C. Molecular Hybrids Integrated with Benzimidazole and Pyrazole Structural Motifs: Design, Synthesis, Biological Evaluation, and Molecular Docking Studies. ACS OMEGA 2020; 5:10089-10098. [PMID: 32391496 PMCID: PMC7203960 DOI: 10.1021/acsomega.0c00630] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/13/2020] [Indexed: 02/08/2023]
Abstract
Synthesis of a series of benzimidazole-ornamented pyrazoles, 6a-6j has been obtained from arylhydrazine and aralkyl ketones via a multistep synthetic strategy. Among them, a hybrid-possessing para-nitrophenyl moiety connected to a pyrazole scaffold (6a) exerted the highest anti-inflammatory activity, which is superior to the standard, diclofenac sodium. While executing the 2,2-diphenyl-1-picrylhydrazyl radical-scavenging activity, a hybrid-possessing para-bromophenyl unit integrated at the pyrazole structural motif (6i) exhibited the highest activity among the hybrids examined. Besides, evaluation of anticancer potency of the synthesized hybrids revealed that the one containing a para-fluorophenyl unit tethered at the pyrazole nucleus (6h) showed the highest activity against both the pancreatic cancer cells (SW1990 and AsPCl) investigated. Considerable binding affinity between B-cell lymphoma and the hybrid, 6h has been reflected while performing molecular docking studies (-8.65 kcal/mol). The outcomes of the investigation expose that these hybrids could be used as effective intermediates to construct more potent biological agents.
Collapse
Affiliation(s)
- Ramar Sivaramakarthikeyan
- Department
of Chemistry, School of Advanced Sciences, Kalasalingam Academy of Research and Education (Deemed to be University), Krishnankoil 626 126, Tamilnadu, India
| | - Shunmugam Iniyaval
- Department
of Chemistry, School of Advanced Sciences, Kalasalingam Academy of Research and Education (Deemed to be University), Krishnankoil 626 126, Tamilnadu, India
| | - Vadivel Saravanan
- Department
of Chemistry, School of Advanced Sciences, Kalasalingam Academy of Research and Education (Deemed to be University), Krishnankoil 626 126, Tamilnadu, India
| | - Wei-Meng Lim
- School
of Pharmacy, International Medical University, 126 Jalan Jalil Perkasa 19, Bukit
Jalil, Kuala Lumpur 57000, Malaysia
| | - Chun-Wai Mai
- School
of Pharmacy, International Medical University, 126 Jalan Jalil Perkasa 19, Bukit
Jalil, Kuala Lumpur 57000, Malaysia
- Center
for Cancer and Stem Cell Research, Institute for Research, Development
and Innovation (IRDI), International Medical
University, 126, Jalan Jalil Perkasa 19, Bukit Jalil, Kuala Lumpur 57000, Malaysia
| | - Chennan Ramalingan
- Department
of Chemistry, School of Advanced Sciences, Kalasalingam Academy of Research and Education (Deemed to be University), Krishnankoil 626 126, Tamilnadu, India
| |
Collapse
|
15
|
Ashok D, Ram Reddy M, Nagaraju N, Dharavath R, Ramakrishna K, Gundu S, Shravani P, Sarasija M. Microwave-assisted synthesis and in vitro antiproliferative activity of some novel 1,2,3-triazole-based pyrazole aldehydes and their benzimidazole derivatives. Med Chem Res 2020. [DOI: 10.1007/s00044-020-02515-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
16
|
Ismail MM, Farrag AM, Harras MF. Novel 1,3,4-Triaryl Pyrazoles: Synthesis, QSAR Studies and Cytotoxicity against Breast Cancer. Anticancer Agents Med Chem 2019; 19:948-959. [DOI: 10.2174/1871520619666190207094610] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 12/20/2018] [Accepted: 01/10/2019] [Indexed: 12/29/2022]
Abstract
Background:The existence of drug-resistance and lack of selectivity encourages scientists to search for novel and more selective cytotoxic agents.Objective:In this work, novel 1,3,4-triarylpyrazole derivatives were synthesized to study their cytotoxicity on MCF7 (human breast Cell Line). In addition, QSAR studies were performed to show the relation between the cytotoxic activity and the structural features of our new synthesized pyrazole derivatives.Methods:Pyrazole-4-carbaldehyde derivative 3 was utilized as a starting material for the preparation of the new pyarazole derivatives. These target compounds were screened for their cytotoxic activity against MCF-7 followed by study cell cycle of the most active compounds. Finally, pharmacophore modeling and QSAR Studies was carried out.Results:Among these compounds; 5d and 8b showed the highest anti-proliferative activity (IC50 = 4.9 and 2.11 µM, respectively). Flow cytometric analysis showed that, compounds 5d and 8b arrested the cell cycle in addition to induction of apoptosis in MCF7 cells. Moreover, their stimulation effect on caspases 3/7 was examined to explore their mechanism of induction of apoptosis and the results showed that their proapoptotic activity could be due to the activation of caspases 3/7.Conclusion:Pyrazole derivatives 5d and 8b displayed potent bioactivities, indicating that these compounds could be considered as a new lead for more investigation in the future
Collapse
Affiliation(s)
- Magda M.F. Ismail
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Amel M. Farrag
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Marwa F. Harras
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
17
|
Kovvuri J, Nagaraju B, Ganesh Kumar C, Sirisha K, Chandrasekhar C, Alarifi A, Kamal A. Catalyst-free synthesis of pyrazole-aniline linked coumarin derivatives and their antimicrobial evaluation. JOURNAL OF SAUDI CHEMICAL SOCIETY 2018. [DOI: 10.1016/j.jscs.2017.12.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
18
|
Ren Y, Yang N, Yue Y, Jin H, Tao K, Hou T. Investigation of novel pyrazole carboxamides as new apoptosis inducers on neuronal cells in Helicoverpa zea. Bioorg Med Chem 2018; 26:2280-2286. [DOI: 10.1016/j.bmc.2018.03.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 03/05/2018] [Accepted: 03/07/2018] [Indexed: 12/12/2022]
|
19
|
QSAR studies on pyrazole-4-carboxamide derivatives as Aurora A kinase inhibitors. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2018. [DOI: 10.1016/j.jtusci.2015.06.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
20
|
Karrouchi K, Radi S, Ramli Y, Taoufik J, Mabkhot YN, Al-Aizari FA, Ansar M. Synthesis and Pharmacological Activities of Pyrazole Derivatives: A Review. Molecules 2018; 23:molecules23010134. [PMID: 29329257 PMCID: PMC6017056 DOI: 10.3390/molecules23010134] [Citation(s) in RCA: 489] [Impact Index Per Article: 69.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 01/03/2018] [Accepted: 01/05/2018] [Indexed: 12/31/2022] Open
Abstract
Pyrazole and its derivatives are considered a pharmacologically important active scaffold that possesses almost all types of pharmacological activities. The presence of this nucleus in pharmacological agents of diverse therapeutic categories such as celecoxib, a potent anti-inflammatory, the antipsychotic CDPPB, the anti-obesity drug rimonabant, difenamizole, an analgesic, betazole, a H2-receptor agonist and the antidepressant agent fezolamide have proved the pharmacological potential of the pyrazole moiety. Owing to this diversity in the biological field, this nucleus has attracted the attention of many researchers to study its skeleton chemically and biologically. This review highlights the different synthesis methods and the pharmacological properties of pyrazole derivatives. Studies on the synthesis and biological activity of pyrazole derivatives developed by many scientists around the globe are reported.
Collapse
Affiliation(s)
- Khalid Karrouchi
- Medicinal Chemistry Laboratory, Faculty of Medicine and Pharmacy, Mohammed V University, 10100 Rabat, Morocco.
- LCAE, Department of Chemistry, Faculty of Sciences, University Mohamed I, 60000 Oujda, Morocco.
- Physicochemical service, Drugs Quality Control Laboratory, Division of Drugs and Pharmacy, Ministry of Health, 10100 Rabat, Morocco.
| | - Smaail Radi
- LCAE, Department of Chemistry, Faculty of Sciences, University Mohamed I, 60000 Oujda, Morocco.
| | - Youssef Ramli
- Medicinal Chemistry Laboratory, Faculty of Medicine and Pharmacy, Mohammed V University, 10100 Rabat, Morocco.
| | - Jamal Taoufik
- Medicinal Chemistry Laboratory, Faculty of Medicine and Pharmacy, Mohammed V University, 10100 Rabat, Morocco.
| | - Yahia N Mabkhot
- Department of Chemistry, Faculty of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| | - Faiz A Al-Aizari
- Department of Chemistry, Faculty of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| | - M'hammed Ansar
- Medicinal Chemistry Laboratory, Faculty of Medicine and Pharmacy, Mohammed V University, 10100 Rabat, Morocco.
| |
Collapse
|
21
|
Karrouchi K, Radi S, Ramli Y, Taoufik J, Mabkhot YN, Al-Aizari FA, Ansar M. Synthesis and Pharmacological Activities of Pyrazole Derivatives: A Review. Molecules 2018. [PMID: 29329257 DOI: 10.3390/molecules23010134k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023] Open
Abstract
Pyrazole and its derivatives are considered a pharmacologically important active scaffold that possesses almost all types of pharmacological activities. The presence of this nucleus in pharmacological agents of diverse therapeutic categories such as celecoxib, a potent anti-inflammatory, the antipsychotic CDPPB, the anti-obesity drug rimonabant, difenamizole, an analgesic, betazole, a H2-receptor agonist and the antidepressant agent fezolamide have proved the pharmacological potential of the pyrazole moiety. Owing to this diversity in the biological field, this nucleus has attracted the attention of many researchers to study its skeleton chemically and biologically. This review highlights the different synthesis methods and the pharmacological properties of pyrazole derivatives. Studies on the synthesis and biological activity of pyrazole derivatives developed by many scientists around the globe are reported.
Collapse
Affiliation(s)
- Khalid Karrouchi
- Medicinal Chemistry Laboratory, Faculty of Medicine and Pharmacy, Mohammed V University, 10100 Rabat, Morocco.
- LCAE, Department of Chemistry, Faculty of Sciences, University Mohamed I, 60000 Oujda, Morocco.
- Physicochemical service, Drugs Quality Control Laboratory, Division of Drugs and Pharmacy, Ministry of Health, 10100 Rabat, Morocco.
| | - Smaail Radi
- LCAE, Department of Chemistry, Faculty of Sciences, University Mohamed I, 60000 Oujda, Morocco.
| | - Youssef Ramli
- Medicinal Chemistry Laboratory, Faculty of Medicine and Pharmacy, Mohammed V University, 10100 Rabat, Morocco.
| | - Jamal Taoufik
- Medicinal Chemistry Laboratory, Faculty of Medicine and Pharmacy, Mohammed V University, 10100 Rabat, Morocco.
| | - Yahia N Mabkhot
- Department of Chemistry, Faculty of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| | - Faiz A Al-Aizari
- Department of Chemistry, Faculty of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| | - M'hammed Ansar
- Medicinal Chemistry Laboratory, Faculty of Medicine and Pharmacy, Mohammed V University, 10100 Rabat, Morocco.
| |
Collapse
|
22
|
Orrego-Hernández J, Portilla J. Synthesis of Dicyanovinyl-Substituted 1-(2-Pyridyl)pyrazoles: Design of a Fluorescent Chemosensor for Selective Recognition of Cyanide. J Org Chem 2017; 82:13376-13385. [PMID: 29171269 DOI: 10.1021/acs.joc.7b02460] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A fluorescence "turn-off" probe has been designed and successfully applied to detect cyanide (CN-) based on a Michael-type nucleophilic addition reaction and intramolecular charge transfer (ICT) mechanism. For this research, a family of 3-aryl-4-(2,2-dicyanovinyl)-1-(2-pyridinyl)pyrazoles as donor-π-acceptor (D-π-A) systems have been synthesized in 58-66% overall yield, by a three-step synthesis sequence starting from p-substituted acetophenones. The substituted p-methoxyphenyl showed good fluorescence emission and large Stokes shifts in different solvents due to its greater ICT. Likewise, this probe evidenced high selectivity and sensitivity and fast recognition for CN- with a detection limit of 6.8 μM. HRMS analysis, 1H NMR titration experiments, and TD-DFT calculations were performed to confirm the mechanism of detection and fluorescence properties of the chemodosimeter of CN-. Additionally, fluorescent test paper was conveniently used to detect cyanide in aqueous solution.
Collapse
Affiliation(s)
- Jessica Orrego-Hernández
- Bioorganic Compounds Research Group, Department of Chemistry, Universidad de los Andes , Carrera 1 No. 18A-10, Bogotá 111711, Colombia
| | - Jaime Portilla
- Bioorganic Compounds Research Group, Department of Chemistry, Universidad de los Andes , Carrera 1 No. 18A-10, Bogotá 111711, Colombia
| |
Collapse
|
23
|
Borisa AC, Bhatt HG. A comprehensive review on Aurora kinase: Small molecule inhibitors and clinical trial studies. Eur J Med Chem 2017; 140:1-19. [DOI: 10.1016/j.ejmech.2017.08.045] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 07/30/2017] [Accepted: 08/21/2017] [Indexed: 12/31/2022]
|
24
|
Dual inhibitors of hepatitis C virus and hepatocellular carcinoma: design, synthesis and docking studies. Future Sci OA 2017; 4:FSO252. [PMID: 29255624 PMCID: PMC5729604 DOI: 10.4155/fsoa-2017-0075] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 09/11/2017] [Indexed: 01/06/2023] Open
Abstract
Aim Simultaneous inhibition of hepatitis C virus (HCV) and hepatocellular carcinoma (HCC) may enhance anti-HCV effects and reduce resistance and side effects. Results/methodology Novel hybrid derivatives were designed and synthesized to exhibit dual activity against HCV and its associated major complication, HCC. The synthesized compounds were screened for their potential activity against HCV and HCC. Compounds 5f, 5j, 5l, 5p, 5q, 5r, 6c and 6d exhibited potential in vitro anticancer activity against HCC cell line HepG2, while compounds 5a, 5l, 5p and 5v showed in vitro anti-HCV activity. Docking studies suggested that the newly synthesized compounds could suppress HCC through VEGFR2 tyrosine kinase inhibition. Conclusion Compounds 5l and 5p exhibited dual activity against HCV and HCC in vitro.
Collapse
|
25
|
Synthesis of piperazine-based thiazolidinones as VEGFR2 tyrosine kinase inhibitors inducing apoptosis. Future Med Chem 2017; 9:1709-1729. [DOI: 10.4155/fmc-2017-0072] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aim: VEGFR2 tyrosine kinase is a main target in suppressing cancer growth and metastasis. Materials & methods: Piperazine-based thiazolidinones were synthesized and screened for their anticancer and VEGFR2 tyrosine kinase inhibitory activity. Results: Compounds 11, 13 and 16 displayed potent anticancer activity against HepG-2 with IC50 values 0.03–0.06 μM. They were safe on normal human fibroblasts with selectivity indices 8.09, 11.40 and 4.37, respectively. Also, these compounds showed VEGFR2 tyrosine kinase inhibitory activities more than the reference staurosporine with IC50 values <0.3 μM. Lineweaver–Burk plot revealed that these compounds behaved as uncompetitive VEGFR2 tyrosine kinase inhibitors. They also induced caspase-dependent apoptosis in HepG-2. In addition, these compounds revealed good binding within VEGFR2 tyrosine kinase enzyme in comparison with sorafenib reference. Conclusion: Compounds 11, 13 and 16 comprise a new promising scaffold of selective VEGFR2 tyrosine kinase inhibitors with caspase-dependent apoptotic activities.
Collapse
|
26
|
Khodairy A, Ali AM, El-Wassimy MT. Synthesis of Novel Chromene, Pyridine, Pyrazole, Pyrimidine, and Imidazole Derivatives via
One-pot Multicomponent Reaction. J Heterocycl Chem 2017. [DOI: 10.1002/jhet.2954] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ahmed Khodairy
- Department of Chemistry, Faculty of Science; Sohag University; Sohag 82524 Egypt
| | - Ali M. Ali
- Department of Chemistry, Faculty of Science; Sohag University; Sohag 82524 Egypt
| | | |
Collapse
|
27
|
Kamble AA, Kamble RR, Chougala LS, Kadadevarmath JS, Maidur SR, Patil PS, Kumbar MN, Marganakop SB. Photophysical, Electrochemical Studies of Novel Pyrazol-4-yl-2,3-dihydroquinazolin-4(1H
)-ones and Their Anticancer Activity. ChemistrySelect 2017. [DOI: 10.1002/slct.201700498] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Atulkumar A. Kamble
- Department of Studies in Chemistry; Karnatak University; Dharwad -580003 India
| | - Ravindra R. Kamble
- Department of Studies in Chemistry; Karnatak University; Dharwad -580003 India
| | | | | | - Shivaraj R. Maidur
- Department of Physics; K. L. E. Institute of Technology, Opposite Airport, Gokul; Hubballi -580 030 India
| | - Parutagouda S. Patil
- Department of Physics; K. L. E. Institute of Technology, Opposite Airport, Gokul; Hubballi -580 030 India
| | - Mahadev N. Kumbar
- Department of Studies in Chemistry; Karnatak University; Dharwad -580003 India
| | | |
Collapse
|
28
|
The therapeutic voyage of pyrazole and its analogs: A review. Eur J Med Chem 2016; 120:170-201. [DOI: 10.1016/j.ejmech.2016.04.077] [Citation(s) in RCA: 262] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 04/25/2016] [Accepted: 04/28/2016] [Indexed: 02/05/2023]
|
29
|
Ghorab MM, Alsaid MS, Al-Dosari MS, El-Gazzar MG, Parvez MK. Design, Synthesis and Anticancer Evaluation of Novel Quinazoline-Sulfonamide Hybrids. Molecules 2016; 21:189. [PMID: 26861266 PMCID: PMC6274562 DOI: 10.3390/molecules21020189] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 01/27/2016] [Accepted: 01/29/2016] [Indexed: 12/14/2022] Open
Abstract
By combining the structural features of quinazoline and sulfonamides, novel hybrid compounds 2-21 were synthesized using a simple and convenient method. Evaluation of these compounds against different cell lines identified compounds 7 and 17 as most active anticancer agents as they showed effectiveness on the four tested cell lines. The anticancer screening results of the tested compounds provides an encouraging framework that could lead to the development of potent new anticancer agents.
Collapse
Affiliation(s)
- Mostafa M Ghorab
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia.
- Department of Drug Radiation Research, National Center for Radiation Research and Technology, Atomic Energy Authority, P.O. Box 29, Nasr City, Cairo 11371, Egypt.
| | - Mansour S Alsaid
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia.
| | - Mohammed S Al-Dosari
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia.
| | - Marwa G El-Gazzar
- Department of Drug Radiation Research, National Center for Radiation Research and Technology, Atomic Energy Authority, P.O. Box 29, Nasr City, Cairo 11371, Egypt.
| | - Mohammad K Parvez
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
30
|
Jiang XY, Sheng LQ, Song CF, Du NN, Xu HJ, Liu ZD, Chen SS. Mechanism, kinetics, and antimicrobial activities of 2-hydroxy-1-naphthaldehyde semicarbazone as a new Jack bean urease inhibitor. NEW J CHEM 2016. [DOI: 10.1039/c5nj01601k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new inhibitor of jack bean urease, 2-hydroxy-1-naphthaldehyde semicarbazone, was synthesized and employed to investigate the inhibitory mechanism of HNDSC on jack bean urease by kinetic and fluorescence titration assay, and its antibacterial activities were also investigated.
Collapse
Affiliation(s)
- Xue-Yue Jiang
- School of Chemistry and Material Engineering
- Fuyang Normal College
- Fuyang
- China
| | - Liang-Quan Sheng
- School of Chemistry and Material Engineering
- Fuyang Normal College
- Fuyang
- China
- College of Chemistry and Chemical Engineering
| | - Chong-Fu Song
- School of Chemistry and Material Engineering
- Fuyang Normal College
- Fuyang
- China
| | - Na-Na Du
- School of Chemistry and Material Engineering
- Fuyang Normal College
- Fuyang
- China
| | - Hua-Jie Xu
- School of Chemistry and Material Engineering
- Fuyang Normal College
- Fuyang
- China
| | - Zhao-Di Liu
- School of Chemistry and Material Engineering
- Fuyang Normal College
- Fuyang
- China
| | - Shui-Sheng Chen
- School of Chemistry and Material Engineering
- Fuyang Normal College
- Fuyang
- China
| |
Collapse
|
31
|
Reddy TS, Kulhari H, Reddy VG, Bansal V, Kamal A, Shukla R. Design, synthesis and biological evaluation of 1,3-diphenyl-1 H -pyrazole derivatives containing benzimidazole skeleton as potential anticancer and apoptosis inducing agents. Eur J Med Chem 2015; 101:790-805. [DOI: 10.1016/j.ejmech.2015.07.031] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 07/13/2015] [Accepted: 07/16/2015] [Indexed: 10/23/2022]
|
32
|
Kamal A, Babu KS, Hussaini SA, Srikanth P, Balakrishna M, Alarifi A. Sulfamic acid: an efficient and recyclable solid acid catalyst for the synthesis of 4,5-dihydropyrrolo[1,2-a]quinoxalines. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2015.06.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
33
|
Recent advances in bioactive pyrazoles. Eur J Med Chem 2015; 97:786-815. [DOI: 10.1016/j.ejmech.2014.11.059] [Citation(s) in RCA: 278] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 11/11/2014] [Accepted: 11/28/2014] [Indexed: 01/09/2023]
|
34
|
Design and Synthesis of Pyrazole-3-one Derivatives as Hypoglycaemic Agents. INTERNATIONAL JOURNAL OF MEDICINAL CHEMISTRY 2015; 2015:670181. [PMID: 25734015 PMCID: PMC4334925 DOI: 10.1155/2015/670181] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Accepted: 11/05/2014] [Indexed: 11/18/2022]
Abstract
Pyrazole-3-one compounds were designed on the basis of docking studies of previously reported antidiabetic pyrazole compounds. The amino acid residues found during docking studies were used as guidelines for the modification of aromatic substitutions on pyrazole-3-one structure. Depending on the docking score, the designed compounds were selectively prioritized for synthesis. The synthesized compounds were subjected to in vivo hypoglycemic activity using alloxan induced diabetic rats and metformin as a standard. Compound 4 having sulphonamide derivative was found to be the most potent compound among the series.
Collapse
|
35
|
Srinivasa Reddy T, Kulhari H, Ganga Reddy V, Subba Rao AV, Bansal V, Kamal A, Shukla R. Synthesis and biological evaluation of pyrazolo–triazole hybrids as cytotoxic and apoptosis inducing agents. Org Biomol Chem 2015; 13:10136-49. [DOI: 10.1039/c5ob00842e] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A series of pyrazolo–triazole hybrids were designed and synthesized by combining the 1,3-diphenyl pyrazole and triazole scaffolds to obtain (1-benzyl-1H-1,2,3-triazol-4-yl)(1,3-diphenyl-1H-pyrazol-4-yl)methanones.
Collapse
Affiliation(s)
- T. Srinivasa Reddy
- Medicinal Chemistry and Pharmacology
- CSIR-Indian Institute of Chemical Technology
- Hyderabad
- India
- IICT-RMIT Research Centre
| | - Hitesh Kulhari
- Medicinal Chemistry and Pharmacology
- CSIR-Indian Institute of Chemical Technology
- Hyderabad
- India
- IICT-RMIT Research Centre
| | - V. Ganga Reddy
- Medicinal Chemistry and Pharmacology
- CSIR-Indian Institute of Chemical Technology
- Hyderabad
- India
| | - A. V. Subba Rao
- Medicinal Chemistry and Pharmacology
- CSIR-Indian Institute of Chemical Technology
- Hyderabad
- India
| | - Vipul Bansal
- Ian Potter NanoBioSensing Facility
- Nano Biotechnology Research Laboratory
- School of Applied Sciences
- RMIT University
- Melbourne
| | - Ahmed Kamal
- Medicinal Chemistry and Pharmacology
- CSIR-Indian Institute of Chemical Technology
- Hyderabad
- India
- IICT-RMIT Research Centre
| | - Ravi Shukla
- Ian Potter NanoBioSensing Facility
- Nano Biotechnology Research Laboratory
- School of Applied Sciences
- RMIT University
- Melbourne
| |
Collapse
|
36
|
Lv XH, Xiao JJ, Ren ZL, Chu MJ, Wang P, Meng XF, Li DD, Cao HQ. Design, synthesis and insecticidal activities of N-(4-cyano-1-phenyl-1H-pyrazol-5-yl)-1,3-diphenyl-1H-pyrazole-4-carboxamide derivatives. RSC Adv 2015. [DOI: 10.1039/c5ra09286h] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Twenty novel diphenyl-1H-pyrazole derivatives with cyano substituent were designed and synthesized, and their insecticidal activities were evaluated.
Collapse
Affiliation(s)
- Xian-Hai Lv
- College of Plant Protection
- Anhui Agricultural University
- Hefei 230036
- P.R. China
| | - Jin-Jing Xiao
- College of Plant Protection
- Anhui Agricultural University
- Hefei 230036
- P.R. China
| | - Zi-Li Ren
- College of Plant Protection
- Anhui Agricultural University
- Hefei 230036
- P.R. China
| | - Ming-Jie Chu
- College of Plant Protection
- Anhui Agricultural University
- Hefei 230036
- P.R. China
| | - Peng Wang
- College of Plant Protection
- Anhui Agricultural University
- Hefei 230036
- P.R. China
| | - Xiang-Feng Meng
- College of Chemical Engineering
- Nanjing Forestry University
- Nanjing
- P.R. China
| | - Dong-Dong Li
- College of Chemical Engineering
- Nanjing Forestry University
- Nanjing
- P.R. China
| | - Hai-Qun Cao
- College of Plant Protection
- Anhui Agricultural University
- Hefei 230036
- P.R. China
| |
Collapse
|
37
|
Kamal A, Shaik AB, Rao BB, Khan I, Bharath Kumar G, Jain N. Design and synthesis of pyrazole/isoxazole linked arylcinnamides as tubulin polymerization inhibitors and potential antiproliferative agents. Org Biomol Chem 2015; 13:10162-78. [DOI: 10.1039/c5ob01257k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of pyrazole/isoxazole linked arylcinnamide conjugates were synthesized and investigated for their cytotoxic activity against a panel of four human cancer cell lines. Most of them have shown significant cytotoxicity apart from potential tubulin depolymerization activity.
Collapse
Affiliation(s)
- Ahmed Kamal
- Medicinal Chemistry and Pharmacology
- CSIR – Indian Institute of Chemical Technology
- Hyderabad 500007
- India
- Catalytic Chemistry Research Chair
| | - Anver Basha Shaik
- Medicinal Chemistry and Pharmacology
- CSIR – Indian Institute of Chemical Technology
- Hyderabad 500007
- India
| | - Bala Bhaskara Rao
- Centre for Chemical Biology
- CSIR – Indian Institute of Chemical Technology
- Hyderabad 500007
- India
| | - Irfan Khan
- Medicinal Chemistry and Pharmacology
- CSIR – Indian Institute of Chemical Technology
- Hyderabad 500007
- India
| | - G. Bharath Kumar
- Medicinal Chemistry and Pharmacology
- CSIR – Indian Institute of Chemical Technology
- Hyderabad 500007
- India
| | - Nishant Jain
- Centre for Chemical Biology
- CSIR – Indian Institute of Chemical Technology
- Hyderabad 500007
- India
| |
Collapse
|
38
|
Goel N, Drabu S, Afzal O, Bawa S. Antimicrobial screening and one-pot synthesis of 4-(substituted-anilinomethyl)-3-(2-naphthyl)-1-phenyl-1H-pyrazole derivatives. J Pharm Bioallied Sci 2014; 6:253-9. [PMID: 25400408 PMCID: PMC4231385 DOI: 10.4103/0975-7406.142956] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 03/12/2014] [Accepted: 03/25/2014] [Indexed: 11/04/2022] Open
Abstract
Aim: Synthesis of series of 4-(substituted-anilinomethyl-3-(2-naphthyl)-1-phenyl-1H-pyrazole derivatives (4a–4k) and their in vitro antifungal and antibacterial screening. Materials and Methods: A series of compounds (4a–4k) was synthesized through direct reductive amination of 3-(naphthalen-2-yl)-1-phenyl-1H-pyrazole-4-carbaldehyde with various substituted aromatic amines using NaBH4 in the presence of I2 as reducing agent. The reaction was carried out in anhydrous methanol under neutral conditions at room temperature. The structures of synthesized compounds (4a–4k) were established on the basis of IR, 1H and 13C-NMR, and mass spectral data. Results: All 4-(substituted-anilinomethyl-3-(2-naphthyl)-1-phenyl-1H-pyrazole derivatives (4a–4k) were tested in vitro for antifungal and antibacterial activities against different fungal and bacterial strains. Most of the compounds exhibited considerable antifungal activity, but poor antibacterial activity against the test strains. Conclusion: In the series compound 4e, 4g, 4j, and 4k, showed excellent antifungal activity against the fungal strain Aspergillus niger (MTCC) 281 and Aspergillus flavus MTCC 277 (% inhibition in the range of 47.7–58.9).
Collapse
Affiliation(s)
- Neelima Goel
- Department of Pharmaceutical Chemistry, Maharaja Surajmal Institute of Pharmacy, (Affiliated to GGSIP University), Janakpuri, New Delhi, India
| | - Sushma Drabu
- Department of Pharmaceutical Chemistry, Maharaja Surajmal Institute of Pharmacy, (Affiliated to GGSIP University), Janakpuri, New Delhi, India
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Jamia Hamdard, New Delhi, India
| | - Sandhya Bawa
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Jamia Hamdard, New Delhi, India
| |
Collapse
|
39
|
Rostom SA, Faidallah HM, Radwan MF, Badr MH. Bifunctional ethyl 2-amino-4-methylthiazole-5-carboxylate derivatives: Synthesis and in vitro biological evaluation as antimicrobial and anticancer agents. Eur J Med Chem 2014; 76:170-81. [DOI: 10.1016/j.ejmech.2014.02.027] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Revised: 01/15/2014] [Accepted: 02/08/2014] [Indexed: 12/11/2022]
|
40
|
Koca İ, Sert Y, Gümüş M, Kani İ, Çırak Ç. Synthesis, spectroscopic and theoretical studies of ethyl (2E)-3-amino-2-({[(4-benzoyl-1,5-diphenyl-1H-pyrazol-3-yl)carbonyl]amino}carbonothioyl)but-2-enoate butanol solvate. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2014; 118:816-827. [PMID: 24152866 DOI: 10.1016/j.saa.2013.09.068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 09/06/2013] [Accepted: 09/26/2013] [Indexed: 06/02/2023]
Abstract
We have synthesized ethyl (2E)-3-amino-2-({[(4-benzoyl-1,5-diphenyl-1H-pyrazol-3-yl)carbonyl]amino}carbonothioyl)but-2-enoate (2) by the reaction of 4-benzoyl-1,5-diphenyl-1H-pyrazole-3-carbonyl chloride (1), ammonium thiocyanate and ethyl 3-aminobut-2-enoate and then characterized by elemental analyses, IR, Raman, (1)H NMR, (13)C NMR and X-ray diffraction methods. The experimental and theoretical vibrational spectra of 2 were investigated. The experimental FT-IR (4000-400 cm(-1)) and Laser-Raman spectra (4000-100 cm(-1)) of the molecule in the solid phase were recorded. Theoretical vibrational frequencies and geometric parameters (bond lengths, bond angles) were calculated using Ab Initio Hartree Fock (HF), Density Functional Theory (B3LYP) methods with 6-311++G(d,p) basis set by Gaussian 09W program. The computed values of frequencies are scaled using a suitable scale factor to yield good coherence with the observed values. The assignments of the vibrational frequencies were performed by potential energy distribution (PED) analysis by using VEDA 4 program. The theoretical optimized geometric parameters and vibrational frequencies were compared with the corresponding experimental X-ray diffraction data, and they were seen to be in a good agreement with each other. Also, the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) energies were calculated.
Collapse
Affiliation(s)
- İrfan Koca
- Department of Chemistry, Faculty of Art & Sciences, Bozok University, Yozgat, Turkey.
| | | | | | | | | |
Collapse
|
41
|
Qin YJ, Xing M, Zhang YL, Makawana JA, Jiang AQ, Zhu HL. Design, synthesis and biological evaluation of (1,3-diphenyl-1H-pyrazol-4-yl) methyl benzoate derivatives as potential BRAFV600E inhibitors. RSC Adv 2014. [DOI: 10.1039/c4ra08708a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A series of (1,3-diphenyl-1H-pyrazol-4-yl) methyl benzoate derivatives (6a–10d) were designed and synthesized and evaluated as BRAFV600 inhibitors. Among them, compound 10a showed the most potent inhibitory activity against A375, WM266.4 and BRAFV600Ein vitro with IC50 values of 1.36 μM, 0.94 μM and 0.11 μM, respectively.
Collapse
Affiliation(s)
- Ya-Juan Qin
- State Key Laboratory of Pharmaceutical Biotechnology
- School of Life Science, Nanjing University
- Nanjing 210093, P. R. China
| | - Man Xing
- State Key Laboratory of Pharmaceutical Biotechnology
- School of Life Science, Nanjing University
- Nanjing 210093, P. R. China
| | - Ya-Liang Zhang
- State Key Laboratory of Pharmaceutical Biotechnology
- School of Life Science, Nanjing University
- Nanjing 210093, P. R. China
| | - Jigar A. Makawana
- State Key Laboratory of Pharmaceutical Biotechnology
- School of Life Science, Nanjing University
- Nanjing 210093, P. R. China
| | - Ai-Qin Jiang
- School of Medicine
- Nanjing University
- Nanjing, 210093, P. R. China
| | - Hai-Liang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology
- School of Life Science, Nanjing University
- Nanjing 210093, P. R. China
| |
Collapse
|
42
|
Pyrazole scaffold: A remarkable tool in the development of anticancer agents. Eur J Med Chem 2013; 70:248-58. [DOI: 10.1016/j.ejmech.2013.10.004] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 09/28/2013] [Accepted: 10/01/2013] [Indexed: 11/17/2022]
|
43
|
|
44
|
Palanisamy P, Kumaresan S. Analogues of N,1-diphenyl-4,5-dihydro-1H-[1]benzothiepino[5,4-c]pyrazole-3-carboxamide and N,1-diphenyl-4,5-dihydro-1H-[1]benzothiepino[5,4-c]pyrazole-3-carboxamide-6,6-dioxide: syntheses, characterization, antimicrobial, antituberculosis, and antitumor activity. RSC Adv 2013. [DOI: 10.1039/c3ra23124k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
|
45
|
Huang XF, Lu X, Zhang Y, Song GQ, He QL, Li QS, Yang XH, Wei Y, Zhu HL. Synthesis, biological evaluation, and molecular docking studies of N-((1,3-diphenyl-1H-pyrazol-4-yl)methyl)aniline derivatives as novel anticancer agents. Bioorg Med Chem 2012; 20:4895-900. [PMID: 22819191 DOI: 10.1016/j.bmc.2012.06.056] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 06/28/2012] [Accepted: 06/29/2012] [Indexed: 11/25/2022]
Abstract
A series of N-((1,3-diphenyl-1H-pyrazol-4-yl)methyl)aniline derivatives (5a-8d) have been designed and synthesized, and their biological activities were also evaluated as potential antitumor and cyclin dependent kinase 2 (CDK2) inhibitors. Among all the compounds, compound 5a displayed the most potent CDK2/cyclin E inhibitory activity in vitro, with an IC(50) of 0.98 ± 0.06 μM. Antitumor assays indicated that compound 5a owned high antiproliferative activity against MCF-7 and B16-F10 cancer cell lines with IC(50) values of 1.88 ± 0.11 and 2.12 ± 0.15 μM, respectively. Docking simulation was performed to insert compound 5a into the crystal structure of CDK2 at active site to determine the probable binding model. Based on the preliminary results, compound 5a with potent inhibitory activity in tumor growth may be a potential anticancer agent.
Collapse
Affiliation(s)
- Xian-Feng Huang
- School of Pharmaceutical Engineering & Life Science, Changzhou University, Changzhou 213164, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|