1
|
Zhang K, Pan X, Wang F, Ma J, Su G, Dong Y, Yang J, Wu C. Baicalin promotes hippocampal neurogenesis via SGK1- and FKBP5-mediated glucocorticoid receptor phosphorylation in a neuroendocrine mouse model of anxiety/depression. Sci Rep 2016; 6:30951. [PMID: 27502757 PMCID: PMC4977505 DOI: 10.1038/srep30951] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 07/11/2016] [Indexed: 12/27/2022] Open
Abstract
Antidepressants increase hippocampal neurogenesis by activating the glucocorticoid receptor (GR), but excessive GR activation impairs hippocampal neurogenesis, suggesting that normal GR function is crucial for hippocampal neurogenesis. Baicalin was reported to regulate the expression of GR and facilitate hippocampal neurogenesis, but the underlying molecular mechanisms are still unknown. In this study, we used the chronic corticosterone (CORT)-induced mouse model of anxiety/depression to assess antidepressant-like effects of baicalin and illuminate possible molecular mechanisms by which baicalin affects GR-mediated hippocampal neurogenesis. We found that oral administration of baicalin (40, 80 or 160 mg/kg) for 4 weeks alleviated several chronic CORT-induced anxiety/depression-like behaviors. Baicalin also increased Ki-67- and DCX-positive cells to restore chronic CORT-induced suppression of hippocampal neurogenesis. Moreover, baicalin normalized the chronic CORT-induced decrease in GR protein levels, the increase in GR nuclear translocation and the increase in GR phosphorylation at Ser203 and Ser211. Finally, chronic CORT exposure increased the level of FK506-binding protein 51 (FKBP5) and of phosphorylated serum- and glucocorticoid-inducible kinase 1 (SGK1) at Ser422 and Thr256, whereas baicalin normalized these changes. Together, our findings suggest that baicalin improves anxiety/depression-like behaviors and promotes hippocampal neurogenesis. We propose that baicalin may normalize GR function through SGK1- and FKBP5-mediated GR phosphorylation.
Collapse
Affiliation(s)
- Kuo Zhang
- Department of Pharmacology, Shenyang Pharmaceutical University, 110016, Shenyang, PR China
| | - Xing Pan
- Department of Pharmacology, Shenyang Pharmaceutical University, 110016, Shenyang, PR China
| | - Fang Wang
- Department of Pharmacology, Shenyang Pharmaceutical University, 110016, Shenyang, PR China
| | - Jie Ma
- Department of Pharmacology, Shenyang Pharmaceutical University, 110016, Shenyang, PR China
| | - Guangyue Su
- Department of School of Functional Food And Wine, Shenyang Pharmaceutical University, 110016, Shenyang, PR China
| | - Yingxu Dong
- Department of Pharmacology, Shenyang Pharmaceutical University, 110016, Shenyang, PR China
| | - Jingyu Yang
- Department of Pharmacology, Shenyang Pharmaceutical University, 110016, Shenyang, PR China
| | - Chunfu Wu
- Department of Pharmacology, Shenyang Pharmaceutical University, 110016, Shenyang, PR China
| |
Collapse
|
2
|
Kula J, Blasiak A, Czerw A, Tylko G, Sowa J, Hess G. Short-term repeated corticosterone administration enhances glutamatergic but not GABAergic transmission in the rat motor cortex. Pflugers Arch 2015; 468:679-91. [PMID: 26696244 PMCID: PMC4792354 DOI: 10.1007/s00424-015-1773-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 11/22/2015] [Accepted: 12/13/2015] [Indexed: 01/26/2023]
Abstract
It has been demonstrated that stress impairs performance of skilled reaching and walking tasks in rats due to the action of glucocorticoids involved in the stress response. Skilled reaching and walking are controlled by the primary motor cortex (M1); however, it is not known whether stress-related impairments in skilled motor tasks are related to functional and/or structural alterations within the M1. We studied the effects of single and repeated injections of corticosterone (twice daily for 7 days) on spontaneous excitatory and inhibitory postsynaptic currents (sEPSCs and sIPSCs) recorded from layer II/III pyramidal neurons in ex vivo slices of the M1, prepared 2 days after the last administration of the hormone. We also measured the density of dendritic spines on pyramidal cells and the protein levels of selected subunits of AMPA, NMDA, and GABAA receptors after repeated corticosterone administration. Repeatedly administered corticosterone induced an increase in the frequency but not in the amplitude of sEPSCs, while a single administration had no effect on the recorded excitatory currents. The frequency and amplitude of sIPSCs as well as the excitability of pyramidal cells were changed neither after single nor after repeated corticosterone administration. Treatment with corticosterone for 7 days did not modify the density of dendritic spines on pyramidal neurons. Corticosterone influenced neither the protein levels of GluA1, GluA2, GluN1, GluN2A, and GluN2B subunits of glutamate receptors nor those of α1, β2, and γ2 subunits of the GABAA receptor. The increase in sEPSCs frequency induced by repeated corticosterone administration faded out within 7 days. These data indicate that prolonged administration of exogenous corticosterone selectively and reversibly enhances glutamatergic, but not GABAergic transmission in the rat motor cortex. Our results suggest that corticosterone treatment results in an enhancement of spontaneous glutamate release from presynaptic terminals in the M1 and thereby uncovers a potential mechanism underlying stress-induced motor functions impairment.
Collapse
Affiliation(s)
- Joanna Kula
- Institute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland
| | - Anna Blasiak
- Institute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland
| | - Anna Czerw
- Institute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland
| | - Grzegorz Tylko
- Institute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland
| | - Joanna Sowa
- Department of Physiology, Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343, Krakow, Poland
| | - Grzegorz Hess
- Institute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland. .,Department of Physiology, Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343, Krakow, Poland.
| |
Collapse
|
3
|
Bohacek J, Manuella F, Roszkowski M, Mansuy IM. Hippocampal gene expression induced by cold swim stress depends on sex and handling. Psychoneuroendocrinology 2015; 52:1-12. [PMID: 25459888 DOI: 10.1016/j.psyneuen.2014.10.026] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 10/03/2014] [Accepted: 10/31/2014] [Indexed: 01/03/2023]
Abstract
Stress-related disorders such as PTSD and depression are more prevalent in women than men. One reason for such discordance may be that brain regions involved in stress responses are more sensitive to stress in females. Here, we compared the effects of acute stress on gene transcription in the hippocampus of female and male mice, and also examined the involvement of two key stress-related hormones, corticosterone and corticotropin releasing hormone (Crh). Using quantitative reverse transcription polymerase chain reaction (RT-qPCR), we measured gene expression of Fos, Per1 and Sgk1 45 min after exposure to brief cold swim stress. Stress induced a stronger increase in Fos and Per1 expression in females than males. The handling control procedure increased Fos in both sexes, but occluded the effects of stress in males. Further, handling increased Per1 only in males. Sgk1 was insensitive to handling, and increased in response to stress similarly in males and females. The transcriptional changes observed after swim stress were not mimicked by corticosterone injections, and the stress-induced increase in Fos, Per1 and Sgk1 could neither be prevented by pharmacologically blocking glucocorticoid receptor (GR) nor by blocking Crh receptor 1 (Crhr1) before stress exposure. Finally, we demonstrate that the effects are stressor-specific, as the expression of target genes could not be increased by brief restraint stress in either sex. In summary, we find strong effects of acute swim stress on hippocampal gene expression, complex interactions between handling and sex, and a remarkably unique response pattern for each gene. Overall, females respond to a cold swim challenge with stronger hippocampal gene transcription than males, independent of two classic mediators of the stress response, corticosterone and Crh. These findings may have important implications for understanding the higher vulnerability of women to certain stress-related neuropsychiatric diseases.
Collapse
Affiliation(s)
- Johannes Bohacek
- Brain Research Institute, Neuroscience Center Zürich, University of Zurich/ETH Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| | - Francesca Manuella
- Brain Research Institute, Neuroscience Center Zürich, University of Zurich/ETH Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Martin Roszkowski
- Brain Research Institute, Neuroscience Center Zürich, University of Zurich/ETH Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Isabelle M Mansuy
- Brain Research Institute, Neuroscience Center Zürich, University of Zurich/ETH Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
4
|
MEKK1-MKK4-JNK-AP1 pathway negatively regulates Rgs4 expression in colonic smooth muscle cells. PLoS One 2012; 7:e35646. [PMID: 22545125 PMCID: PMC3335800 DOI: 10.1371/journal.pone.0035646] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 03/19/2012] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Regulator of G-protein Signaling 4 (RGS4) plays an important role in regulating smooth muscle contraction, cardiac development, neural plasticity and psychiatric disorder. However, the underlying regulatory mechanisms remain elusive. Our recent studies have shown that upregulation of Rgs4 by interleukin (IL)-1β is mediated by the activation of NFκB signaling and modulated by extracellular signal-regulated kinases, p38 mitogen-activated protein kinase, and phosphoinositide-3 kinase. Here we investigate the effect of the c-Jun N-terminal kinase (JNK) pathway on Rgs4 expression in rabbit colonic smooth muscle cells. METHODOLOGY/PRINCIPAL FINDINGS Cultured cells at first passage were treated with or without IL-1β (10 ng/ml) in the presence or absence of the selective JNK inhibitor (SP600125) or JNK small hairpin RNA (shRNA). The expression levels of Rgs4 mRNA and protein were determined by real-time RT-PCR and Western blot respectively. SP600125 or JNK shRNA increased Rgs4 expression in the absence or presence of IL-1β stimulation. Overexpression of MEKK1, the key upstream kinase of JNK, inhibited Rgs4 expression, which was reversed by co-expression of JNK shRNA or dominant-negative mutants for MKK4 or JNK. Both constitutive and inducible upregulation of Rgs4 expression by SP600125 was significantly inhibited by pretreatment with the transcription inhibitor, actinomycin D. Dual reporter assay showed that pretreatment with SP600125 sensitized the promoter activity of Rgs4 in response to IL-1β. Mutation of the AP1-binding site within Rgs4 promoter increased the promoter activity. Western blot analysis confirmed that IL-1β treatment increased the phosphorylation of JNK, ATF-2 and c-Jun. Gel shift and chromatin immunoprecipitation assays validated that IL-1β increased the in vitro and ex vivo binding activities of AP1 within rabbit Rgs4 promoter. CONCLUSION/SIGNIFICANCE Activation of MEKK1-MKK4-JNK-AP1 signal pathway plays a tonic inhibitory role in regulating Rgs4 transcription in rabbit colonic smooth muscle cells. This negative regulation may aid in maintaining the transient level of RGS4 expression.
Collapse
|
5
|
Chronic stress is linked to 5-HT1A receptor changes and functional disintegration of the limbic networks. Neuroimage 2011; 55:1178-88. [DOI: 10.1016/j.neuroimage.2010.12.060] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 11/20/2010] [Accepted: 12/22/2010] [Indexed: 01/09/2023] Open
|
6
|
Cloning and characterization of rabbit Rgs4 promoter in gut smooth muscle. Gene 2009; 451:45-53. [PMID: 19945517 DOI: 10.1016/j.gene.2009.11.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2009] [Revised: 11/19/2009] [Accepted: 11/19/2009] [Indexed: 11/23/2022]
Abstract
Regulator of G-protein signaling 4 (Rgs4) regulates the strength and duration of G-protein signaling, and plays an important role in cardiac development, smooth muscle contraction and psychiatric disorders. Rgs4 expression is regulated at both mRNA and protein levels. In order to examine the transcriptional mechanism of Rgs4 expression, we have cloned and characterized rabbit Rgs4 promoter. The coding sequence of rabbit Rgs4 was obtained by degenerative RT-PCR and used for Northern blot and 5'-RACE analysis. A single transcript was identified in rabbit colonic smooth muscle cells. The 5'-untranslated region (UTR) extended 120 bp nucleotides upstream of the Rgs4 start codon. A putative promoter sequence (1389 bp) showed a consensus TATA box and cis-acting binding sites for several potential transcriptional factors. Reporter gene assay identified strong promoter activity in various cell types. Further analysis by deletion mutagenesis suggested that the proximal region had a highest core promoter activity while the distal region is suppressive. IL-1beta significantly increased the promoter activity. The in vitro and in vivo binding activities for NF-kappaB transcription factor were validated by electrophoretic mobility shift assay and chromatin immunoprecipitation assay respectively. Mutation of NF-kappaB site reduced the promoter activity. These data suggest that the cloned rabbit Rgs4 promoter is functionally active and NF-kappaB binding site possesses enhancer activity in regulating Rgs4 transcription. Our studies provide an important basis for further understanding of Rgs4 regulation and function in different diseases.
Collapse
|
7
|
Abstract
Dentate granule cells are enriched with receptors for the stress hormone corticosterone, i.e., the high-affinity mineralocorticoid receptor (MR), which is already extensively occupied with low levels of the hormone, and the glucocorticoid receptor (GR), which is particularly activated after stress. More than any other cell type in the brain studied so far, dentate granule cells require hormone levels to be within the physiological range. In the absence of corticosteroids, proliferation and apoptotic cell death are dramatically enhanced. Dendritic morphology and synaptic transmission are compromised. Conversely, prolonged exposure of animals to a high level of corticosterone suppresses neurogenesis and presumably makes dentate granule cells more vulnerable to delayed cell death. These corticosteroid effects on dentate cell and network function are translated into behavioral consequences, in health and disease.
Collapse
Affiliation(s)
- Marian Joëls
- Swammerdam Institute of Life Sciences, Center for NeuroScience, University of Amsterdam, Kruislaan 320, 1098 SM Amsterdam, The Netherlands.
| |
Collapse
|