1
|
Koczula AM, Cremer N, Moldenhauer M, Sluchanko NN, Maksimov EG, Friedrich T. Mutational interference with oligomerization properties of OCP-related apo- and holoproteins studied by analytical ultracentrifugation. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2025; 1866:149538. [PMID: 39814218 DOI: 10.1016/j.bbabio.2025.149538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/19/2024] [Accepted: 01/09/2025] [Indexed: 01/18/2025]
Abstract
In this study, the oligomerization pattern of apo- and holoforms of the Orange Carotenoid Protein (OCP) was examined under different conditions such as photoactivation state, concentration, and carotenoid embedment using analytical ultracentrifugation. Furthermore, studies were conducted on OCP constructs carrying point mutations of amino acid residues affecting OCP oligomerization. Our findings reveal that the concentration-dependent dimerization of dark-adapted OCP holoprotein from Synechocystis sp. PCC 6803 can be effectively prevented by the R27L mutation in the OCP-NTD. By introducing the E258R mutation (also in conjunction with R27L) into the OCP-CTD, monomeric OCP apoprotein can be obtained. Additionally, the holoprotein of the dark-adapted OCP-R27L/E258R variant was monomeric, and, supported by size-exclusion chromatography experiments, the photoactivated form of the OCP-R27L/E258R variant was monomeric as well. This variant, which does not oligomerize in either photocycle state, returns from the photoactivated to the dark-adapted state at a significantly faster rate than the OCP wild-type and the R27L mutant thereof. These observations also highlight the crucial interdependence between OCP dimerization in both photocycle states, the lifetime of the photoactive state of OCP, and the kinetics of the OCP photocycle.
Collapse
Affiliation(s)
- Anna Marta Koczula
- Technische Universität Berlin, Institute of Chemistry PC 14, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Nils Cremer
- Leibniz Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Marcus Moldenhauer
- Technische Universität Berlin, Institute of Chemistry PC 14, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Nikolai N Sluchanko
- Federal Research Center of Biotechnology of the Russian Academy of Sciences, A.N. Bach Institute of Biochemistry, Leninsky Prospect 33-1, Moscow 119071, Russian Federation
| | - Eugene G Maksimov
- Lomonosov Moscow State University, Faculty of Biology, Leninskie Gory 1-12, Moscow 119991, Russian Federation
| | - Thomas Friedrich
- Technische Universität Berlin, Institute of Chemistry PC 14, Straße des 17. Juni 135, 10623 Berlin, Germany.
| |
Collapse
|
2
|
Nikolaev AS, Lunegova DA, Raevskii RI, Shishkin PE, Remeeva AA, Ge B, Maksimov EG, Gushchin IY, Sluchanko NN. Re-engineering of a carotenoid-binding protein based on NMR structure. Protein Sci 2024; 33:e5216. [PMID: 39548819 PMCID: PMC11568390 DOI: 10.1002/pro.5216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/14/2024] [Accepted: 10/24/2024] [Indexed: 11/18/2024]
Abstract
Recently, a number of message passing neural network (MPNN)-based methods have been introduced that, based on backbone atom coordinates, efficiently recover native amino acid sequences of proteins and predict modifications that result in better expressing, more soluble, and stable variants. However, usually, X-ray structures, or artificial structures generated by algorithms trained on X-ray structures, were employed to define target backbone conformations. Here, we show that commonly used algorithms ProteinMPNN and SolubleMPNN display low sequence recovery on structures determined using NMR. We subsequently propose a computational approach that we successfully apply to re-engineer AstaP, a protein that natively binds a large hydrophobic ligand astaxanthin (C40H52O4), and for which only a structure determined using NMR is currently available. The engineered variants, designated NeuroAstaP, are 51 amino acid shorter than the 22 kDa parent protein, have 38%-42% sequence identity to it, exhibit good yields, are expressed in a soluble, mostly monomeric form, and demonstrate efficient binding of carotenoids in vitro and in cells. Altogether, our work further tests the limits of using machine learning for protein engineering and paves the way for MPNN-based modification of proteins based on NMR-derived structures.
Collapse
Affiliation(s)
- Andrey S. Nikolaev
- Research Center for Molecular Mechanisms of Aging and Age‐Related DiseasesMoscow Institute of Physics and TechnologyDolgoprudnyRussia
| | - Daria A. Lunegova
- A.N. Bach Institute of BiochemistryFederal Research Center of Biotechnology of the Russian Academy of SciencesMoscowRussia
| | - Roman I. Raevskii
- A.N. Bach Institute of BiochemistryFederal Research Center of Biotechnology of the Russian Academy of SciencesMoscowRussia
| | - Pavel E. Shishkin
- Research Center for Molecular Mechanisms of Aging and Age‐Related DiseasesMoscow Institute of Physics and TechnologyDolgoprudnyRussia
| | - Alina A. Remeeva
- Research Center for Molecular Mechanisms of Aging and Age‐Related DiseasesMoscow Institute of Physics and TechnologyDolgoprudnyRussia
| | - Baosheng Ge
- College of Chemistry and Chemical EngineeringChina University of Petroleum (Huadong)QingdaoChina
| | | | - Ivan Yu. Gushchin
- Research Center for Molecular Mechanisms of Aging and Age‐Related DiseasesMoscow Institute of Physics and TechnologyDolgoprudnyRussia
| | - Nikolai N. Sluchanko
- A.N. Bach Institute of BiochemistryFederal Research Center of Biotechnology of the Russian Academy of SciencesMoscowRussia
| |
Collapse
|
3
|
Likkei K, Moldenhauer M, Tavraz NN, Egorkin NA, Slonimskiy YB, Maksimov EG, Sluchanko NN, Friedrich T. Elements of the C-terminal tail of a C-terminal domain homolog of the Orange Carotenoid Protein determining xanthophyll uptake from liposomes. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2024; 1865:149043. [PMID: 38522658 DOI: 10.1016/j.bbabio.2024.149043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/07/2024] [Accepted: 03/09/2024] [Indexed: 03/26/2024]
Abstract
Carotenoids perform multifaceted roles in life ranging from coloration over light harvesting to photoprotection. The Orange Carotenoid Protein (OCP), a light-driven photoswitch involved in cyanobacterial photoprotection, accommodates a ketocarotenoid vital for its function. OCP extracts its ketocarotenoid directly from membranes, or accepts it from homologs of its C-terminal domain (CTDH). The CTDH from Anabaena (AnaCTDH) was shown to be important for carotenoid transfer and delivery from/to membranes. The C-terminal tail of AnaCTDH is a critical structural element likely serving as a gatekeeper and facilitator of carotenoid uptake from membranes. We investigated the impact of amino acid substitutions within the AnaCTDH-CTT on echinenone and canthaxanthin uptake from DOPC and DMPG liposomes. The transfer rate was uniformly reduced for substitutions of Arg-137 and Arg-138 to Gln or Ala, and depended on the lipid type, indicating a weaker interaction particularly with the lipid head group. Our results further suggest that Glu-132 has a membrane-anchoring effect on the PC lipids, specifically at the choline motif as inferred from the strongly different effects of the CTT variants on the extraction from the two liposome types. The substitution of Pro-130 by Gly suggests that the CTT is perpendicular to both the membrane and the main AnaCTDH protein during carotenoid extraction. Finally, the simultaneous mutation of Leu-133, Leu-134 and Leu-136 for alanines showed that the hydrophobicity of the CTT is crucial for carotenoid uptake. Since some substitutions accelerated carotenoid transfer into AnaCTDH while others slowed it down, carotenoprotein properties can be engineered toward the requirements of applications.
Collapse
Affiliation(s)
- Kristina Likkei
- Technische Universität Berlin, Institute of Chemistry, PC 14, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Marcus Moldenhauer
- Technische Universität Berlin, Institute of Chemistry, PC 14, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Neslihan N Tavraz
- Technische Universität Berlin, Institute of Chemistry, PC 14, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Nikita A Egorkin
- Federal Research Center of Biotechnology of the Russian Academy of Sciences, A.N. Bach Institute of Biochemistry, Leninsky Prospect 33-1, Moscow 119071, Russian Federation; Lomonosov Moscow State University, Faculty of Biology, Leninskie Gory 1-12, Moscow 119991, Russian Federation
| | - Yury B Slonimskiy
- Federal Research Center of Biotechnology of the Russian Academy of Sciences, A.N. Bach Institute of Biochemistry, Leninsky Prospect 33-1, Moscow 119071, Russian Federation
| | - Eugene G Maksimov
- Lomonosov Moscow State University, Faculty of Biology, Leninskie Gory 1-12, Moscow 119991, Russian Federation
| | - Nikolai N Sluchanko
- Federal Research Center of Biotechnology of the Russian Academy of Sciences, A.N. Bach Institute of Biochemistry, Leninsky Prospect 33-1, Moscow 119071, Russian Federation
| | - Thomas Friedrich
- Technische Universität Berlin, Institute of Chemistry, PC 14, Straße des 17. Juni 135, 10623 Berlin, Germany.
| |
Collapse
|
4
|
Sluchanko NN, Maksimov EG, Slonimskiy YB, Varfolomeeva LA, Bukhanko AY, Egorkin NA, Tsoraev GV, Khrenova MG, Ge B, Qin S, Boyko KM, Popov VO. Structural framework for the understanding spectroscopic and functional signatures of the cyanobacterial Orange Carotenoid Protein families. Int J Biol Macromol 2024; 254:127874. [PMID: 37939760 DOI: 10.1016/j.ijbiomac.2023.127874] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/23/2023] [Accepted: 11/01/2023] [Indexed: 11/10/2023]
Abstract
The Orange Carotenoid Protein (OCP) is a unique photoreceptor crucial for cyanobacterial photoprotection. Best studied Synechocystis sp. PCC 6803 OCP belongs to the large OCP1 family. Downregulated by the Fluorescence Recovery Protein (FRP) in low-light, high-light-activated OCP1 binds to the phycobilisomes and performs non-photochemical quenching. Recently discovered families OCP2 and OCP3 remain structurally and functionally underexplored, and no systematic comparative studies have ever been conducted. Here we present two first crystal structures of OCP2 from morphoecophysiologically different cyanobacteria and provide their comprehensive structural, spectroscopic and functional comparison with OCP1, the recently described OCP3 and all-OCP ancestor. Structures enable correlation of spectroscopic signatures with the effective number of hydrogen and discovered here chalcogen bonds anchoring the ketocarotenoid in OCP, as well as with the rotation of the echinenone's β-ionone ring in the CTD. Structural data also helped rationalize the observed differences in OCP/FRP and OCP/phycobilisome functional interactions. These data are expected to foster OCP research and applications in optogenetics, targeted carotenoid delivery and cyanobacterial biomass engineering.
Collapse
Affiliation(s)
- Nikolai N Sluchanko
- A.N. Bach Institute of Biochemistry, Federal Research Centre of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia.
| | - Eugene G Maksimov
- M.V. Lomonosov Moscow State University, Faculty of Biology, Moscow 119991, Russia
| | - Yury B Slonimskiy
- A.N. Bach Institute of Biochemistry, Federal Research Centre of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia
| | - Larisa A Varfolomeeva
- A.N. Bach Institute of Biochemistry, Federal Research Centre of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia
| | - Antonina Y Bukhanko
- M.V. Lomonosov Moscow State University, Faculty of Biology, Moscow 119991, Russia
| | - Nikita A Egorkin
- A.N. Bach Institute of Biochemistry, Federal Research Centre of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia; M.V. Lomonosov Moscow State University, Faculty of Biology, Moscow 119991, Russia
| | - Georgy V Tsoraev
- A.N. Bach Institute of Biochemistry, Federal Research Centre of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia
| | - Maria G Khrenova
- A.N. Bach Institute of Biochemistry, Federal Research Centre of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia; Lomonosov Moscow State University, Chemistry Department, Moscow 119991, Russia
| | - Baosheng Ge
- China University of Petroleum (Huadong), College of Chemistry and Chemical Engineering, Qingdao 266580, People's Republic of China
| | - Song Qin
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, People's Republic of China.
| | - Konstantin M Boyko
- A.N. Bach Institute of Biochemistry, Federal Research Centre of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia
| | - Vladimir O Popov
- A.N. Bach Institute of Biochemistry, Federal Research Centre of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia; M.V. Lomonosov Moscow State University, Faculty of Biology, Moscow 119991, Russia
| |
Collapse
|
5
|
Likkei K, Moldenhauer M, Tavraz NN, Maksimov EG, Sluchanko NN, Friedrich T. Lipid composition and properties affect protein-mediated carotenoid uptake efficiency from membranes. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184241. [PMID: 37866690 DOI: 10.1016/j.bbamem.2023.184241] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/04/2023] [Accepted: 10/17/2023] [Indexed: 10/24/2023]
Abstract
Carotenoids are pigments of diverse functions ranging from coloration over light-harvesting to photoprotection. Yet, the number of carotenoid-binding proteins, which mobilize these pigments in physiological media, is limited, and the mechanisms of carotenoid mobilization are still not well understood. The same applies for the determinants of carotenoid uptake from membranes into carotenoproteins, especially regarding the dependence on the chemical properties of membrane lipids. Here, we investigate xanthophyll uptake capacity and kinetics of a paradigmatic carotenoid-binding protein, the homolog of the Orange Carotenoid Protein's C-terminal domain from Anabaena sp. PCC 7120 (AnaCTDH), using liposomes formed from defined lipid species and loaded with canthaxanthin (CAN) and echinenone (ECN), respectively. Phospholipids with different chain length and degree of saturation were investigated. The composition of carotenoid-loaded liposomes directly affected the incorporation yield and storage ratio of CAN and ECN as well as the rate of carotenoid uptake by AnaCTDH. Generally, saturated PC lipids were identified as unsuitable, and a high phase transition temperature of the lipids negatively affected the carotenoid incorporation and storage yield. For efficient carotenoid transfer, the velocity increases with increasing chain length or membrane thickness. An average transfer yield of 93 % and 43 % were obtained for the formation of AnaCTDH(CAN) and AnaCTDH(ECN) holoproteins, respectively. In summary, the most suitable lipids for the formation of AnaCTDH(CAN/ECN) holoproteins by carotenoid transfer from artificial liposomes are phosphatidylcholine (18:1) and phosphatidylglycerol (14:0). Thus, these two lipids provide the best conditions for further investigation of lipid-protein interaction and the carotenoid uptake process.
Collapse
Affiliation(s)
- Kristina Likkei
- Technische Universität Berlin, Institute of Chemistry PC 14, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Marcus Moldenhauer
- Technische Universität Berlin, Institute of Chemistry PC 14, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Neslihan N Tavraz
- Technische Universität Berlin, Institute of Chemistry PC 14, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Eugene G Maksimov
- Lomonosov Moscow State University, Faculty of Biology, Leninskie Gory 1-12, Moscow 119991, Russia
| | - Nikolai N Sluchanko
- Federal Research Center of Biotechnology of the Russian Academy of Sciences, A.N. Bach Institute of Biochemistry, Leninsky Prospect 33-1, Moscow 119071, Russia
| | - Thomas Friedrich
- Technische Universität Berlin, Institute of Chemistry PC 14, Straße des 17. Juni 135, 10623 Berlin, Germany.
| |
Collapse
|
6
|
Sluchanko NN, Slonimskiy YB, Egorkin NA, Varfolomeeva LA, Faletrov YV, Moysenovich AM, Parshina EY, Friedrich T, Maksimov EG, Boyko KM, Popov VO. Silkworm carotenoprotein as an efficient carotenoid extractor, solubilizer and transporter. Int J Biol Macromol 2022; 223:1381-1393. [PMID: 36395947 DOI: 10.1016/j.ijbiomac.2022.11.093] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/31/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022]
Abstract
Found in many organisms, water-soluble carotenoproteins are prospective antioxidant nanocarriers for biomedical applications. Yet, the toolkit of characterized carotenoproteins is rather limited: such proteins are either too specific binders of only few different carotenoids, or their ability to transfer carotenoids to various acceptor systems is unknown. Here, by focusing on a recently characterized recombinant ~27-kDa Carotenoid-Binding Protein from Bombyx mori (BmCBP) [Slonimskiy et al., International Journal of Biological Macromolecules 214 (2022): 664-671], we analyze its carotenoid-binding repertoire and potential as a carotenoid delivery module. We show that BmCBP forms productive complexes with both hydroxyl- and ketocarotenoids - lutein, zeaxanthin, astaxanthin, canthaxanthin and a smaller antioxidant, aporhodoxanthinone, but not with β-carotene or retinal, which defines its broad ligand specificity toward xanthophylls valuable to human health. Moreover, the His-tagged BmCBP apoform is capable of cost-efficient and scalable enrichment of xanthophylls from various crude methanolic herbal extracts. Upon carotenoid binding, BmCBP remains monomeric and shows a remarkable ability to dynamically shuttle carotenoids to biological membrane models and to unrelated carotenoproteins, which in particular makes from the cyanobacterial Orange Carotenoid Protein a blue-light controlled photoswitch. Furthermore, administration of BmCBP loaded by zeaxanthin stimulates fibroblast growth, which is attractive for cell- and tissue-based assays.
Collapse
Affiliation(s)
- Nikolai N Sluchanko
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russian Federation.
| | - Yury B Slonimskiy
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russian Federation
| | - Nikita A Egorkin
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russian Federation
| | - Larisa A Varfolomeeva
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russian Federation
| | - Yaroslav V Faletrov
- Research Institute for Physical Chemical Problems, Belarusian State University, Minsk, Belarus
| | - Anastasia M Moysenovich
- M.V. Lomonosov Moscow State University, Faculty of Biology, 119991 Moscow, Russian Federation
| | - Evgenia Yu Parshina
- M.V. Lomonosov Moscow State University, Faculty of Biology, 119991 Moscow, Russian Federation
| | - Thomas Friedrich
- Technical University of Berlin, Institute of Chemistry PC 14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Eugene G Maksimov
- M.V. Lomonosov Moscow State University, Faculty of Biology, 119991 Moscow, Russian Federation
| | - Konstantin M Boyko
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russian Federation
| | - Vladimir O Popov
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russian Federation; M.V. Lomonosov Moscow State University, Faculty of Biology, 119991 Moscow, Russian Federation
| |
Collapse
|
7
|
Slonimskiy YB, Zupnik AO, Varfolomeeva LA, Boyko KM, Maksimov EG, Sluchanko NN. A primordial Orange Carotenoid Protein: Structure, photoswitching activity and evolutionary aspects. Int J Biol Macromol 2022; 222:167-180. [PMID: 36165868 DOI: 10.1016/j.ijbiomac.2022.09.131] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/28/2022]
Abstract
Cyanobacteria are photosynthesizing prokaryotes responsible for the Great Oxygenation Event on Earth ~2.5 Ga years ago. They use a specific photoprotective mechanism based on the 35-kDa photoactive Orange Carotenoid Protein (OCP), a promising target for developing novel optogenetic tools and for biomass engineering. The two-domain OCP presumably stems from domain fusion, yet the primitive thylakoid-less cyanobacteria Gloeobacter encodes a complete OCP. Its photosynthesis regulation lacks the so-called Fluorescence Recovery Protein (FRP), which in Synechocystis inhibits OCP-mediated phycobilisome fluorescence quenching, and Gloeobacter OCP belongs to the recently defined, heterogeneous clade OCPX (GlOCPX), the least characterized compared to OCP2 and especially OCP1 clades. Here, we describe the first crystal structure of OCPX, which explains unique functional adaptations of Gloeobacter OCPX compared to OCP1 from Synechocystis. We show that monomeric GlOCPX exploits a remarkable intramolecular locking mechanism stabilizing its dark-adapted state and exhibits drastically accelerated, less temperature-dependent recovery after photoactivation. While GlOCPX quenches Synechocystis phycobilisomes similar to Synechocystis OCP1, it evades interaction with and regulation by FRP from other species and likely uses alternative mechanisms for fluorescence recovery. This analysis of a primordial OCPX sheds light on its evolution, rationalizing renaming and subdivision of the OCPX clade into subclades - OCP3a, OCP3b, OCP3c.
Collapse
Affiliation(s)
- Yury B Slonimskiy
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russian Federation
| | - Andrei O Zupnik
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russian Federation
| | - Larisa A Varfolomeeva
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russian Federation
| | - Konstantin M Boyko
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russian Federation
| | - Eugene G Maksimov
- M.V. Lomonosov Moscow State University, Faculty of Biology, 119991 Moscow, Russian Federation
| | - Nikolai N Sluchanko
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russian Federation.
| |
Collapse
|
8
|
Semenov AN, Gvozdev DA, Zlenko DV, Protasova EA, Khashimova AR, Parshina EY, Baizhumanov AA, Lotosh NY, Kim EE, Kononevich YN, Pakhomov AA, Selishcheva AA, Sluchanko NN, Shirshin EA, Maksimov EG. Modulation of Membrane Microviscosity by Protein-Mediated Carotenoid Delivery as Revealed by Time-Resolved Fluorescence Anisotropy. MEMBRANES 2022; 12:905. [PMID: 36295665 PMCID: PMC9609150 DOI: 10.3390/membranes12100905] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Carotenoids are potent antioxidants with a wide range of biomedical applications. However, their delivery into human cells is challenging and relatively inefficient. While the use of natural water-soluble carotenoproteins capable to reversibly bind carotenoids and transfer them into membranes is promising, the quantitative estimation of the delivery remains unclear. In the present work, we studied echinenone (ECN) delivery by cyanobacterial carotenoprotein AnaCTDH (C-terminal domain homolog of the Orange Carotenoid Protein from Anabaena), into liposome membranes labelled with BODIPY fluorescent probe. We observed that addition of AnaCTDH-ECN to liposomes led to the significant changes in the fast-kinetic component of the fluorescence decay curve, pointing on the dipole-dipole interactions between the probe and ECN within the membrane. It may serve as an indirect evidence of ECN delivery into membrane. To study the delivery in detail, we carried out molecular dynamics modeling of the localization of ECN within the lipid bilayer and calculate its orientation factor. Next, we exploited FRET to assess concentration of ECN delivered by AnaCTDH. Finally, we used time-resolved fluorescence anisotropy to assess changes in microviscosity of liposomal membranes. Incorporation of liposomes with β-carotene increased membrane microviscosity while the effect of astaxanthin and its mono- and diester forms was less pronounced. At temperatures below 30 °C addition of AnaCTDH-ECN increased membrane microviscosity in a concentration-dependent manner, supporting the protein-mediated carotenoid delivery mechanism. Combining all data, we propose FRET-based analysis and assessment of membrane microviscosity as potent approaches to characterize the efficiency of carotenoids delivery into membranes.
Collapse
Affiliation(s)
- Alexey N. Semenov
- Faculty of Biology, M.V. Lomonosov Moscow State University, 1-12 Leninskie Gory St., Moscow 119991, Russia
| | - Danil A. Gvozdev
- Faculty of Biology, M.V. Lomonosov Moscow State University, 1-12 Leninskie Gory St., Moscow 119991, Russia
| | - Dmitry V. Zlenko
- Faculty of Biology, M.V. Lomonosov Moscow State University, 1-12 Leninskie Gory St., Moscow 119991, Russia
| | - Elena A. Protasova
- Faculty of Biology, M.V. Lomonosov Moscow State University, 1-12 Leninskie Gory St., Moscow 119991, Russia
| | - Anastasia R. Khashimova
- Faculty of Biology, M.V. Lomonosov Moscow State University, 1-12 Leninskie Gory St., Moscow 119991, Russia
| | - Evgenia Yu. Parshina
- Faculty of Biology, M.V. Lomonosov Moscow State University, 1-12 Leninskie Gory St., Moscow 119991, Russia
| | - Adil A. Baizhumanov
- Faculty of Biology, M.V. Lomonosov Moscow State University, 1-12 Leninskie Gory St., Moscow 119991, Russia
| | - Natalia Yu. Lotosh
- National Research Center “Kurchatov Institute”, 1 Acad. Kurchatov Sq., Moscow 123182, Russia
| | - Eleonora E. Kim
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow 119991, Russia
| | - Yuriy N. Kononevich
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow 119991, Russia
| | - Alexey A. Pakhomov
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow 119991, Russia
- M.M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Alla A. Selishcheva
- Faculty of Biology, M.V. Lomonosov Moscow State University, 1-12 Leninskie Gory St., Moscow 119991, Russia
- National Research Center “Kurchatov Institute”, 1 Acad. Kurchatov Sq., Moscow 123182, Russia
| | - Nikolai N. Sluchanko
- Federal Research Center of Biotechnology, Russian Academy of Sciences, 33 Leninsky Prospect, Moscow 119071, Russia
| | - Evgeny A. Shirshin
- Faculty of Physics, M.V. Lomonosov Moscow State University, 1-2 Leninskie Gory St., Moscow 119991, Russia
- Laboratory of Clinical Biophotonics, Biomedical Science and Technology Park, I.M. Sechenov First Moscow State Medical University, Trubetskaya Str. 8-2, Moscow 119991, Russia
- Institute of Spectroscopy, Russian Academy of Sciences, 5 Fizicheskaya Str., Troitsk, Moscow 108840, Russia
| | - Eugene G. Maksimov
- Faculty of Biology, M.V. Lomonosov Moscow State University, 1-12 Leninskie Gory St., Moscow 119991, Russia
- Faculty of Physics, M.V. Lomonosov Moscow State University, 1-2 Leninskie Gory St., Moscow 119991, Russia
| |
Collapse
|
9
|
Slonimskiy YB, Egorkin NA, Ashikhmin AA, Friedrich T, Maksimov EG, Sluchanko NN. Reconstitution of the functional carotenoid-binding protein from silkworm in E. coli. Int J Biol Macromol 2022; 214:664-671. [PMID: 35753519 DOI: 10.1016/j.ijbiomac.2022.06.135] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/02/2022] [Accepted: 06/20/2022] [Indexed: 12/16/2022]
Abstract
Natural water-soluble carotenoproteins are promising antioxidant nanocarriers for biomedical applications. The Carotenoid-Binding Protein from silkworm Bombyx mori (BmCBP) is responsible for depositing carotenoids in cocoons. This determines the silk coloration, which is relevant for sericulture for four thousand years. While BmCBP function is well-characterized by molecular genetics, its structure and carotenoid-binding mechanism remain to be studied. To facilitate this, here we report on successful production of soluble BmCBP in Escherichia coli, its purification and characterization. According to CD spectroscopy and SEC-MALS, this protein folds into a ~ 27-kDa monomer capable of dose-dependent binding of lutein, a natural BmCBP ligand, in vitro. Binding leads to a >10 nm red-shift of the carotenoid absorbance and quenches tryptophan fluorescence of BmCBP. Using zeaxanthin, a close lutein isomer that can be stably produced in engineered E.coli strains, we successfully reconstitute the BmCBP holoform and characterize its properties. While BmCBP successfully matures into the holoform, BmCBP-zeaxanthin complexes are contaminated by the apoform. We demonstrate that the yield of the holoform can be increased by adding bovine serum albumin during cell lysis and that the remaining BmCBP apoform is efficiently removed using hydroxyapatite chromatography. Bacterial production of BmCBP paves the way for its structural studies and applications.
Collapse
Affiliation(s)
- Yury B Slonimskiy
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russian Federation
| | - Nikita A Egorkin
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russian Federation
| | - Aleksandr A Ashikhmin
- Federal Research Center Pushchino Scientific Center Russian Academy of Sciences, Institute of Basic Biological Problems of Russian Academy of Sciences, Institutskaya, 2, Pushchino, Moscow 142290, Russia
| | - Thomas Friedrich
- Technical University of Berlin, Institute of Chemistry PC 14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Eugene G Maksimov
- M.V. Lomonosov Moscow State University, Faculty of Biology, 119991 Moscow, Russian Federation
| | - Nikolai N Sluchanko
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russian Federation.
| |
Collapse
|
10
|
Slonimskiy YB, Egorkin NA, Friedrich T, Maksimov EG, Sluchanko NN. Microalgal protein AstaP is a potent carotenoid solubilizer and delivery module with a broad carotenoid binding repertoire. FEBS J 2021; 289:999-1022. [PMID: 34582628 DOI: 10.1111/febs.16215] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/09/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022]
Abstract
Carotenoids are lipophilic substances with many biological functions, from coloration to photoprotection. Being potent antioxidants, carotenoids have multiple biomedical applications, including the treatment of neurodegenerative disorders and retina degeneration. Nevertheless, the delivery of carotenoids is substantially limited by their poor solubility in the aqueous phase. Natural water-soluble carotenoproteins can facilitate this task, necessitating studies on their ability to uptake and deliver carotenoids. One such promising carotenoprotein, AstaP (astaxanthin-binding protein), was recently identified in eukaryotic microalgae, but its structure and functional properties remained largely uncharacterized. By using a correctly folded recombinant protein, here we show that AstaP is an efficient carotenoid solubilizer that can stably bind not only astaxanthin but also zeaxanthin, canthaxanthin, and, to a lesser extent, β-carotene, that is, carotenoids especially valuable to human health. AstaP accepts carotenoids provided as acetone solutions or embedded in membranes, forming carotenoid-protein complexes with an apparent stoichiometry of 1:1. We successfully produced AstaP holoproteins in specific carotenoid-producing strains of Escherichia coli, proving it is amenable to cost-efficient biotechnology processes. Regardless of the carotenoid type, AstaP remains monomeric in both apo- and holoform, while its rather minimalistic mass (~ 20 kDa) makes it an especially attractive antioxidant delivery module. In vitro, AstaP transfers different carotenoids to liposomes and to unrelated proteins from cyanobacteria, which can modulate their photoactivity and/or oligomerization. These findings expand the toolkit of the characterized carotenoid binding proteins and outline the perspective of the use of AstaP as a unique monomeric antioxidant nanocarrier with an extensive carotenoid binding repertoire.
Collapse
Affiliation(s)
- Yury B Slonimskiy
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russian Federation
| | - Nikita A Egorkin
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russian Federation
| | - Thomas Friedrich
- Institute of Chemistry PC 14, Technical University of Berlin, Berlin, Germany
| | - Eugene G Maksimov
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russian Federation
| | - Nikolai N Sluchanko
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russian Federation
| |
Collapse
|
11
|
Yaroshevich IA, Maksimov EG, Sluchanko NN, Zlenko DV, Stepanov AV, Slutskaya EA, Slonimskiy YB, Botnarevskii VS, Remeeva A, Gushchin I, Kovalev K, Gordeliy VI, Shelaev IV, Gostev FE, Khakhulin D, Poddubnyy VV, Gostev TS, Cherepanov DA, Polívka T, Kloz M, Friedrich T, Paschenko VZ, Nadtochenko VA, Rubin AB, Kirpichnikov MP. Role of hydrogen bond alternation and charge transfer states in photoactivation of the Orange Carotenoid Protein. Commun Biol 2021; 4:539. [PMID: 33972665 PMCID: PMC8110590 DOI: 10.1038/s42003-021-02022-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 03/16/2021] [Indexed: 11/17/2022] Open
Abstract
Here, we propose a possible photoactivation mechanism of a 35-kDa blue light-triggered photoreceptor, the Orange Carotenoid Protein (OCP), suggesting that the reaction involves the transient formation of a protonated ketocarotenoid (oxocarbenium cation) state. Taking advantage of engineering an OCP variant carrying the Y201W mutation, which shows superior spectroscopic and structural properties, it is shown that the presence of Trp201 augments the impact of one critical H-bond between the ketocarotenoid and the protein. This confers an unprecedented homogeneity of the dark-adapted OCP state and substantially increases the yield of the excited photoproduct S*, which is important for the productive photocycle to proceed. A 1.37 Å crystal structure of OCP Y201W combined with femtosecond time-resolved absorption spectroscopy, kinetic analysis, and deconvolution of the spectral intermediates, as well as extensive quantum chemical calculations incorporating the effect of the local electric field, highlighted the role of charge-transfer states during OCP photoconversion. Yaroshevich et al. present a chemical reaction mechanism of a 35-kDa blue light-triggered photoreceptor, the Orange Carotenoid Protein (OCP). They find that photoactivation critically involves the transient formation of a protonated ketocarotenoid (oxocarbenium cation) state. This study suggests the role of charge-transfer states during OCP photoconversion.
Collapse
Affiliation(s)
- Igor A Yaroshevich
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Eugene G Maksimov
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia. .,A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia.
| | - Nikolai N Sluchanko
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Dmitry V Zlenko
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Alexey V Stepanov
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Ekaterina A Slutskaya
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia.,M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Yury B Slonimskiy
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia.,A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Viacheslav S Botnarevskii
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia.,A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Alina Remeeva
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Ivan Gushchin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Kirill Kovalev
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia.,Institut de Biologie Structurale J.-P. Ebel, Université Grenoble Alpes-CEA-CNRS, Grenoble, France.,Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany.,JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, Jülich, Germany.,Institute of Crystallography, RWTH Aachen University, Aachen, Germany
| | - Valentin I Gordeliy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia.,Institut de Biologie Structurale J.-P. Ebel, Université Grenoble Alpes-CEA-CNRS, Grenoble, France.,Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany.,JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, Jülich, Germany
| | - Ivan V Shelaev
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Fedor E Gostev
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia
| | | | | | - Timofey S Gostev
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Dmitry A Cherepanov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia.,A.N. Belozersky Institute of Physical-Chemical Biology, Moscow State University, Moscow, Russia
| | - Tomáš Polívka
- Institute of Physics, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Miroslav Kloz
- ELI-Beamlines, Institute of Physics, Praha, Czech Republic
| | - Thomas Friedrich
- Technische Universität Berlin, Institute of Chemistry PC14, Berlin, Germany
| | | | - Victor A Nadtochenko
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Andrew B Rubin
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Mikhail P Kirpichnikov
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia.,M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
12
|
Maksimov EG, Laptev GY, Blokhin DS, Klochkov VV, Slonimskiy YB, Sluchanko NN, Friedrich T, Chang CF, Polshakov VI. NMR resonance assignment and backbone dynamics of a C-terminal domain homolog of orange carotenoid protein. BIOMOLECULAR NMR ASSIGNMENTS 2021; 15:17-23. [PMID: 32939684 DOI: 10.1007/s12104-020-09976-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 09/11/2020] [Indexed: 05/15/2023]
Abstract
Photoprotection in cyanobacteria is mediated by the Orange Carotenoid Protein (OCP), a two-domain photoswitch which has multiple natural homologs of its N- and C-terminal domains. Recently, it was demonstrated that C-terminal domain homologs (CTDHs) of OCP are standalone carotenoproteins participating in multidirectional carotenoid transfer between membranes and proteins. Non-covalent embedment of a ketocarotenoid causes dimerization of the small 16-kDa water-soluble CTDH protein; however, dynamic interactions of CTDH with membranes and other proteins apparently require the monomeric state. Although crystallography recently provided static snapshots of the Anabaena CTDH (AnaCTDH) spatial structure in the apo-form, which predicted mobility of some putative functional segments, no crystallographic information on the holo-form of CTDH is presently available. In order to use NMR techniques to cope with the dynamics of the AnaCTDH protein, it was necessary to obtain 1H, 13C and 15N resonance assignments. AnaCTDH samples enriched with 13C and 15N isotopes were prepared using recombinant protein expression, and NMR resonance assignment was achieved for more than 90% of the residues. The obtained results revealed that the structure of AnaCTDH in solution and in the crystal are largely equivalent. Together with 15N NMR relaxation experiments, our data shed light on the AnaCTDH dynamics and provide the platform for the subsequent analysis of the holo-CTDH structure in solution, for the better understanding of light-triggered protein-protein interactions and the development of antioxidant nanocarriers for biomedical applications in the future.
Collapse
Affiliation(s)
- Eugene G Maksimov
- Center for Magnetic Tomography and Spectroscopy, Faculty of Fundamental Medicine, M.V. Lomonosov Moscow State University, Moscow, Russia, 119991.
- A.N. Bach Institute of Biochemistry, Federal Research Center, "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow, Russia, 119071.
- Laboratory of Physical Chemistry of Biomembranes, Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia, 119991.
| | - Gennady Yu Laptev
- Center for Magnetic Tomography and Spectroscopy, Faculty of Fundamental Medicine, M.V. Lomonosov Moscow State University, Moscow, Russia, 119991
| | - Dmitriy S Blokhin
- NMR Laboratory, Institute of Physics, Kazan Federal University, 18 Kremlevskaya st., Kazan, Russia, 420008
| | - Vladimir V Klochkov
- NMR Laboratory, Institute of Physics, Kazan Federal University, 18 Kremlevskaya st., Kazan, Russia, 420008
| | - Yury B Slonimskiy
- A.N. Bach Institute of Biochemistry, Federal Research Center, "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow, Russia, 119071
| | - Nikolai N Sluchanko
- A.N. Bach Institute of Biochemistry, Federal Research Center, "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow, Russia, 119071
| | - Thomas Friedrich
- Institute of Chemistry PC 14, Technische Universität Berlin, Strasse des 17. Juni 135, 10623, Berlin, Germany
| | - Chi-Fon Chang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Vladimir I Polshakov
- Center for Magnetic Tomography and Spectroscopy, Faculty of Fundamental Medicine, M.V. Lomonosov Moscow State University, Moscow, Russia, 119991.
| |
Collapse
|
13
|
Xie Y, Chen L, Sun T, Zhang W. Deciphering and engineering high-light tolerant cyanobacteria for efficient photosynthetic cell factories. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2020.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
14
|
Maksimov EG, Zamaraev AV, Parshina EY, Slonimskiy YB, Slastnikova TA, Abdrakhmanov AA, Babaev PA, Efimova SS, Ostroumova OS, Stepanov AV, Slutskaya EA, Ryabova AV, Friedrich T, Sluchanko NN. Soluble Cyanobacterial Carotenoprotein as a Robust Antioxidant Nanocarrier and Delivery Module. Antioxidants (Basel) 2020; 9:antiox9090869. [PMID: 32942578 PMCID: PMC7555398 DOI: 10.3390/antiox9090869] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 01/04/2023] Open
Abstract
To counteract oxidative stress, antioxidants including carotenoids are highly promising, yet their exploitation is drastically limited by the poor bioavailability and fast photodestruction, whereas current delivery systems are far from being efficient. Here we demonstrate that the recently discovered nanometer-sized water-soluble carotenoprotein from Anabaena sp. PCC 7120 (termed AnaCTDH) transiently interacts with liposomes to efficiently extract carotenoids via carotenoid-mediated homodimerization, yielding violet–purple protein samples. We characterize the spectroscopic properties of the obtained pigment–protein complexes and the thermodynamics of liposome–protein carotenoid transfer and demonstrate the delivery of carotenoid echinenone from AnaCTDH into liposomes with an efficiency of up to 70 ± 3%. Most importantly, we show efficient carotenoid delivery to membranes of mammalian cells, which provides protection from reactive oxygen species (ROS). Incubation of neuroblastoma cell line Tet21N in the presence of 1 μM AnaCTDH binding echinenone decreased antimycin A ROS production by 25% (p < 0.05). The described carotenoprotein may be considered as part of modular systems for the targeted antioxidant delivery.
Collapse
Affiliation(s)
- Eugene G. Maksimov
- Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (E.Y.P.); (P.A.B.); (N.N.S.)
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia;
- Correspondence: ; Tel.: +7-926-735-04-37
| | - Alexey V. Zamaraev
- Faculty of Basic Medicine, MV Lomonosov Moscow State University, 117192 Moscow, Russia; (A.V.Z.); (A.A.A.)
- Center for Strategic Planning and Management of Medical and Biological Health Risks, 119121 Moscow, Russia
| | - Evgenia Yu. Parshina
- Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (E.Y.P.); (P.A.B.); (N.N.S.)
| | - Yury B. Slonimskiy
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia;
| | | | - Alibek A. Abdrakhmanov
- Faculty of Basic Medicine, MV Lomonosov Moscow State University, 117192 Moscow, Russia; (A.V.Z.); (A.A.A.)
| | - Pavel A. Babaev
- Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (E.Y.P.); (P.A.B.); (N.N.S.)
| | - Svetlana S. Efimova
- Institute of Cytology of the Russian Academy of Sciences, 194064 St. Petersburg, Russia; (S.S.E.); (O.S.O.)
| | - Olga S. Ostroumova
- Institute of Cytology of the Russian Academy of Sciences, 194064 St. Petersburg, Russia; (S.S.E.); (O.S.O.)
| | - Alexey V. Stepanov
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (A.V.S.); (E.A.S.)
| | - Ekaterina A. Slutskaya
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (A.V.S.); (E.A.S.)
| | - Anastasia V. Ryabova
- A.M. Prokhorov General Physics Institute, Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Thomas Friedrich
- Institute of Chemistry PC 14, Department of Bioenergetics, Technische Universität Berlin, 10623 Berlin, Germany;
| | - Nikolai N. Sluchanko
- Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (E.Y.P.); (P.A.B.); (N.N.S.)
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia;
| |
Collapse
|
15
|
Mironov KS, Kupriyanova EV, Shumskaya M, Los DA. Alcohol stress on cyanobacterial membranes: New insights revealed by transcriptomics. Gene 2020; 764:145055. [PMID: 32882332 DOI: 10.1016/j.gene.2020.145055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/22/2020] [Accepted: 08/12/2020] [Indexed: 11/18/2022]
Abstract
Cyanobacteria are model photosynthetic prokaryotic organisms often used in biotechnology to produce biofuels including alcohols. The effect of alcohols on cyanobacterial cell physiology and specifically on membrane fluidity is poorly understood. Previous research on various primary aliphatic alcohols found that alcohols with a short hydrocarbon chain (C1-C3) do not affect expression of genes related to membrane physical state. In addition, less water-soluble alcohols with a hydrocarbon chain longer than C8 are found to have a reduced ability to reach cellular membranes hence do not drastically change membrane physical state or induce expression of stress-responsive genes. Therefore, hexan-1-ol (C6) is suggested to have the most profound effect on cyanobacterial membrane physical state. Here, we studied the effects of hexan-1-ol on the cyanobacterium Synechocystis sp. PCC 6803 transcriptome. The transcriptome data obtained is compared to the previously reported analysis of gene expression induced by benzyl alcohol and butan-1-ol. The set of genes whose expression is induced after exposure to all three studied alcohols is identified. The expression under alcohol stress for several general stress response operons is analyzed, and examples of antisense interactions of RNA are investigated.
Collapse
Affiliation(s)
- Kirill S Mironov
- Department of Molecular Biosystems, K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Science, Botanicheskaya str., 35, Moscow 127276, Russian Federation.
| | - Elena V Kupriyanova
- Department of Molecular Biosystems, K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Science, Botanicheskaya str., 35, Moscow 127276, Russian Federation
| | - Maria Shumskaya
- Department of Biology, School of Natural Sciences, Kean University, 1000 Morris Ave, Union, NJ 07083, USA
| | - Dmitry A Los
- Department of Molecular Biosystems, K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Science, Botanicheskaya str., 35, Moscow 127276, Russian Federation
| |
Collapse
|
16
|
Structural dynamics in the C terminal domain homolog of orange carotenoid Protein reveals residues critical for carotenoid uptake. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148214. [DOI: 10.1016/j.bbabio.2020.148214] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 03/19/2020] [Accepted: 04/27/2020] [Indexed: 01/01/2023]
|
17
|
Khan T, Dominguez-Martin MA, Šímová I, Fuciman M, Kerfeld CA, Polívka T. Excited-State Properties of Canthaxanthin in Cyanobacterial Carotenoid-Binding Proteins HCP2 and HCP3. J Phys Chem B 2020; 124:4896-4905. [DOI: 10.1021/acs.jpcb.0c03137] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Tuhin Khan
- Institute of Physics, Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic
| | - Maria Agustina Dominguez-Martin
- Environmental Genomics and Systems Biology and Molecular Biophysics and Integrated Bioimaging Divisions, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Ivana Šímová
- Institute of Physics, Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic
| | - Marcel Fuciman
- Institute of Physics, Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic
| | - Cheryl A. Kerfeld
- Environmental Genomics and Systems Biology and Molecular Biophysics and Integrated Bioimaging Divisions, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Tomáš Polívka
- Institute of Physics, Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic
| |
Collapse
|
18
|
Slonimskiy YB, Maksimov EG, Lukashev EP, Moldenhauer M, Friedrich T, Sluchanko NN. Engineering the photoactive orange carotenoid protein with redox-controllable structural dynamics and photoprotective function. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148174. [PMID: 32059843 DOI: 10.1016/j.bbabio.2020.148174] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 02/02/2020] [Accepted: 02/10/2020] [Indexed: 01/01/2023]
Abstract
Photosynthesis requires various photoprotective mechanisms for survival of organisms in high light. In cyanobacteria exposed to high light, the Orange Carotenoid Protein (OCP) is reversibly photoswitched from the orange (OCPO) to the red (OCPR) form, the latter binds to the antenna (phycobilisomes, PBs) and quenches its overexcitation. OCPR accumulation implicates restructuring of a compact dark-adapted OCPO state including detachment of the N-terminal extension (NTE) and separation of protein domains, which is reversed by interaction with the Fluorescence Recovery Protein (FRP). OCP phototransformation supposedly occurs via an intermediate characterized by an OCPR-like absorption spectrum and an OCPO-like protein structure, but the hierarchy of steps remains debatable. Here, we devise and analyze an OCP variant with the NTE trapped on the C-terminal domain (CTD) via an engineered disulfide bridge (OCPCC). NTE trapping preserves OCP photocycling within the compact protein structure but precludes functional interaction with PBs and especially FRP, which is completely restored upon reduction of the disulfide bridge. Non-interacting with the dark-adapted oxidized OCPCC, FRP binds reduced OCPCC nearly as efficiently as OCPO devoid of the NTE, suggesting that the low-affinity FRP binding to OCPO is realized via NTE displacement. The low efficiency of excitation energy transfer in complexes between PBs and oxidized OCPCC indicates that OCPCC binds to PBs in an orientation suboptimal for quenching PBs fluorescence. Our approach supports the presence of the OCPR-like intermediate in the OCP photocycle and shows effective uncoupling of spectral changes from functional OCP photoactivation, enabling redox control of its structural dynamics and function.
Collapse
Affiliation(s)
- Yury B Slonimskiy
- Protein-Protein Interactions Unit, A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russian Federation; Department of Biochemistry, Faculty of Biology, M.V. Lomonosov Moscow State University, 119991 Moscow, Russian Federation
| | - Eugene G Maksimov
- Protein-Protein Interactions Unit, A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russian Federation; Department of Biophysics, Faculty of Biology, M.V. Lomonosov Moscow State University, 119991 Moscow, Russian Federation
| | - Evgeny P Lukashev
- Department of Biophysics, Faculty of Biology, M.V. Lomonosov Moscow State University, 119991 Moscow, Russian Federation
| | - Marcus Moldenhauer
- Technische Universität Berlin, Institute of Chemistry PC 14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Thomas Friedrich
- Technische Universität Berlin, Institute of Chemistry PC 14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Nikolai N Sluchanko
- Protein-Protein Interactions Unit, A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russian Federation; Department of Biophysics, Faculty of Biology, M.V. Lomonosov Moscow State University, 119991 Moscow, Russian Federation.
| |
Collapse
|
19
|
Muzzopappa F, Kirilovsky D. Changing Color for Photoprotection: The Orange Carotenoid Protein. TRENDS IN PLANT SCIENCE 2020; 25:92-104. [PMID: 31679992 DOI: 10.1016/j.tplants.2019.09.013] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/16/2019] [Accepted: 09/18/2019] [Indexed: 05/09/2023]
Abstract
Under high irradiance, light becomes dangerous for photosynthetic organisms and they must protect themselves. Cyanobacteria have developed a simple mechanism, involving a photoactive soluble carotenoid protein, the orange carotenoid protein (OCP), which increases thermal dissipation of excess energy by interacting with the cyanobacterial antenna, the phycobilisome. Here, we summarize our knowledge of the OCP-related photoprotective mechanism, including the remarkable progress that has been achieved in recent years on OCP photoactivation and interaction with phycobilisomes, as well as with the fluorescence recovery protein, which is necessary to end photoprotection. A recently discovered unique mechanism of carotenoid transfer between soluble proteins related to OCP is also described.
Collapse
Affiliation(s)
- Fernando Muzzopappa
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif sur Yvette, France
| | - Diana Kirilovsky
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif sur Yvette, France.
| |
Collapse
|
20
|
Pishchalnikov RY, Yaroshevich IA, Slastnikova TA, Ashikhmin AA, Stepanov AV, Slutskaya EA, Friedrich T, Sluchanko NN, Maksimov EG. Structural peculiarities of keto-carotenoids in water-soluble proteins revealed by simulation of linear absorption. Phys Chem Chem Phys 2019; 21:25707-25719. [PMID: 31720635 DOI: 10.1039/c9cp04508b] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
To prevent irreversible damage caused by an excess of incident light, the photosynthetic machinery of many cyanobacteria uniquely utilizes the water-soluble orange carotenoid protein (OCP) containing a single keto-carotenoid molecule. This molecule is non-covalently embedded into the two OCP domains which are interconnected by a flexible linker. The phenomenon of OCP photoactivation, causing significant changes in carotenoid absorption in the orange and red form of OCP, is currently being thoroughly studied. Numerous additional spectral forms of natural and synthetic OCP-like proteins have been unearthed. The optical properties of carotenoids are strongly determined by the interaction of their electronic states with vibrational modes, the surrounding protein matrix, and the solvent. In this work, the effects of the pigment-protein interaction and vibrational relaxation in OCP were studied by computational simulation of linear absorption. Taking into account Raman spectroscopy data and applying the multimode Brownian oscillator model as well as the cumulant expansion technique, we have calculated a set of characteristic microparameters sufficient to demarcate different carotenoid states in OCP forms, using the model carotenoids spheroidene and spheroidenone in methanol/acetone solution as benchmarks. The most crucial microparameters, which determine the effect of solvent and protein environment, are the Huang-Rhys factors and the frequencies of C[double bond, length as m-dash]C and C-C stretching modes, the low-frequency mode and the FWHM due to inhomogeneous line broadening. Considering the difference of linear absorption between spheroidene and spheroidenone, which remarkably resembles the photoinduced changes of OCP absorption, and applying quantum chemical calculations, we discuss structural and functional determinants of carotenoid binding proteins.
Collapse
Affiliation(s)
- Roman Y Pishchalnikov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilov Str., 38, 119991, Moscow, Russia.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Golub M, Moldenhauer M, Schmitt FJ, Lohstroh W, Maksimov EG, Friedrich T, Pieper J. Solution Structure and Conformational Flexibility in the Active State of the Orange Carotenoid Protein. Part II: Quasielastic Neutron Scattering. J Phys Chem B 2019; 123:9536-9545. [PMID: 31550157 DOI: 10.1021/acs.jpcb.9b05073] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Orange carotenoid proteins (OCPs), which are protecting cyanobacterial light-harvesting antennae from photodamage, undergo a pronounced structural change upon light absorption. In addition, the active state is anticipated to boost a significantly higher molecular flexibility similar to a "molten globule" state. Here, we used quasielastic neutron scattering to directly characterize the vibrational and conformational molecular dynamics of OCP in its ground and active states, respectively, on the picosecond time scale. At a temperature of 100 K, we observe mainly (vibronic) inelastic features with peak energies at 5 and 6 meV (40 and 48 cm-1, respectively). At physiological temperatures, however, two (Lorentzian) quasielastic components represent localized protein motions, that is, stochastic structural fluctuations of protein side chains between various conformational substates of the protein. Global diffusion of OCP is not observed on the given time scale. The slower Lorentzian component is affected by illumination and can be well-characterized by a jump-diffusion model. While the jump diffusion constant D is (2.82 ± 0.01) × 10-5 cm2/s at 300 K in the ground state, it is increased by ∼20% to (3.48 ± 0.01) × 10-5 cm2/s in the active state, revealing a strong enhancement of molecular mobility. The increased mobility is also reflected in the average atomic mean square displacement ⟨u2⟩; we determine a ⟨u2⟩ of 1.47 ± 0.05 Å in the ground state, but 1.86 ± 0.05 Å in the active state (at 300 K). This effect is assigned to two factors: (i) the elongated structure of the active state with two widely separated protein domains is characterized by a larger number of surface residues with a concomitantly higher degree of motional freedom and (ii) a larger number of hydration water molecules bound at the surface of the protein. We thus conclude that the active state of the orange carotenoid protein displays an enhanced conformational dynamics. The higher degree of flexibility may provide additional channels for nonradiative decay so that harmful excess energy can be more efficiently converted to heat.
Collapse
Affiliation(s)
- Maksym Golub
- Institute of Physics , University of Tartu , 50411 Tartu , Estonia
| | - Marcus Moldenhauer
- Technische Universität Berlin , Institute of Chemistry, Physical Chemistry , 10623 Berlin , Germany
| | - Franz-Josef Schmitt
- Technische Universität Berlin , Institute of Chemistry, Physical Chemistry , 10623 Berlin , Germany
| | - Wiebke Lohstroh
- Heinz Maier-Leibnitz Zentrum , Technische Universität München , Garching , Germany
| | - Eugene G Maksimov
- Department of Biophysics , M. V. Lomonosov Moscow State University , Moscow , Russia
| | - Thomas Friedrich
- Technische Universität Berlin , Institute of Chemistry, Physical Chemistry , 10623 Berlin , Germany
| | - Jörg Pieper
- Institute of Physics , University of Tartu , 50411 Tartu , Estonia
| |
Collapse
|
22
|
Muzzopappa F, Wilson A, Kirilovsky D. Interdomain interactions reveal the molecular evolution of the orange carotenoid protein. NATURE PLANTS 2019; 5:1076-1086. [PMID: 31527845 DOI: 10.1038/s41477-019-0514-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 08/05/2019] [Indexed: 06/10/2023]
Abstract
The photoactive orange carotenoid protein (OCP) is a blue-light intensity sensor involved in cyanobacterial photoprotection. Three OCP families co-exist (OCPX, OCP1 and OCP2), having originated from the fusion of ancestral domain genes. Here, we report the characterization of an OCPX and the evolutionary characterization of OCP paralogues focusing on the role of the linker connecting the domains. The addition of the linker with specific amino acids enabled the photocycle of the OCP ancestor. OCPX is the paralogue closest to this ancestor. A second diversification gave rise to OCP1 and OCP2. OCPX and OCP2 present fast deactivation and weak antenna interaction. In OCP1, OCP deactivation became slower and interaction with the antenna became stronger, requiring a further protein to detach OCP from the antenna and accelerate its deactivation. OCP2 lost the tendency to dimerize, unlike OCPX and OCP1, and the role of its linker is slightly different, giving less controlled photoactivation.
Collapse
Affiliation(s)
- Fernando Muzzopappa
- Institute for Integrative Biology of the Cell, CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif sur Yvette, France
| | - Adjélé Wilson
- Institute for Integrative Biology of the Cell, CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif sur Yvette, France
| | - Diana Kirilovsky
- Institute for Integrative Biology of the Cell, CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif sur Yvette, France.
| |
Collapse
|
23
|
Golub M, Moldenhauer M, Schmitt FJ, Feoktystov A, Mändar H, Maksimov E, Friedrich T, Pieper J. Solution Structure and Conformational Flexibility in the Active State of the Orange Carotenoid Protein: Part I. Small-Angle Scattering. J Phys Chem B 2019; 123:9525-9535. [DOI: 10.1021/acs.jpcb.9b05071] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Maksym Golub
- Institute of Physics, University of Tartu, 50411 Tartu, Estonia
| | - Marcus Moldenhauer
- Technische Universität Berlin, Institute of Chemistry, Physical Chemistry, 10623 Berlin, Germany
| | - Franz-Josef Schmitt
- Technische Universität Berlin, Institute of Chemistry, Physical Chemistry, 10623 Berlin, Germany
| | - Artem Feoktystov
- Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Lichtenbergstraße 1, 85748 Garching, Germany
| | - Hugo Mändar
- Institute of Physics, University of Tartu, 50411 Tartu, Estonia
| | - Eugene Maksimov
- M. V. Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Thomas Friedrich
- Technische Universität Berlin, Institute of Chemistry, Physical Chemistry, 10623 Berlin, Germany
| | - Jörg Pieper
- Institute of Physics, University of Tartu, 50411 Tartu, Estonia
| |
Collapse
|
24
|
A genetically encoded fluorescent temperature sensor derived from the photoactive Orange Carotenoid Protein. Sci Rep 2019; 9:8937. [PMID: 31222180 PMCID: PMC6586625 DOI: 10.1038/s41598-019-45421-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 06/04/2019] [Indexed: 11/09/2022] Open
Abstract
The heterogeneity of metabolic reactions leads to a non-uniform distribution of temperature in different parts of the living cell. The demand to study normal functioning and pathological abnormalities of cellular processes requires the development of new visualization methods. Previously, we have shown that the 35-kDa photoswitchable Orange Carotenoid Protein (OCP) has a strong temperature dependency of photoconversion rates, and its tertiary structure undergoes significant structural rearrangements upon photoactivation, which makes this protein a nano-sized temperature sensor. However, the determination of OCP conversion rates requires measurements of carotenoid absorption, which is not suitable for microscopy. In order to solve this problem, we fused green and red fluorescent proteins (TagGFP and TagRFP) to the structure of OCP, producing photoactive chimeras. In such chimeras, electronic excitation of the fluorescent protein is effectively quenched by the carotenoid in OCP. Photoactivation of OCP-based chimeras triggers rearrangements of complex geometry, permitting measurements of the conversion rates by monitoring changes of fluorescence intensity. This approach allowed us to determine the local temperature of the microenvironment. Future directions to improve the OCP-based sensor are discussed.
Collapse
|
25
|
Slonimskiy YB, Muzzopappa F, Maksimov EG, Wilson A, Friedrich T, Kirilovsky D, Sluchanko NN. Light‐controlled carotenoid transfer between water‐soluble proteins related to cyanobacterial photoprotection. FEBS J 2019; 286:1908-1924. [DOI: 10.1111/febs.14803] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 02/07/2019] [Accepted: 03/05/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Yury B. Slonimskiy
- Federal Research Center of Biotechnology of the Russian Academy of Sciences A.N. Bach Institute of Biochemistry Moscow Russia
- Department of Biochemistry Faculty of Biology M.V. Lomonosov Moscow State University Russia
| | - Fernando Muzzopappa
- Institute for Integrative Biology of the Cell (I2BC) CEA CNRS Université Paris‐Sud Université Paris‐Saclay Gif sur Yvette France
| | - Eugene G. Maksimov
- Federal Research Center of Biotechnology of the Russian Academy of Sciences A.N. Bach Institute of Biochemistry Moscow Russia
- Department of Biophysics Faculty of Biology M.V. Lomonosov Moscow State University Russia
| | - Adjélé Wilson
- Institute for Integrative Biology of the Cell (I2BC) CEA CNRS Université Paris‐Sud Université Paris‐Saclay Gif sur Yvette France
| | - Thomas Friedrich
- Institute of Chemistry PC 14 Technical University of Berlin Germany
| | - Diana Kirilovsky
- Institute for Integrative Biology of the Cell (I2BC) CEA CNRS Université Paris‐Sud Université Paris‐Saclay Gif sur Yvette France
| | - Nikolai N. Sluchanko
- Federal Research Center of Biotechnology of the Russian Academy of Sciences A.N. Bach Institute of Biochemistry Moscow Russia
- Department of Biophysics Faculty of Biology M.V. Lomonosov Moscow State University Russia
| |
Collapse
|
26
|
Radioprotective role of cyanobacterial phycobilisomes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1860:121-128. [PMID: 30465750 DOI: 10.1016/j.bbabio.2018.11.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 11/07/2018] [Accepted: 11/18/2018] [Indexed: 11/20/2022]
Abstract
Cyanobacteria are thought to be responsible for pioneering dioxygen production and the so-called "Great Oxygenation Event" that determined the formation of the ozone layer and the ionosphere restricting ionizing radiation levels reaching our planet, which increased biological diversity but also abolished the necessity of radioprotection. We speculated that ancient protection mechanisms could still be present in cyanobacteria and studied the effect of ionizing radiation and space flight during the Foton-M4 mission on Synechocystis sp. PCC6803. Spectral and functional characteristics of photosynthetic membranes revealed numerous similarities of the effects of α-particles and space flight, which both interrupted excitation energy transfer from phycobilisomes to the photosystems and significantly reduced the concentration of phycobiliproteins. Although photosynthetic activity was severely suppressed, the effect was reversible, and the cells could rapidly recover from the stress. We suggest that the actual existence and the uncoupling of phycobilisomes may play a specific role not only in photo-, but also in radioprotection, which could be crucial for the early evolution of Life on Earth.
Collapse
|
27
|
Harris D, Wilson A, Muzzopappa F, Sluchanko NN, Friedrich T, Maksimov EG, Kirilovsky D, Adir N. Structural rearrangements in the C-terminal domain homolog of Orange Carotenoid Protein are crucial for carotenoid transfer. Commun Biol 2018; 1:125. [PMID: 30272005 PMCID: PMC6123778 DOI: 10.1038/s42003-018-0132-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 07/31/2018] [Indexed: 12/19/2022] Open
Abstract
A recently reported family of soluble cyanobacterial carotenoproteins, homologs of the C-terminal domain (CTDH) of the photoprotective Orange Carotenoid Protein, is suggested to mediate carotenoid transfer from the thylakoid membrane to the Helical Carotenoid Proteins, which are paralogs of the N-terminal domain of the OCP. Here we present the three-dimensional structure of a carotenoid-free CTDH variant from Anabaena (Nostoc) PCC 7120. This CTDH contains a cysteine residue at position 103. Two dimer-forming interfaces were identified, one stabilized by a disulfide bond between monomers and the second between each monomer's β-sheets, both compatible with small-angle X-ray scattering data and likely representing intermediates of carotenoid transfer processes. The crystal structure revealed a major positional change of the C-terminal tail. Further mutational analysis revealed the importance of the C-terminal tail in both carotenoid uptake and delivery. These results have allowed us to suggest a detailed model for carotenoid transfer via these soluble proteins.
Collapse
Affiliation(s)
- Dvir Harris
- Schulich Faculty of Chemistry, Technion, 3200003, Haifa, Israel
- Grand Technion Energy Program (GTEP), Technion, 3200003, Haifa, Israel
| | - Adjele Wilson
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198, Gif sur Yvette, France
| | - Fernando Muzzopappa
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198, Gif sur Yvette, France
| | - Nikolai N Sluchanko
- A.N. Bach Institute of Biochemistry, Federal Research Center, "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow, 119071, Russia
- Department of Biophysics, Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Thomas Friedrich
- Technical University of Berlin, Institute of Chemistry PC 14, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Eugene G Maksimov
- Department of Biophysics, Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Diana Kirilovsky
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198, Gif sur Yvette, France.
| | - Noam Adir
- Schulich Faculty of Chemistry, Technion, 3200003, Haifa, Israel.
- Grand Technion Energy Program (GTEP), Technion, 3200003, Haifa, Israel.
| |
Collapse
|
28
|
Sonani RR, Gardiner A, Rastogi RP, Cogdell R, Robert B, Madamwar D. Site, trigger, quenching mechanism and recovery of non-photochemical quenching in cyanobacteria: recent updates. PHOTOSYNTHESIS RESEARCH 2018; 137:171-180. [PMID: 29574660 DOI: 10.1007/s11120-018-0498-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 03/08/2018] [Indexed: 06/08/2023]
Abstract
Cyanobacteria exhibit a novel form of non-photochemical quenching (NPQ) at the level of the phycobilisome. NPQ is a process that protects photosystem II (PSII) from possible highlight-induced photo-damage. Although significant advancement has been made in understanding the NPQ, there are still some missing details. This critical review focuses on how the orange carotenoid protein (OCP) and its partner fluorescence recovery protein (FRP) control the extent of quenching. What is and what is not known about the NPQ is discussed under four subtitles; where does exactly the site of quenching lie? (site), how is the quenching being triggered? (trigger), molecular mechanism of quenching (quenching) and recovery from quenching. Finally, a recent working model of NPQ, consistent with recent findings, is been described.
Collapse
Affiliation(s)
- Ravi R Sonani
- Post-Graduate Department of Biosciences, Sardar Patel University, Bakrol, Anand, Gujarat, 388315, India.
- Institute of Molecular, Cell and System Biology, University of Glasgow, Glasgow, G12 8TA, UK.
- CEA, Institute of Biology and Technology of Saclay, CNRS, 91191, Gif/Yvette, France.
- School of Sciences, P. P. Savani University, Dhamdod, Kosamba, Surat, Gujarat, 394125, India.
| | - Alastair Gardiner
- Institute of Molecular, Cell and System Biology, University of Glasgow, Glasgow, G12 8TA, UK
| | - Rajesh P Rastogi
- Post-Graduate Department of Biosciences, Sardar Patel University, Bakrol, Anand, Gujarat, 388315, India
| | - Richard Cogdell
- Institute of Molecular, Cell and System Biology, University of Glasgow, Glasgow, G12 8TA, UK.
| | - Bruno Robert
- CEA, Institute of Biology and Technology of Saclay, CNRS, 91191, Gif/Yvette, France.
| | - Datta Madamwar
- Post-Graduate Department of Biosciences, Sardar Patel University, Bakrol, Anand, Gujarat, 388315, India.
| |
Collapse
|
29
|
Slonimskiy YB, Maksimov EG, Lukashev EP, Moldenhauer M, Jeffries CM, Svergun DI, Friedrich T, Sluchanko NN. Functional interaction of low-homology FRPs from different cyanobacteria with Synechocystis OCP. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018. [DOI: 10.1016/j.bbabio.2018.03.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
30
|
Sluchanko NN, Slonimskiy YB, Maksimov EG. Features of Protein-Protein Interactions in the Cyanobacterial Photoprotection Mechanism. BIOCHEMISTRY (MOSCOW) 2018. [PMID: 29523061 DOI: 10.1134/s000629791713003x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Photoprotective mechanisms of cyanobacteria are characterized by several features associated with the structure of their water-soluble antenna complexes - the phycobilisomes (PBs). During energy transfer from PBs to chlorophyll of photosystem reaction centers, the "energy funnel" principle is realized, which regulates energy flux due to the specialized interaction of the PBs core with a quenching molecule capable of effectively dissipating electron excitation energy into heat. The role of the quencher is performed by ketocarotenoid within the photoactive orange carotenoid protein (OCP), which is also a sensor for light flux. At a high level of insolation, OCP is reversibly photoactivated, and this is accompanied by a significant change in its structure and spectral characteristics. Such conformational changes open the possibility for protein-protein interactions between OCP and the PBs core (i.e., activation of photoprotection mechanisms) or the fluorescence recovery protein. Even though OCP was discovered in 1981, little was known about the conformation of its active form until recently, as well as about the properties of homologs of its N and C domains. Studies carried out during recent years have made a breakthrough in understanding of the structural-functional organization of OCP and have enabled discovery of new aspects of the regulation of photoprotection processes in cyanobacteria. This review focuses on aspects of protein-protein interactions between the main participants of photoprotection reactions and on certain properties of representatives of newly discovered families of OCP homologs.
Collapse
Affiliation(s)
- N N Sluchanko
- Bach Institute of Biochemistry, Federal Research Center "Fundamentals of Biotechnology", Russian Academy of Sciences, Moscow, 119071, Russia.
| | | | | |
Collapse
|
31
|
The photocycle of orange carotenoid protein conceals distinct intermediates and asynchronous changes in the carotenoid and protein components. Sci Rep 2017; 7:15548. [PMID: 29138423 PMCID: PMC5686206 DOI: 10.1038/s41598-017-15520-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 10/27/2017] [Indexed: 11/30/2022] Open
Abstract
The 35-kDa Orange Carotenoid Protein (OCP) is responsible for photoprotection in cyanobacteria. It acts as a light intensity sensor and efficient quencher of phycobilisome excitation. Photoactivation triggers large-scale conformational rearrangements to convert OCP from the orange OCPO state to the red active signaling state, OCPR, as demonstrated by various structural methods. Such rearrangements imply a complete, yet reversible separation of structural domains and translocation of the carotenoid. Recently, dynamic crystallography of OCPO suggested the existence of photocycle intermediates with small-scale rearrangements that may trigger further transitions. In this study, we took advantage of single 7 ns laser pulses to study carotenoid absorption transients in OCP on the time-scale from 100 ns to 10 s, which allowed us to detect a red intermediate state preceding the red signaling state, OCPR. In addition, time-resolved fluorescence spectroscopy and the assignment of carotenoid-induced quenching of different tryptophan residues derived thereof revealed a novel orange intermediate state, which appears during the relaxation of photoactivated OCPR to OCPO. Our results show asynchronous changes between the carotenoid- and protein-associated kinetic components in a refined mechanistic model of the OCP photocycle, but also introduce new kinetic signatures for future studies of OCP photoactivity and photoprotection.
Collapse
|
32
|
Muzzopappa F, Wilson A, Yogarajah V, Cot S, Perreau F, Montigny C, Bourcier de Carbon C, Kirilovsky D. Paralogs of the C-Terminal Domain of the Cyanobacterial Orange Carotenoid Protein Are Carotenoid Donors to Helical Carotenoid Proteins. PLANT PHYSIOLOGY 2017; 175:1283-1303. [PMID: 28935842 PMCID: PMC5664476 DOI: 10.1104/pp.17.01040] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 09/19/2017] [Indexed: 05/15/2023]
Abstract
The photoactive Orange Carotenoid Protein (OCP) photoprotects cyanobacteria cells by quenching singlet oxygen and excess excitation energy. Its N-terminal domain is the active part of the protein, and the C-terminal domain regulates the activity. Recently, the characteristics of a family of soluble carotenoid-binding proteins (Helical Carotenoid Proteins [HCPs]), paralogs of the N-terminal domain of OCP, were described. Bioinformatics studies also revealed the existence of genes coding for homologs of CTD. Here, we show that the latter genes encode carotenoid proteins (CTDHs). This family of proteins contains two subgroups with distinct characteristics. One CTDH of each clade was further characterized, and they proved to be very good singlet oxygen quenchers. When synthesized in Escherichia coli or Synechocystis PCC 6803, CTDHs formed dimers that share a carotenoid molecule and are able to transfer their carotenoid to apo-HCPs and apo-OCP. The CTDHs from clade 2 have a cysteine in position 103. A disulfide bond is easily formed between the monomers of the dimer preventing carotenoid transfer. This suggests that the transfer of the carotenoid could be redox regulated in clade 2 CTDH. We also demonstrate here that apo-OCPs and apo-CTDHs are able to take the carotenoid directly from membranes, while HCPs are unable to do so. HCPs need the presence of CTDH to become holo-proteins. We propose that, in cyanobacteria, the CTDHs are carotenoid donors to HCPs.
Collapse
Affiliation(s)
- Fernando Muzzopappa
- Institute for Integrative Biology of the Cell, Commissariat à l'Energie Atomique, Centre National de la Recherche Scientifique, Université Paris-Sud, Université Paris-Saclay, 91198 Gif sur Yvette, France
- Institut de Biologie et Technologies de Saclay, Commissariat à l'Energie Atomique, 91191 Gif-sur-Yvette, France
| | - Adjélé Wilson
- Institute for Integrative Biology of the Cell, Commissariat à l'Energie Atomique, Centre National de la Recherche Scientifique, Université Paris-Sud, Université Paris-Saclay, 91198 Gif sur Yvette, France
- Institut de Biologie et Technologies de Saclay, Commissariat à l'Energie Atomique, 91191 Gif-sur-Yvette, France
| | - Vinosa Yogarajah
- Institute for Integrative Biology of the Cell, Commissariat à l'Energie Atomique, Centre National de la Recherche Scientifique, Université Paris-Sud, Université Paris-Saclay, 91198 Gif sur Yvette, France
- Institut de Biologie et Technologies de Saclay, Commissariat à l'Energie Atomique, 91191 Gif-sur-Yvette, France
| | - Sandrine Cot
- Institute for Integrative Biology of the Cell, Commissariat à l'Energie Atomique, Centre National de la Recherche Scientifique, Université Paris-Sud, Université Paris-Saclay, 91198 Gif sur Yvette, France
- Institut de Biologie et Technologies de Saclay, Commissariat à l'Energie Atomique, 91191 Gif-sur-Yvette, France
| | - François Perreau
- Institut National de la Recherche Agronomique, Institut Jean-Pierre Bourgin, Unité Mixte de Recherche 1318, ERL (Équipe de Recherche Labellisée) Centre National de la Recherche Scientifique 3559, Saclay Plant Sciences, F-78026 Versailles, France
| | - Cédric Montigny
- Institute for Integrative Biology of the Cell, Commissariat à l'Energie Atomique, Centre National de la Recherche Scientifique, Université Paris-Sud, Université Paris-Saclay, 91198 Gif sur Yvette, France
- Institut de Biologie et Technologies de Saclay, Commissariat à l'Energie Atomique, 91191 Gif-sur-Yvette, France
| | - Céline Bourcier de Carbon
- Institute for Integrative Biology of the Cell, Commissariat à l'Energie Atomique, Centre National de la Recherche Scientifique, Université Paris-Sud, Université Paris-Saclay, 91198 Gif sur Yvette, France
- Institut de Biologie et Technologies de Saclay, Commissariat à l'Energie Atomique, 91191 Gif-sur-Yvette, France
| | - Diana Kirilovsky
- Institute for Integrative Biology of the Cell, Commissariat à l'Energie Atomique, Centre National de la Recherche Scientifique, Université Paris-Sud, Université Paris-Saclay, 91198 Gif sur Yvette, France
- Institut de Biologie et Technologies de Saclay, Commissariat à l'Energie Atomique, 91191 Gif-sur-Yvette, France
| |
Collapse
|