1
|
Wang Z, Jiang Q, Zhu Q, Ji C, Li J, Yin M, Shen J, Yan S. Nanoenabled Antiviral Pesticide for Tobacco Mosaic Virus: Excellent Adhesion Performance and Strong Inhibitory Effect to Alleviate the Damage on Photosynthetic System. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39356630 DOI: 10.1021/acs.jafc.4c06885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Tobacco mosaic virus (TMV) is a major agricultural threat. Here, a cationic star polymer (SPc) was designed to construct an efficient nanodelivery system for moroxydine hydrochloride (ABOB). ABOB could self-assemble with SPc via a hydrogen bond and van der Waals force, and this complexation reduced the particle size of ABOB from 2406 to 45 nm. With the aid of SPc, the contact angle of ABOB decreased from 100.8 to 79.0°, and its retention increased from 6.3 to 13.8 mg/cm2. Furthermore, the complexation with SPc could attenuate the degradation of ABOB in plants, and the bioactivity of SPc-loaded ABOB significantly improved with a reduction in relative viral expression from 0.57 to 0.17. The RNA-seq analysis revealed that the ABOB/SPc complex could up-regulate the expression of growth- and photosynthesis-related genes in tobacco seedlings, and the chlorophyll content increased by 2.5 times. The current study introduced an efficient nanodelivery system to improve the bioactivity of traditional antiviral agents.
Collapse
Affiliation(s)
- Zeng Wang
- Frontiers Science Center for Molecular Design Breeding, Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing 100193, People's Republic of China
| | - Qinhong Jiang
- Frontiers Science Center for Molecular Design Breeding, Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing 100193, People's Republic of China
| | - Qian Zhu
- China Association of Pesticide Development and Application, Beijing 100125, People's Republic of China
| | - Chendong Ji
- State Key Laboratory of Chemical Resource Engineering, Beijing Lab of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Jie Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Lab of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Meizhen Yin
- State Key Laboratory of Chemical Resource Engineering, Beijing Lab of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Jie Shen
- Frontiers Science Center for Molecular Design Breeding, Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing 100193, People's Republic of China
| | - Shuo Yan
- Frontiers Science Center for Molecular Design Breeding, Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing 100193, People's Republic of China
| |
Collapse
|
2
|
Grytsai O, Hamouda-Tekaya N, Botton T, Rocchi S, Benhida R, Ronco C. Design, Synthesis and Biological Evaluation of Novel Anticancer Amidinourea Analogues via Unexpected 1,3,5-Triazin-2-one Ring Opening. ChemMedChem 2024; 19:e202300493. [PMID: 38126619 DOI: 10.1002/cmdc.202300493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 12/23/2023]
Abstract
Amidinoureas are an understudied class of molecules with unique structural properties and biological activities. A simple methodology has been developed for the synthesis of aliphatic substituted amidinoureas via unexpected cycle opening of benzothiazolo-1,3,5-triazine-2-ones and transamination reaction of N-(N-(benzo[d]thiazol-2-yl)carbamimidoyl)aniline-1-carboxamide in good yields. A novel series of amidinoureas derivatives was designed, synthesized, and evaluated for its antiproliferative activity on an aggressive metastatic melanoma A375 cell line model. This evaluation reveals antiproliferative activities in the low micromolar range and establishes a first structure-activity relationship. In addition, analogues selected for their structural diversity were assayed on a panel of cancer cell lines through the DTP-NCI60, on which they showed effectiveness on various cancer types, with promising activities on melanoma cells for two hit compounds. This work paves the way for further optimization of this family of compounds towards the development of potent antimelanoma agents.
Collapse
Affiliation(s)
- Oleksandr Grytsai
- Institut de Chimie de Nice CRNS UMR7272, Université Côte d'Azur, 28 Avenue Valrose, 06108, Nice, France
| | - Nedra Hamouda-Tekaya
- Centre Méditerranéen de Médecine Moléculaire (C3M) - INSERM, U1065, Université Côte d'Azur, 151 Route de Saint-Antoine, 06200, Nice, France
| | - Thomas Botton
- Centre Méditerranéen de Médecine Moléculaire (C3M) - INSERM, U1065, Université Côte d'Azur, 151 Route de Saint-Antoine, 06200, Nice, France
| | - Stéphane Rocchi
- Centre Méditerranéen de Médecine Moléculaire (C3M) - INSERM, U1065, Université Côte d'Azur, 151 Route de Saint-Antoine, 06200, Nice, France
| | - Rachid Benhida
- Institut de Chimie de Nice CRNS UMR7272, Université Côte d'Azur, 28 Avenue Valrose, 06108, Nice, France
- Mohamed VI Polytechnic University, UM6P, 43150, Ben Guerir, Morocco
| | - Cyril Ronco
- Institut de Chimie de Nice CRNS UMR7272, Université Côte d'Azur, 28 Avenue Valrose, 06108, Nice, France
- Institut Universitaire de France (IUF), 1 rue Descartes, 75005, Paris, France
| |
Collapse
|
3
|
Bai L, Wei C, Zhang J, Song R. Design, Synthesis, and Anti-PVY Biological Activity of 1,3,5-Triazine Derivatives Containing Piperazine Structure. Int J Mol Sci 2023; 24:ijms24098280. [PMID: 37175986 PMCID: PMC10179359 DOI: 10.3390/ijms24098280] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 04/30/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
In this study, a commercial agent with antivirus activity and moroxydine hydrochloride were employed to perform a lead optimization. A series of 1,3,5-triazine derivatives with piperazine structures were devised and synthesized, and an evaluation of their anti-potato virus Y (PVY) activity revealed that several of the target compounds possessed potent anti-PVY activity. The synthesis of compound C35 was directed by a 3D-quantitative structure-activity relationship that used the compound's structural parameters. The assessment of the anti-PVY activity of compound C35 revealed that its curative, protective, and inactivation activities (53.3 ± 2.5%, 56.9 ± 1.5%, and 85.8 ± 4.4%, respectively) were comparable to the positive control of ningnanmycin (49.1 ± 2.4%, 50.7 ± 4.1%, and 82.3 ± 6.4%) and were superior to moroxydine hydrochloride (36.7 ± 2.7%, 31.4 ± 2.0%, and 57.1 ± 1.8%). In addition, molecular docking demonstrated that C35 can form hydrogen bonds with glutamic acid at position 150 (GLU 150) of PVY CP, providing a partial theoretical basis for the antiviral activity of the target compounds.
Collapse
Affiliation(s)
- Lian Bai
- Center for R&D of Fine Chemicals of Guizhou University, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, National Key Laboratory of Green Pesticide, Guiyang 550025, China
| | - Chunle Wei
- Center for R&D of Fine Chemicals of Guizhou University, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, National Key Laboratory of Green Pesticide, Guiyang 550025, China
| | - Jian Zhang
- Center for R&D of Fine Chemicals of Guizhou University, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, National Key Laboratory of Green Pesticide, Guiyang 550025, China
| | - Runjiang Song
- Center for R&D of Fine Chemicals of Guizhou University, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, National Key Laboratory of Green Pesticide, Guiyang 550025, China
| |
Collapse
|
4
|
Bankar AA, Kathuria D. Guanylguanidines: Catalyst and Ligand for Organic Transformations. ChemistrySelect 2022. [DOI: 10.1002/slct.202201273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Affiliation(s)
- Apoorva A. Bankar
- Department of Pharmaceutical Chemistry Government College of Pharmacy, Kathora Naka Amravati Maharashtra 444604 India
| | - Deepika Kathuria
- University Center for Research and Development Chandigarh University Gharuan Punjab 140413 India
| |
Collapse
|
5
|
Theoretical spectroscopic electronic elucidation with different solvents (IEFPCM model), biological assessment and molecular docking studies on Moroxydine-Antiviral drug agent. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
6
|
Ottavi S, Scarry SM, Mosior J, Ling Y, Roberts J, Singh A, Zhang D, Goullieux L, Roubert C, Bacqué E, Lagiakos HR, Vendome J, Moraca F, Li K, Perkowski AJ, Ramesh R, Bowler MM, Tracy W, Feher VA, Sacchettini JC, Gold BS, Nathan CF, Aubé J. In Vitro and In Vivo Inhibition of the Mycobacterium tuberculosis Phosphopantetheinyl Transferase PptT by Amidinoureas. J Med Chem 2022; 65:1996-2022. [PMID: 35044775 PMCID: PMC8842310 DOI: 10.1021/acs.jmedchem.1c01565] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A newly validated target for tuberculosis treatment is phosphopantetheinyl transferase, an essential enzyme that plays a critical role in the biosynthesis of cellular lipids and virulence factors in Mycobacterium tuberculosis. The structure-activity relationships of a recently disclosed inhibitor, amidinourea (AU) 8918 (1), were explored, focusing on the biochemical potency, determination of whole-cell on-target activity for active compounds, and profiling of selective active congeners. These studies show that the AU moiety in AU 8918 is largely optimized and that potency enhancements are obtained in analogues containing a para-substituted aromatic ring. Preliminary data reveal that while some analogues, including 1, have demonstrated cardiotoxicity (e.g., changes in cardiomyocyte beat rate, amplitude, and peak width) and inhibit Cav1.2 and Nav1.5 ion channels (although not hERG channels), inhibition of the ion channels is largely diminished for some of the para-substituted analogues, such as 5k (p-benzamide) and 5n (p-phenylsulfonamide).
Collapse
Affiliation(s)
- Samantha Ottavi
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Sarah M Scarry
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - John Mosior
- Departments of Biochemistry and Biophysics, Texas Agricultural and Mechanical University, College Station, Texas 77843, United States
| | - Yan Ling
- Department of Microbiology & Immunology, Weill Cornell Medicine, New York, New York 10065, United States
| | - Julia Roberts
- Department of Microbiology & Immunology, Weill Cornell Medicine, New York, New York 10065, United States
| | - Amrita Singh
- Department of Microbiology & Immunology, Weill Cornell Medicine, New York, New York 10065, United States
| | - David Zhang
- Department of Microbiology & Immunology, Weill Cornell Medicine, New York, New York 10065, United States
| | | | | | - Eric Bacqué
- Evotec ID (Lyon), SAS 40 Avenue Tony Garnier, Lyon 69001, France
| | - H Rachel Lagiakos
- Schrödinger, Inc., 120 W. 45 Street, New York, New York 10036, United States
| | - Jeremie Vendome
- Schrödinger, Inc., 120 W. 45 Street, New York, New York 10036, United States
| | - Francesca Moraca
- Schrödinger, Inc., 120 W. 45 Street, New York, New York 10036, United States
| | - Kelin Li
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Andrew J Perkowski
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Remya Ramesh
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Matthew M Bowler
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - William Tracy
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Victoria A Feher
- Schrödinger, Inc., 120 W. 45 Street, New York, New York 10036, United States
| | - James C Sacchettini
- Departments of Biochemistry and Biophysics, Texas Agricultural and Mechanical University, College Station, Texas 77843, United States
| | - Ben S Gold
- Department of Microbiology & Immunology, Weill Cornell Medicine, New York, New York 10065, United States
| | - Carl F Nathan
- Department of Microbiology & Immunology, Weill Cornell Medicine, New York, New York 10065, United States.,Department of Medicine, Weill Cornell Medicine, New York, New York 10065, United States
| | - Jeffrey Aubé
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
7
|
Synthesis and Biological Evaluation of Amidinourea Derivatives against Herpes Simplex Viruses. Molecules 2021; 26:molecules26164927. [PMID: 34443515 PMCID: PMC8398393 DOI: 10.3390/molecules26164927] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 11/17/2022] Open
Abstract
Current therapy against herpes simplex viruses (HSV) relies on the use of a few nucleoside antivirals such as acyclovir, famciclovir and valacyclovir. However, the current drugs are ineffective against latent and drug-resistant HSV infections. A series of amidinourea compounds, designed as analogues of the antiviral drug moroxydine, has been synthesized and evaluated as potential non-nucleoside anti-HSV agents. Three compounds showed micromolar activity against HSV-1 and low cytotoxicity, turning to be promising candidates for future optimization. Preliminary mode of action studies revealed that the new compounds act in an early stage of the HSV replication cycle, just after the viral attachment and the entry phase of the infection.
Collapse
|
8
|
Rahman A, Stipaničev N, Keogh AP, Twamley B, Rozas I. Selective carbamate conversion of protected guanidines. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Simultaneous determination of five antiviral drug residues and stability studies in honey using a two-step fraction capture coupled to liquid chromatography tandem mass spectrometry. J Chromatogr A 2021; 1638:461890. [PMID: 33465584 DOI: 10.1016/j.chroma.2021.461890] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 11/24/2022]
Abstract
An effective sample pretreatment method followed by liquid chromatography tandem mass spectrometry (LC-MS/MS) was first developed for simultaneous determination of five antiviral drug residues including ribavirin, moroxydine, amantadine, rimantadine and memantine in honey. To adsorb analytes with different binding properties and overcome the interference of sugars and uridine as endogenous ribavirin structural analogs in honey, the target drugs were extracted with 1% formic acid and then purified by a phenylboronic acid (PBA) solid phase extraction cartridge using two-step fraction capture prior to LC-MS/MS analysis. This method was validated by analyzing honey samples from nine floral origins including miscellaneous flowers, citrus, vitex, rape, acacia, sunflower, linden, buckwheat and jujube spiking at multiple levels, and the recoveries ranged from 82.46% to 116.34%, with relative standard deviations (RSDs) less than 14.58%. The limits of detection (LODs) and limits of quantitation (LOQs) of moroxydine, ribavirin, amantadine, rimantadine, and memantine were 0.1-2 µg/kg and 0.2-5 µg/kg, respectively. Depletion experiments of five antiviral drugs in honey at different storage and process temperatures demonstrated that moroxydine can potentially be used as a drug to cure sacbrood disease in honeybees.
Collapse
|
10
|
Lu Q, He W, Sun W, Feng Y, Zhan L, Luo Y. Synthesis of 2-arylamino-5-formyl-pyrimidines from the bis(hexafluorophosphate) Arnold salt. JOURNAL OF CHEMICAL RESEARCH 2020. [DOI: 10.1177/1747519820911271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A three-step synthesis of 2-arylamino-5-formyl-pyrimidines is developed by condensation of the bis(hexafluorophosphate) Arnold salt with N-arylguanidines. This method conveniently provides the corresponding 2-arylaminopyrimidine derivatives in good yields.
Collapse
Affiliation(s)
- Qiuyu Lu
- Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, P.R. China
| | - Wei He
- Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, P.R. China
| | - Wen Sun
- Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, P.R. China
| | - Ye Feng
- Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, P.R. China
| | - Li Zhan
- Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, P.R. China
| | - Yu Luo
- Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, P.R. China
| |
Collapse
|
11
|
Kandeel M, Abdelrahman AHM, Oh-Hashi K, Ibrahim A, Venugopala KN, Morsy MA, Ibrahim MAA. Repurposing of FDA-approved antivirals, antibiotics, anthelmintics, antioxidants, and cell protectives against SARS-CoV-2 papain-like protease. J Biomol Struct Dyn 2020; 39:5129-5136. [PMID: 32597315 PMCID: PMC7332862 DOI: 10.1080/07391102.2020.1784291] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
SARS-CoV-2 or Coronavirus disease 19 (COVID-19) is a rapidly spreading, highly contagious, and sometimes fatal disease for which drug discovery and vaccine development are critical. SARS-CoV-2 papain-like protease (PLpro) was used to virtually screen 1697 clinical FDA-approved drugs. Among the top results expected to bind with SARS-CoV-2 PLpro strongly were three cell protectives and antioxidants (NAD+, quercitrin, and oxiglutatione), three antivirals (ritonavir, moroxydine, and zanamivir), two antimicrobials (doripenem and sulfaguanidine), two anticancer drugs, three benzimidazole anthelmintics, one antacid (famotidine), three anti-hypertensive ACE receptor blockers (candesartan, losartan, and valsartan) and other miscellaneous systemically or topically acting drugs. The binding patterns of these drugs were superior to the previously identified SARS CoV PLpro inhibitor, 6-mercaptopurine (6-MP), suggesting a potential for repurposing these drugs to treat COVID-19. The objective of drug repurposing is the rapid relocation of safe and approved drugs by bypassing the lengthy pharmacokinetic, toxicity, and preclinical phases. The ten drugs with the highest estimated docking scores with favorable pharmacokinetics were subjected to molecular dynamics (MD) simulations followed by molecular mechanics/generalized Born surface area (MM/GBSA) binding energy calculations. Phenformin, quercetin, and ritonavir all demonstrated prospective binding affinities for COVID-19 PLpro over 50 ns MD simulations, with binding energy values of −56.6, −40.9, and −37.6 kcal/mol, respectively. Energetic and structural analyses showed phenformin was more stable than quercetin and ritonavir. The list of the drugs provided herein constitutes a primer for clinical application in COVID-19 patients and guidance for further antiviral studies. Communicated by Ramaswamy H. Sarma
Collapse
Affiliation(s)
- Mahmoud Kandeel
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-ahsa, Saudi Arabia.,Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelshikh University, Kafrelshikh, Egypt
| | - Alaa H M Abdelrahman
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia, Egypt
| | - Kentaro Oh-Hashi
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Gifu, Japan
| | - Abdelazim Ibrahim
- Department of Pathology, College of Veterinary Medicine, King Faisal University, Al-ahsa, Saudi Arabia
| | - Katharigatta N Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Mohamed A Morsy
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Mahmoud A A Ibrahim
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University, Minia, Egypt
| |
Collapse
|
12
|
Smith D, Magri A, Bonsall D, Ip CL, Trebes A, Brown A, Piazza P, Bowden R, Nguyen D, Ansari MA, Simmonds P, Barnes E. Resistance analysis of genotype 3 hepatitis C virus indicates subtypes inherently resistant to nonstructural protein 5A inhibitors. Hepatology 2019; 69:1861-1872. [PMID: 29425396 PMCID: PMC6492296 DOI: 10.1002/hep.29837] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 02/03/2018] [Indexed: 12/12/2022]
Abstract
Hepatitis C virus (HCV) genotype (gt) 3 is highly prevalent globally, with non-gt3a subtypes common in Southeast Asia. Resistance-associated substitutions (RASs) have been shown to play a role in treatment failure. However, the role of RASs in gt3 is not well understood. We report the prevalence of RASs in a cohort of direct-acting antiviral treatment-naive, gt3-infected patients, including those with rarer subtypes, and evaluate the effect of these RASs on direct-acting antivirals in vitro. Baseline samples from 496 gt3 patients enrolled in the BOSON clinical trial were analyzed by next-generation sequencing after probe-based enrichment for HCV. Whole viral genomes were analyzed for the presence of RASs to approved direct-acting antivirals. The resistance phenotype of RASs in combination with daclatasvir, velpatasvir, pibrentasvir, elbasvir, and sofosbuvir was measured using the S52 ΔN gt3a replicon model. The nonstructural protein 5A A30K and Y93H substitutions were the most common at 8.9% (n = 44) and 12.3% (n = 61), respectively, and showed a 10-fold and 11-fold increase in 50% effect concentration for daclatasvir compared to the unmodified replicon. Paired RASs (A30K + L31M and A30K + Y93H) were identified in 18 patients (9 of each pair); these combinations were shown to be highly resistant to daclatasvir, velpatasvir, elbasvir, and pibrentasvir. The A30K + L31M combination was found in all gt3b and gt3g samples. Conclusion: Our study reveals high frequencies of RASs to nonstructural protein 5A inhibitors in gt3 HCV; the paired A30K + L31M substitutions occur in all patients with gt3b and gt3g virus, and in vitro analysis suggests that these subtypes may be inherently resistant to all approved nonstructural protein 5A inhibitors for gt3 HCV. (Hepatology 2018).
Collapse
Affiliation(s)
- David Smith
- Nuffield Department of Medicine and the Oxford NIHR BRCUniversity of OxfordOxfordUK
| | - Andrea Magri
- Nuffield Department of Medicine and the Oxford NIHR BRCUniversity of OxfordOxfordUK
- Oxford Martin SchoolUniversity of OxfordOxfordUK
| | - David Bonsall
- Nuffield Department of Medicine and the Oxford NIHR BRCUniversity of OxfordOxfordUK
- Wellcome Trust Centre for Human GeneticsUniversity of OxfordOxfordUK
| | - Camilla L.C. Ip
- Nuffield Department of Medicine and the Oxford NIHR BRCUniversity of OxfordOxfordUK
- Wellcome Trust Centre for Human GeneticsUniversity of OxfordOxfordUK
| | - Amy Trebes
- Wellcome Trust Centre for Human GeneticsUniversity of OxfordOxfordUK
| | - Anthony Brown
- Nuffield Department of Medicine and the Oxford NIHR BRCUniversity of OxfordOxfordUK
| | - Palo Piazza
- Wellcome Trust Centre for Human GeneticsUniversity of OxfordOxfordUK
| | - Rory Bowden
- Wellcome Trust Centre for Human GeneticsUniversity of OxfordOxfordUK
| | - Dung Nguyen
- Nuffield Department of Medicine and the Oxford NIHR BRCUniversity of OxfordOxfordUK
| | - M. Azim Ansari
- Nuffield Department of Medicine and the Oxford NIHR BRCUniversity of OxfordOxfordUK
- Oxford Martin SchoolUniversity of OxfordOxfordUK
| | - Peter Simmonds
- Nuffield Department of Medicine and the Oxford NIHR BRCUniversity of OxfordOxfordUK
| | - Eleanor Barnes
- Nuffield Department of Medicine and the Oxford NIHR BRCUniversity of OxfordOxfordUK
| | | |
Collapse
|
13
|
Barbieri F, Verduci I, Carlini V, Zona G, Pagano A, Mazzanti M, Florio T. Repurposed Biguanide Drugs in Glioblastoma Exert Antiproliferative Effects via the Inhibition of Intracellular Chloride Channel 1 Activity. Front Oncol 2019; 9:135. [PMID: 30918838 PMCID: PMC6424887 DOI: 10.3389/fonc.2019.00135] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 02/14/2019] [Indexed: 12/12/2022] Open
Abstract
The lack of in-depth knowledge about the molecular determinants of glioblastoma (GBM) occurrence and progression, combined with few effective and BBB crossing-targeted compounds represents a major challenge for the discovery of novel and efficacious drugs for GBM. Among relevant molecular factors controlling the aggressive behavior of GBM, chloride intracellular channel 1 (CLIC1) represents an emerging prognostic and predictive biomarker, as well as a promising therapeutic target. CLIC1 is a metamorphic protein, co-existing as both soluble cytoplasmic and membrane-associated conformers, with the latter acting as chloride selective ion channel. CLIC1 is involved in several physiological cell functions and its abnormal expression triggers tumor development, favoring tumor cell proliferation, invasion, and metastasis. CLIC1 overexpression is associated with aggressive features of various human solid tumors, including GBM, in which its expression level is correlated with poor prognosis. Moreover, increasing evidence shows that modification of microglia ion channel activity, and CLIC1 in particular, contributes to the development of different neuropathological states and brain tumors. Intriguingly, CLIC1 is constitutively active within cancer stem cells (CSCs), while it seems less relevant for the survival of non-CSC GBM subpopulations and for normal cells. CSCs represent GBM development and progression driving force, being endowed with stem cell-like properties (self-renewal and differentiation), ability to survive therapies, to expand and differentiate, causing tumor recurrence. Downregulation of CLIC1 results in drastic inhibition of GBM CSC proliferation in vitro and in vivo, making the control of the activity this of channel a possible innovative pharmacological target. Recently, drugs belonging to the biguanide class (including metformin) were reported to selectively inhibit CLIC1 activity in CSCs, impairing their viability and invasiveness, but sparing normal stem cells, thus representing potential novel antitumor drugs with a safe toxicological profile. On these premises, we review the most recent insights into the biological role of CLIC1 as a potential selective pharmacological target in GBM. Moreover, we examine old and new drugs able to functionally target CLIC1 activity, discussing the challenges and potential development of CLIC1-targeted therapies.
Collapse
Affiliation(s)
- Federica Barbieri
- Sezione di Farmacologia, Dipartimento di Medicina Interna & Centro di Eccellenza per la Ricerca Biomedica, Università di Genoa, Genoa, Italy
| | - Ivan Verduci
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| | - Valentina Carlini
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| | - Gianluigi Zona
- Dipartimento di Neuroscienze, Riabilitazione, Oftalmologia, Genetica e Scienze Materno-Infantili, Università di Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Aldo Pagano
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy.,Dipartimento di Medicina Sperimentale, Università di Genoa, Genoa, Italy
| | - Michele Mazzanti
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| | - Tullio Florio
- Sezione di Farmacologia, Dipartimento di Medicina Interna & Centro di Eccellenza per la Ricerca Biomedica, Università di Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
14
|
Synthesis, biological evaluation and mode of action studies of novel amidinourea inhibitors of hepatitis C virus (HCV). Bioorg Med Chem Lett 2019; 29:724-728. [PMID: 30661824 DOI: 10.1016/j.bmcl.2019.01.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/04/2019] [Accepted: 01/09/2019] [Indexed: 12/12/2022]
Abstract
Novel amidinourea derivatives have been synthesised and evaluated for their antiviral activity against Hepatitis C Virus (HCV). A compound with an amidinourea-spermine chemical structure, different from that of standard anti-HCV drugs, showed micromolar activity against HCV and excellent viability. Studies on the mode of action revealed that the new compound may act against HCV through the inhibition of IRES-mediated translation.
Collapse
|
15
|
Yu XB, Hao K, Li J, Chen XH, Wang GX, Ling F. Effects of moroxydine hydrochloride and ribavirin on the cellular growth and immune responses by inhibition of GCRV proliferation. Res Vet Sci 2018; 117:37-44. [DOI: 10.1016/j.rvsc.2017.11.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/13/2017] [Accepted: 11/18/2017] [Indexed: 01/18/2023]
|
16
|
|
17
|
Sidoryk K, Świtalska M, Rózga P, Wietrzyk J, Bujak I, Żerek B, Kaczmarek Ł, Cybulski M. An efficient synthesis of indolo[2,3-b]quinoline guanidine derivatives with their in vitro and in vivo study. Med Chem Res 2017; 26:3354-3366. [PMID: 29170613 PMCID: PMC5676820 DOI: 10.1007/s00044-017-2028-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 08/05/2017] [Indexed: 11/28/2022]
Abstract
An optimization of the guanidylation process by verifying the efficacy of common guanylation reagents in order to obtain the guanidine derivatives of indolo[2,3-b]quinoline has been performed. As a result, a high-yield procedure using N,N′-di-Boc-N′′-triflylguanidine was applied to synthesize the guanidine derivative of indolo[2,3-b]quinoline 1 in a gram scale for specific in vitro and in vivo biological research. Extensive studies on the antiproliferative activity against eight human tumor cell lines were completed. Compound 1 revealed the highest activity against A549 lung adenocarcinoma and MCF7 breast cancer cell lines. Thus, 1 was evaluated for the in vivo anticancer activity against 4T1 mammary gland carcinoma and KLN205 murine lung carcinoma in mouse models. The anticancer effect was observed in the KLN205 model with a 37% tumor growth inhibition at the 20 mg/kg dose. This anticancer activity of 1 was comparable to that of cyclophosphamide which inhibited murine lung tumor growth in the range of 27–43% at the dose of 100 mg/kg. The biochemistry research after 1 admission, including measurements of blood parameters like alanine aminotransferase, aspartate aminotransferase, lactate dehydrogenase, and urea and creatinine, were also performed.
Collapse
Affiliation(s)
- Katarzyna Sidoryk
- Pharmaceutical Research Institute, 8 Rydygiera St., 01-793 Warszawa, Poland
| | - Marta Świtalska
- Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 12 Weigla St., 53-114 Wrocław, Poland
| | - Piotr Rózga
- Adamed Group, Oncology Group, Pieńków 149, 05-152 Czosnów, Poland
| | - Joanna Wietrzyk
- Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 12 Weigla St., 53-114 Wrocław, Poland
| | - Iwona Bujak
- Pharmaceutical Research Institute, 8 Rydygiera St., 01-793 Warszawa, Poland
| | - Bartłomiej Żerek
- Adamed Group, Oncology Group, Pieńków 149, 05-152 Czosnów, Poland
| | - Łukasz Kaczmarek
- Pharmaceutical Research Institute, 8 Rydygiera St., 01-793 Warszawa, Poland
| | - Marcin Cybulski
- Pharmaceutical Research Institute, 8 Rydygiera St., 01-793 Warszawa, Poland
| |
Collapse
|
18
|
Magri A, Barbaglia MN, Foglia CZ, Boccato E, Burlone ME, Cole S, Giarda P, Grossini E, Patel AH, Minisini R, Pirisi M. 17,β-estradiol inhibits hepatitis C virus mainly by interference with the release phase of its life cycle. Liver Int 2017; 37:669-677. [PMID: 27885811 PMCID: PMC5448036 DOI: 10.1111/liv.13303] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 10/31/2016] [Indexed: 12/16/2022]
Abstract
BACKGROUND & AIMS Oestrogen and oestrogen-mediated signalling protect from hepatitis C virus through incompletely understood mechanisms. We aimed to ascertain which phase(s) of hepatitis C virus life cycle is/are affected by oestrogens. METHODS Huh7 cells infected with the JFH1 virus (genotype 2a) were exposed to dehydroepiandrosterone, testosterone, progesterone and 17β-estradiol (tested with/without its receptor antagonist fulvestrant). Dose-response curves were established to calculate half maximal inhibitory concentration values. To dissect how 17β-estradiol interferes with phases of hepatitis C virus life cycle, its effects were measured on the hepatitis C virus pseudo-particle system (viral entry), the subgenomic replicon N17/JFH1 and the replicon cell line Huh7-J17 (viral replication). Finally, in a dual-step infection model, infectious supernatants, collected from infected cells exposed to hormones, were used to infect naïve cells. RESULTS Progesterone and testosterone showed no inhibitory effect on hepatitis C virus; dehydroepiandrosterone was only mildly inhibitory. In contrast, 17β-estradiol inhibited infection by 64%-67% (IC50 values 140-160 nmol/L). Fulvestrant reverted the inhibition by 17β-estradiol in a dose-dependent manner. 17β-estradiol exerted only a slight inhibition (<20%) on hepatitis C virus pseudo-particles, and had no effect on cells either transiently or stably (Huh7-J17 cells) expressing the N17/JFH1 replicon. In the dual-step infection model, a significant half maximal inhibitory concentration decline occurred between primary (134 nmol/L) and secondary (100 nmol/L) infections (P=.02), with extracellular hepatitis C virus RNA and infectivity being reduced to a higher degree in comparison to its intracellular counterpart. CONCLUSIONS 17β-estradiol inhibits hepatitis C virus acting through its intracellular receptors, mainly interfering with late phases (assembly/release) of the hepatitis C virus life cycle.
Collapse
Affiliation(s)
- Andrea Magri
- Department of Translational MedicineUniversità del Piemonte OrientaleNovaraItaly,MRC‐University of Glasgow Centre for Virus ResearchGlasgowUK
| | - Matteo N. Barbaglia
- Department of Translational MedicineUniversità del Piemonte OrientaleNovaraItaly
| | - Chiara Z. Foglia
- Department of Translational MedicineUniversità del Piemonte OrientaleNovaraItaly
| | - Elisa Boccato
- Department of Translational MedicineUniversità del Piemonte OrientaleNovaraItaly
| | - Michela E. Burlone
- Department of Translational MedicineUniversità del Piemonte OrientaleNovaraItaly,CRRF Mons. Luigi NovareseMoncrivelloVercelliItaly
| | - Sarah Cole
- MRC‐University of Glasgow Centre for Virus ResearchGlasgowUK
| | - Paola Giarda
- Department of Translational MedicineUniversità del Piemonte OrientaleNovaraItaly
| | - Elena Grossini
- Department of Translational MedicineUniversità del Piemonte OrientaleNovaraItaly
| | - Arvind H. Patel
- MRC‐University of Glasgow Centre for Virus ResearchGlasgowUK
| | - Rosalba Minisini
- Department of Translational MedicineUniversità del Piemonte OrientaleNovaraItaly
| | - Mario Pirisi
- Department of Translational MedicineUniversità del Piemonte OrientaleNovaraItaly
| |
Collapse
|
19
|
Ansari MA, Pedergnana V, L C Ip C, Magri A, Von Delft A, Bonsall D, Chaturvedi N, Bartha I, Smith D, Nicholson G, McVean G, Trebes A, Piazza P, Fellay J, Cooke G, Foster GR, Hudson E, McLauchlan J, Simmonds P, Bowden R, Klenerman P, Barnes E, Spencer CCA. Genome-to-genome analysis highlights the effect of the human innate and adaptive immune systems on the hepatitis C virus. Nat Genet 2017; 49:666-673. [PMID: 28394351 PMCID: PMC5873514 DOI: 10.1038/ng.3835] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 03/10/2017] [Indexed: 12/11/2022]
Abstract
Outcomes of hepatitis C virus (HCV) infection and treatment depend on viral and host genetic factors. We use human genome-wide genotyping arrays and new whole-genome HCV viral sequencing technologies to perform a systematic genome-to-genome study of 542 individuals chronically infected with HCV, predominately genotype 3. We show that both HLA alleles and interferon lambda innate immune system genes drive viral genome polymorphism, and that IFNL4 genotypes determine HCV viral load through a mechanism that is dependent on a specific polymorphism in the HCV polyprotein. We highlight the interplay between innate immune responses and the viral genome in HCV control.
Collapse
Affiliation(s)
- M Azim Ansari
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK.,Oxford Martin School, University of Oxford, Oxford, UK.,Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine and the NIHR Oxford BRC, University of Oxford, Oxford, UK
| | - Vincent Pedergnana
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Camilla L C Ip
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK.,Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine and the NIHR Oxford BRC, University of Oxford, Oxford, UK
| | - Andrea Magri
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine and the NIHR Oxford BRC, University of Oxford, Oxford, UK
| | - Annette Von Delft
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine and the NIHR Oxford BRC, University of Oxford, Oxford, UK
| | - David Bonsall
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine and the NIHR Oxford BRC, University of Oxford, Oxford, UK
| | - Nimisha Chaturvedi
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Istvan Bartha
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - David Smith
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine and the NIHR Oxford BRC, University of Oxford, Oxford, UK
| | | | - Gilean McVean
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK.,Oxford Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
| | - Amy Trebes
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Paolo Piazza
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Jacques Fellay
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Graham Cooke
- Wright-Fleming Institute, Imperial College London, London, UK
| | | | | | - Emma Hudson
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine and the NIHR Oxford BRC, University of Oxford, Oxford, UK
| | - John McLauchlan
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Peter Simmonds
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine and the NIHR Oxford BRC, University of Oxford, Oxford, UK
| | - Rory Bowden
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine and the NIHR Oxford BRC, University of Oxford, Oxford, UK
| | - Eleanor Barnes
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine and the NIHR Oxford BRC, University of Oxford, Oxford, UK
| | - Chris C A Spencer
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
20
|
Bass R, Jenkinson S, Wright J, Smulders-Srinivasan T, Marshall JC, Castagnolo D. Synthesis and Biological Evaluation of Amidinourea and Triazine Congeners as Inhibitors of MDA-MB-231 Human Breast Cancer Cell Proliferation. ChemMedChem 2017; 12:288-291. [DOI: 10.1002/cmdc.201600580] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 12/20/2016] [Indexed: 11/05/2022]
Affiliation(s)
- Rosemary Bass
- Department of Applied Sciences; Northumbria University, Ellison Building; Ellison Place NE1 8ST Newcastle upon Tyne UK
| | - Sarah Jenkinson
- Department of Applied Sciences; Northumbria University, Ellison Building; Ellison Place NE1 8ST Newcastle upon Tyne UK
| | - Jennifer Wright
- Department of Applied Sciences; Northumbria University, Ellison Building; Ellison Place NE1 8ST Newcastle upon Tyne UK
| | - Tora Smulders-Srinivasan
- Department of Applied Sciences; Northumbria University, Ellison Building; Ellison Place NE1 8ST Newcastle upon Tyne UK
| | - Jamie C. Marshall
- Department of Applied Sciences; Northumbria University, Ellison Building; Ellison Place NE1 8ST Newcastle upon Tyne UK
| | - Daniele Castagnolo
- Institute of Pharmaceutical Science; King's College London; 150 Stamford Street SE1 9NH London UK
| |
Collapse
|
21
|
Berlinck RGS, Bertonha AF, Takaki M, Rodriguez JPG. The chemistry and biology of guanidine natural products. Nat Prod Rep 2017; 34:1264-1301. [DOI: 10.1039/c7np00037e] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The chemistry and biology of natural guanidines isolated from microbial culture media, from marine invertebrates, as well as from terrestrial plants and animals, are reviewed.
Collapse
Affiliation(s)
| | - Ariane F. Bertonha
- Instituto de Química de São Carlos
- Universidade de São Paulo
- São Carlos
- Brazil
| | - Mirelle Takaki
- Instituto de Química de São Carlos
- Universidade de São Paulo
- São Carlos
- Brazil
| | | |
Collapse
|
22
|
Yu XB, Chen XH, Shan LP, Hao K, Wang GX. In vitro antiviral efficacy of moroxydine hydrochloride and ribavirin against grass carp reovirus and giant salamander iridovirus. DISEASES OF AQUATIC ORGANISMS 2016; 121:189-199. [PMID: 27786157 DOI: 10.3354/dao03053] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Moroxydine hydrochloride (Mor) and ribavirin (Rib) have been reported to exhibit multi-antiviral activities against DNA and RNA viruses, but their antiviral activities and pharmacologies have seldom been studied in aquaculture. This paper has selected 3 aquatic viruses including a double-stranded RNA virus (grass carp reovirus, GCRV), a single-stranded RNA virus (spring viraemia of carp virus, SVCV) and a DNA virus (giant salamander iridovirus, GSIV) for antiviral testing. The results showed that Mor and Rib can effectively control the infection of GCRV and GSIV in respective host cells. Further study was undertaken to explore the antivirus efficiencies and pharmacological mechanisms of Mor and Rib on GCRV and GSIV in vitro. Briefly, compounds showed over 50% protective effects at 15.9 µg ml-1 except for the group of GSIV-infected epithelioma papulosum cyprinid (EPC) cells treated with Mor. Moreover, Mor and Rib blocked the virus-induced cytopathic effects and apoptosis in host cells to keep the normal cellular structure. The expression of VP1 (GCRV) and major capsid protein (MCP; GSIV) gene was also significantly inhibited in the virus-infected cells when treated with Mor and Rib. Cytotoxicity assay verified the 2 compounds had no toxic effects on grass carp ovary (GCO) cells and EPC cells at ≤96 µg ml-1. In conclusion, these results indicated that exposing GCRV-infected GCO cells and GSIV-infected EPC cells to Mor and Rib could elicit significant antiviral responses, and the 2 compounds have been shown to be promising agents for viral control in the aquaculture industry.
Collapse
Affiliation(s)
- Xiao-Bo Yu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | | | | | | | | |
Collapse
|
23
|
|
24
|
|
25
|
Yu XB, Chen XH, Ling F, Hao K, Wang GX, Zhu B. Moroxydine hydrochloride inhibits grass carp reovirus replication and suppresses apoptosis in Ctenopharyngodon idella kidney cells. Antiviral Res 2016; 131:156-65. [PMID: 27188236 DOI: 10.1016/j.antiviral.2016.05.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 04/06/2016] [Accepted: 05/13/2016] [Indexed: 02/08/2023]
Abstract
Moroxydine hydrochloride (Mor) is known to have multi-antiviral activities against DNA and RNA viruses but very little information exists on its pharmacology. The paper was undertaken to explore the antiviral response and antiapoptotic mechanism of Mor against grass carp reovirus (GCRV) in Ctenopharyngodon idella kidney (CIK) cells. The results showed that exposing GCRV-infected cell to 6.3 μg mL(-1) of Mor for 96 h avoid ca. 50% apoptosis. Meanwhile, Mor had lower cytotoxicity than ribavirin (Rib) as the value of safe concentration was threefold higher than effective concentration and the compound could ensure sufficient into and out of cells within 4 h when tested at the maximal safe concentration. Mor blocked the GCRV-induced cytopathic effects and eliminated nucleocapsids in CIK cells to keep the normal morphological structure. Moreover, the expressions of viral protein genes were significantly inhibited especially the guanylyl transferase and RNA-dependent RNA polymerase related expression. Furthermore, GCRV caused Bcl-2 down-regulation and Bax mitochondrial translocation was prevented by treatment of CIK cells with Mor. The downstream effector, caspase activity was also significantly inhibited in Mor treated cells. The potential mechanism might be that mitochondrial apoptotic signals were not activated by the intervention of Mor for targeting viral gene expression. Taken together, Mor showed high anti-GCRV activity and had been proved as a secure and promising agent in viral controlling in aquaculture industry.
Collapse
Affiliation(s)
- Xiao-Bo Yu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiao-Hui Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fei Ling
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Kai Hao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Gao-Xue Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Bin Zhu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|