1
|
Liu H, Yuan Y, Li J, Lan Z, Dai Z, Li G, Xiao K, Pu Y, He C, Qin S, Su Z. Establishment of an efficient and economical method for primary oligodendrocyte progenitor cell culture from neonatal mouse brain. Brain Res 2025; 1853:149519. [PMID: 40023233 DOI: 10.1016/j.brainres.2025.149519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 02/05/2025] [Accepted: 02/17/2025] [Indexed: 03/04/2025]
Abstract
The primary culture of oligodendrocyte progenitor cells (OPCs) provides an indispensable tool for characterizing their biological properties and myelin repair potential. However, the current OPC preparation methods are mainly limited to rat tissues, and it remains a substantial challenge for replicating the primary culture from mouse tissues to generate large quantities of high-quality OPCs. Here, we describe a protocol to successfully establish highly enriched OPC cultures from the cerebral cortex of mice at the age of neonatal 3 days. OPCs were isolated and purified from the bed layer of astrocytes by shaking for 6 h at 250 rpm. Using this protocol, mouse OPCs can be easily produced in bulk and economically without the need for specific cell-surface antibodies and equipment. These mouse OPC cultures were identified by immunocytochemical, immunobloting and RNA-seq analysis. Furthermore, they could be expanded in vitro and differentiate into mature oligodendrocytes. We propose this method as a viable and affordable protocol to obtain mouse OPC culture, which should significantly facilitate studies on OPC lineage progression and their application in myelin-related disease modeling and regenerative medicine.
Collapse
Affiliation(s)
- Hong Liu
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai 200433, China
| | - Yimin Yuan
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai 200433, China; Department of Pain Medicine, School of Anesthesiology, Naval Medical University, Shanghai 200433, China
| | - Jiali Li
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai 200433, China
| | - Zhida Lan
- Department of Anatomy, College of Basic Medicine, Naval Medical University, Shanghai 200433, China
| | - Ziwei Dai
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai 200433, China
| | - Guanyu Li
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai 200433, China
| | - Kouwei Xiao
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai 200433, China
| | - Yingyan Pu
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai 200433, China
| | - Cheng He
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai 200433, China
| | - Shangyao Qin
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai 200433, China.
| | - Zhida Su
- Institute of Neuroscience, Key Laboratory of Molecular Neurobiology of Ministry of Education and the Collaborative Innovation Center for Brain Science, Naval Medical University, Shanghai 200433, China.
| |
Collapse
|
2
|
Yue Y, Deng B, Zeng Y, Li W, Qiu X, Hu P, Shen L, Ruan T, Zhou R, Li S, Ying J, Xiong T, Qu Y, Luan Z, Mu D. Oligodendrocyte Progenitor Cell Transplantation Reduces White Matter Injury in a Fetal Goat Model. CNS Neurosci Ther 2024; 30:e70178. [PMID: 39690788 DOI: 10.1111/cns.70178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 11/20/2024] [Accepted: 12/04/2024] [Indexed: 12/19/2024] Open
Abstract
BACKGROUND Preterm white matter injury (PWMI) is the most common type of brain injury in preterm infants, in which, oligodendrocyte progenitor cells (OPCs) are predominantly damaged. In this study, human OPCs (hOPCs) were administered to a fetal goat model of PWMI to examine the differentiation potential and therapeutic effects of the cells on PWMI. METHODS Preterm goat fetuses were subjected to hypoxic-ischemia (HI) via intermittent umbilical cord occlusion (5 min × 5). Twenty million hOPCs were administered via a nasal catheter 12 h after an HI insult, and brain tissues were collected 14 or 21 days after the HI insult. Myelin basic protein (MBP) and myelin-associated glycoprotein (MAG) were detected by immunofluorescence and western blotting techniques. The percentage of myelinated nerve fibers and g-ratio were examined using transmission electron microscopy. Inflammatory cells were detected by immunohistochemistry. Inflammatory and neurotrophic factors were measured using enzyme-linked immunosorbent assay. RESULTS Our results showed that intermittent umbilical cord occlusion induced PWMI in fetal goats. Transplanted hOPCs can survive in periventricular and subcortical white matter. Further, transplanted hOPCs expressed markers of mature oligodendrocytes (MBP and MAG) and few cells expressed markers of preoligodendrocytes (NG2 and A2B5), suggesting that these cells can differentiate into mature oligodendrocytes in the brain. In addition, hOPCs administration increased MBP and MAG levels, percentage of myelinated nerve fibers, and thickness of the myelin sheath, indicating a reduction in PWMI. Furthermore, hOPCs did not increase the inflammatory response after HI. Interestingly, hOPC administration decreased tumor necrosis factor-alpha and increased glial-derived neurotrophic factor and brain-derived neurotrophic factor levels after HI, suggesting that additional mechanisms mediate the inflammatory microenvironment and neuroprotective effects. CONCLUSIONS Exogenous hOPCs can differentiate into mature oligodendrocytes in fetal goats and alleviate HI-induced PWMI. Transplantation of hOPCs is a promising strategy for treating PWMI.
Collapse
Affiliation(s)
- Yan Yue
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, China
| | - Bixin Deng
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, China
| | - Yan Zeng
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, China
| | - Wenxing Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, China
| | - Xia Qiu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, China
| | - Peng Hu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, China
| | - LiuHong Shen
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Tiechao Ruan
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, China
| | - Ruixi Zhou
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, China
| | - Shiping Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, China
| | - Junjie Ying
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, China
| | - Tao Xiong
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, China
| | - Yi Qu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, China
| | - Zuo Luan
- Laboratory of Pediatrics, The Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Dezhi Mu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Janowska J, Gargas J, Sypecka J. Pearls and Pitfalls of Isolating Rat OPCs for In Vitro Culture with Different Methods. Cell Mol Neurobiol 2023; 43:3705-3722. [PMID: 37407878 PMCID: PMC10477124 DOI: 10.1007/s10571-023-01380-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/22/2023] [Indexed: 07/07/2023]
Abstract
There are several in vitro models to study the biology of oligodendrocyte progenitor cells (OPCs). The use of models based on induced pluripotent stem cells or oligodendrocyte-like cell lines has many advantages but raises significant questions, such as inaccurate reproduction of neural tissue or genetic instability. Moreover, in a specific case of studying the biology of neonatal OPCs, it is particularly difficult to find good representative model, due to the unique metabolism and features of these cells, as well as neonatal brain tissue. The following study evaluates two methods of isolating OPCs from rat pups as a model for in vitro studies. The first protocol is a modification of the classical mixed glial culture with series of shakings applied to isolate the fraction of OPCs. The second protocol is based on direct cell sorting and uses magnetic microbeads that target the surface antigen of the oligodendrocyte progenitor cell-A2B5. We compared the performance of these methods and analyzed the purity of obtained cultures as well as oligodendrocyte differentiation. Although the yield of OPCs collected with these two methods is similar, both have their advantages and disadvantages. The OPCs obtained with both methods give rise to mature oligodendrocytes within a few days of culture in ITS-supplemented serum-free medium and a 5% O2 atmosphere (mimicking the endogenous oxygen conditions of the nervous tissue). Methods for isolating rat OPCs In the following study we compared methods for isolating neonatal rat oligodendrocyte progenitor cells, for the studies on the in vitro model of neonatal brain injuries. We evaluated the purity of obtained cell cultures and the ability to maturate in physiological normoxia and serum-free culture medium.
Collapse
Affiliation(s)
- Justyna Janowska
- NeuroRepair Department, Mossakowski Medical Research Institute Polish Academy of Sciences, Pawinskiego 5, 02-106 Warsaw, Poland
| | - Justyna Gargas
- NeuroRepair Department, Mossakowski Medical Research Institute Polish Academy of Sciences, Pawinskiego 5, 02-106 Warsaw, Poland
| | - Joanna Sypecka
- NeuroRepair Department, Mossakowski Medical Research Institute Polish Academy of Sciences, Pawinskiego 5, 02-106 Warsaw, Poland
| |
Collapse
|
4
|
Identifying Genes that Affect Differentiation of Human Neural Stem Cells and Myelination of Mature Oligodendrocytes. Cell Mol Neurobiol 2022:10.1007/s10571-022-01313-5. [DOI: 10.1007/s10571-022-01313-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022]
Abstract
AbstractHuman neural stem cells (NSCs) are self-renewing, multipotent cells of the central nervous system (CNS). They are characterized by their ability to differentiate into a range of cells, including oligodendrocytes (OLs), neurons, and astrocytes, depending on exogenous stimuli. An efficient and easy directional differentiation method was developed for obtaining large quantities of high-quality of human OL progenitor cells (OPCs) and OLs from NSCs. RNA sequencing, immunofluorescence staining, flow cytometry, western blot, label-free proteomic sequencing, and qPCR were performed in OL lines differentiated from NSC lines. The changes in the positive rate of typical proteins were analyzed expressed by NSCs, neurons, astrocytes, OPCs, and OLs. We assessed Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways of differentially expressed (DE) messenger RNAs (mRNAs) related to the differentiation of NSCs and the maturation of OLs. The percentage of NSCs differentiated into neurons, astrocytes, and OLs was 82.13%, 80.19%, and 90.15%, respectively. We found that nestin, PAX6, Musashi, and vimentin were highly expressed in NSCs; PDGFR-α, A2B5, NG2, OLIG2, SOX10, and NKX2-2 were highly expressed in OPCs; and CNP, GALC, PLP1, and MBP were highly expressed in OLs. RNA sequencing, western blot and qPCR revealed that ERBB4 and SORL1 gradually increased during NSC–OL differentiation. In conclusion, NSCs can differentiate into neurons, astrocytes, and OLs efficiently. PDGFR-α, APC, ID4, PLLP, and other markers were related to NSC differentiation and OL maturation. Moreover, we refined a screening method for ERBB4 and SORL1, which may underlie NSC differentiation and OL maturation.
Graphical Abstract
Potential unreported genes and proteins may regulate differentiation of human neural stem cells into oligodendrocyte lineage. Neural stem cells (NSCs) can differentiate into neurons, astrocytes, and oligodendrocyte (OLs) efficiently. By analyzing the DE mRNAs and proteins of NSCs and OLs lineage, we could identify reported markers and unreported markers of ERBB4 and SORL1 that may underlie regulate NSC differentiation and OL maturation.
Collapse
|
5
|
Lu S, Li K, Yang Y, Wang Q, Yu Y, Wang Z, Luan Z. Optimization of an Intranasal Route for the Delivery of Human Neural Stem Cells to Treat a Neonatal Hypoxic-Ischemic Brain Injury Rat Model. Neuropsychiatr Dis Treat 2022; 18:413-426. [PMID: 35495583 PMCID: PMC9047963 DOI: 10.2147/ndt.s350586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/10/2022] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVE Stem cell administration via the intranasal route has shown promise as a new therapy for hypoxic-ischemic encephalopathy (HIE). In this study, we aimed to improve the intranasal delivery of stem cells to the brain. METHODS Human neural stem cells (hNSCs) were identified using immunofluorescence, morphological, and flow cytometry assays before transplantation, and cell migration capacity was examined using the transwell assay. Cerebral hypoxia-ischemia (HI) was induced in 7-day-old rats, followed by the intranasal transplantation of CM-Dil-labeled hNSCs. We examined various experimental conditions, including preconditioning hNSCs with hypoxia, catheter method, multiple low-dose transplantation, head position, cell appropriate concentration, and volume. Rats were sacrificed 1 or 3 days after the final intranasal administration, and parts of the nasal tissue and whole brain sections were analyzed under a fluorescence microscope. RESULTS The isolated hNSCs met the characteristics of neural stem cells. Hypoxia (5% O2, 24 h) enhanced the surface expression of CXC chemokine receptor 4 (CXCR4) (9.21 ± 1.9% ~ 24.76 ± 2.24%, P < 0.01) on hNSCs and improved migration (toward stromal cell-derived factor 1 [SDF-1], 0.54 ± 0.11% ~ 8.65 ± 1.76%, P < 0.001; toward fetal bovine serum, 8.36 ± 0.81% ~ 21.74 ± 0.85%, P < 0.0001). Further improvement increased the number of surviving cell distribution with increased uniformity on the olfactory epithelium and allowed the cells to stay in the nasal cavity for at least 72 h, but they did not survive for longer than 48 h. Optimization of pre-transplantation conditions augmented the success rate of intranasally delivered cells to the brain (0-41.6%). We also tentatively identified that hNSCs crossed the olfactory epithelium into the tissue space below the lamina propria, with cerebrospinal fluid entering the cribriform plate into the subarachnoid space, and then migrated toward injured areas along the brain blood vessels. CONCLUSION This study offers some helpful advice and reference for addressing the problem of repeatability in the intranasal delivery of stem cells.
Collapse
Affiliation(s)
- Siliang Lu
- The First Clinical Medical College, Guangxi Medical University, Nanning, 530021, Guangxi, People's Republic of China.,Laboratory of Pediatrics, The Sixth Medical Center of PLA General Hospital, Beijing, 100048, People's Republic of China
| | - Ke Li
- The First Clinical Medical College, Guangxi Medical University, Nanning, 530021, Guangxi, People's Republic of China.,Laboratory of Pediatrics, The Sixth Medical Center of PLA General Hospital, Beijing, 100048, People's Republic of China
| | - Yinxiang Yang
- Laboratory of Pediatrics, The Sixth Medical Center of PLA General Hospital, Beijing, 100048, People's Republic of China
| | - Qian Wang
- Laboratory of Pediatrics, The Sixth Medical Center of PLA General Hospital, Beijing, 100048, People's Republic of China
| | - Yu Yu
- The First Clinical Medical College, Guangxi Medical University, Nanning, 530021, Guangxi, People's Republic of China.,Laboratory of Pediatrics, The Sixth Medical Center of PLA General Hospital, Beijing, 100048, People's Republic of China
| | - Zhaoyan Wang
- Laboratory of Pediatrics, The Sixth Medical Center of PLA General Hospital, Beijing, 100048, People's Republic of China
| | - Zuo Luan
- The First Clinical Medical College, Guangxi Medical University, Nanning, 530021, Guangxi, People's Republic of China
| |
Collapse
|
6
|
Stricker PEF, de Souza Dobuchak D, Irioda AC, Mogharbel BF, Franco CRC, de Souza Almeida Leite JR, de Araújo AR, Borges FA, Herculano RD, de Oliveira Graeff CF, Chachques JC, de Carvalho KAT. Human Mesenchymal Stem Cells Seeded on the Natural Membrane to Neurospheres for Cholinergic-like Neurons. MEMBRANES 2021; 11:membranes11080598. [PMID: 34436361 PMCID: PMC8400270 DOI: 10.3390/membranes11080598] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 07/31/2021] [Accepted: 08/04/2021] [Indexed: 12/17/2022]
Abstract
This study aimed to differentiate human mesenchymal stem cells (hMSCs) from the human umbilical cord in cholinergic-like neurons using a natural membrane. The isolation of hMSCs from Wharton’s jelly (WJ) was carried out using “explant” and mononuclear cells by the density gradient from umbilical blood and characterized by flow cytometry. hMSCs were seeded in a natural functional biopolymer membrane to produce neurospheres. RT-PCR was performed on hMSCs and neurospheres derived from the umbilical cord. Neural precursor cells were subjected to a standard cholinergic-like neuron differentiation protocol. Dissociated neurospheres, neural precursor cells, and cholinergic-like neurons were characterized by immunocytochemistry. hMSCs were CD73+, CD90+, CD105+, CD34- and CD45- and demonstrated the trilineage differentiation. Neurospheres and their isolated cells were nestin-positive and expressed NESTIN, MAP2, ßIII-TUBULIN, GFAP genes. Neural precursor cells that were differentiated in cholinergic-like neurons expressed ßIII-TUBULIN protein and choline acetyltransferase enzyme. hMSCs seeded on the natural membrane can differentiate into neurospheres, obtaining neural precursor cells without growth factors or gene transfection before cholinergic phenotype differentiation.
Collapse
Affiliation(s)
- Priscila Elias Ferreira Stricker
- Advanced Therapy and Cellular Biotechnology in Regenerative Medicine Department, Child and Adolescent Health Research and Pequeno Príncipe Faculties, Pelé Pequeno Príncipe Institute, Curitiba 80240-020, Brazil; (P.E.F.S.); (D.d.S.D.); (A.C.I.); (B.F.M.)
| | - Daiany de Souza Dobuchak
- Advanced Therapy and Cellular Biotechnology in Regenerative Medicine Department, Child and Adolescent Health Research and Pequeno Príncipe Faculties, Pelé Pequeno Príncipe Institute, Curitiba 80240-020, Brazil; (P.E.F.S.); (D.d.S.D.); (A.C.I.); (B.F.M.)
| | - Ana Carolina Irioda
- Advanced Therapy and Cellular Biotechnology in Regenerative Medicine Department, Child and Adolescent Health Research and Pequeno Príncipe Faculties, Pelé Pequeno Príncipe Institute, Curitiba 80240-020, Brazil; (P.E.F.S.); (D.d.S.D.); (A.C.I.); (B.F.M.)
| | - Bassam Felipe Mogharbel
- Advanced Therapy and Cellular Biotechnology in Regenerative Medicine Department, Child and Adolescent Health Research and Pequeno Príncipe Faculties, Pelé Pequeno Príncipe Institute, Curitiba 80240-020, Brazil; (P.E.F.S.); (D.d.S.D.); (A.C.I.); (B.F.M.)
| | | | | | - Alyne Rodrigues de Araújo
- Biodiversity and Biotechnology Research, Parnaíba Delta Federal University, Parnaíba 64202-020, Brazil;
| | - Felipe Azevedo Borges
- Faculty of Pharmaceutics Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil; (F.A.B.); (R.D.H.)
| | | | | | - Juan Carlos Chachques
- Laboratory Biosurgical Research, Cardiovascular Division, Pompidou Hospital, University of Paris, 75015 Paris, France;
| | - Katherine Athayde Teixeira de Carvalho
- Advanced Therapy and Cellular Biotechnology in Regenerative Medicine Department, Child and Adolescent Health Research and Pequeno Príncipe Faculties, Pelé Pequeno Príncipe Institute, Curitiba 80240-020, Brazil; (P.E.F.S.); (D.d.S.D.); (A.C.I.); (B.F.M.)
- Correspondence: ; Tel.: +55-41-3310-1035
| |
Collapse
|
7
|
Zhou H, He Y, Wang Z, Wang Q, Hu C, Wang X, Lu S, Li K, Yang Y, Luan Z. Identifying the functions of two biomarkers in human oligodendrocyte progenitor cell development. J Transl Med 2021; 19:188. [PMID: 33933125 PMCID: PMC8088696 DOI: 10.1186/s12967-021-02857-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 04/24/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Human oligodendrocyte precursor cells (hOPCs) are an important source of myelinating cells for cell transplantation to treat demyelinating diseases. Myelin oligodendrocytes develop from migratory and proliferative hOPCs. It is well known that NG2 and A2B5 are important biological markers of hOPCs. However, the functional differences between the cell populations represented by these two biomarkers have not been well studied in depth. OBJECTIVE To study the difference between NG2 and A2B5 cells in the development of human oligodendrocyte progenitor cells. METHODS Using cell sorting technology, we obtained NG2+/-, A2B5+/- cells. Further research was then conducted via in vitro cell proliferation and migration assays, single-cell sequencing, mRNA sequencing, and cell transplantation into shiverer mice. RESULTS The proportion of PDGFR-α + cells in the negative cell population was higher than that in the positive cell population. The migration ability of the NG2+/-, A2B5+/- cells was inversely proportional to their myelination ability. The migration, proliferation, and myelination capacities of the negative cell population were stronger than those of the positive cell population. The ability of cell migration and proliferation of the four groups of cells from high to low was: A2B5- > NG2- > NG2+ > A2B5+. The content of PDGFR-α+ cells and the ability of cell differentiation from high to low was: NG2- > A2B5- > A2B5+ > NG2+. CONCLUSION In summary, NG2+ and A2B5+ cells have poor myelination ability due to low levels of PDGFR-α+ cells. Therefore, hOPCs with a higher content of PDGFR-α+ cells may have a better effect in the cell transplantation treatment of demyelinating diseases.
Collapse
Affiliation(s)
- Haipeng Zhou
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
- The Sixth Medical Centre of PLA General Hospital, Beijing, 100048, China
| | - Ying He
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
- The Sixth Medical Centre of PLA General Hospital, Beijing, 100048, China
| | - Zhaoyan Wang
- The Sixth Medical Centre of PLA General Hospital, Beijing, 100048, China
| | - Qian Wang
- The Sixth Medical Centre of PLA General Hospital, Beijing, 100048, China
| | - Caiyan Hu
- The Sixth Medical Centre of PLA General Hospital, Beijing, 100048, China
| | - Xiaohua Wang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
- The Sixth Medical Centre of PLA General Hospital, Beijing, 100048, China
| | - Siliang Lu
- The Sixth Medical Centre of PLA General Hospital, Beijing, 100048, China
| | - Ke Li
- The Sixth Medical Centre of PLA General Hospital, Beijing, 100048, China
| | - Yinxiang Yang
- The Sixth Medical Centre of PLA General Hospital, Beijing, 100048, China.
| | - Zuo Luan
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China.
- The Sixth Medical Centre of PLA General Hospital, Beijing, 100048, China.
| |
Collapse
|
8
|
Fritsche E, Barenys M, Klose J, Masjosthusmann S, Nimtz L, Schmuck M, Wuttke S, Tigges J. Current Availability of Stem Cell-Based In Vitro Methods for Developmental Neurotoxicity (DNT) Testing. Toxicol Sci 2019; 165:21-30. [PMID: 29982830 DOI: 10.1093/toxsci/kfy178] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
There is evidence that chemical exposure during development can cause irreversible impairments of the human developing nervous system. Therefore, testing compounds for their developmentally neurotoxic potential has high priority for different stakeholders: academia, industry, and regulatory bodies. Due to the resource-intensity of current developmental neurotoxicity (DNT) in vivo guidelines, alternative methods that are scientifically valid and have a high predictivity for humans are especially desired by regulators. Here, we review availability of stem-/progenitor cell-based in vitro methods for DNT evaluation that is based on the concept of neurodevelopmental process assessment. These test methods are assembled into a DNT in vitro testing battery. Gaps in this testing battery addressing research needs are also pointed out.
Collapse
Affiliation(s)
| | - Marta Barenys
- IUF - Leibniz Research Institute for Environmental Medicine 40225, Düsseldorf, Germany
| | - Jördis Klose
- IUF - Leibniz Research Institute for Environmental Medicine 40225, Düsseldorf, Germany
| | - Stefan Masjosthusmann
- IUF - Leibniz Research Institute for Environmental Medicine 40225, Düsseldorf, Germany
| | - Laura Nimtz
- IUF - Leibniz Research Institute for Environmental Medicine 40225, Düsseldorf, Germany
| | - Martin Schmuck
- IUF - Leibniz Research Institute for Environmental Medicine 40225, Düsseldorf, Germany
| | - Saskia Wuttke
- IUF - Leibniz Research Institute for Environmental Medicine 40225, Düsseldorf, Germany
| | - Julia Tigges
- IUF - Leibniz Research Institute for Environmental Medicine 40225, Düsseldorf, Germany
| |
Collapse
|
9
|
Zhang Y, Lu XY, Casella G, Tian J, Ye ZQ, Yang T, Han JJ, Jia LY, Rostami A, Li X. Generation of Oligodendrocyte Progenitor Cells From Mouse Bone Marrow Cells. Front Cell Neurosci 2019; 13:247. [PMID: 31231194 PMCID: PMC6561316 DOI: 10.3389/fncel.2019.00247] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 05/17/2019] [Indexed: 01/20/2023] Open
Abstract
Oligodendrocyte progenitor cells (OPCs) are a subtype of glial cells responsible for myelin regeneration. Oligodendrocytes (OLGs) originate from OPCs and are the myelinating cells in the central nervous system (CNS). OLGs play an important role in the context of lesions in which myelin loss occurs. Even though many protocols for isolating OPCs have been published, their cellular yield remains a limit for clinical application. The protocol proposed here is novel and has practical value; in fact, OPCs can be generated from a source of autologous cells without gene manipulation. Our method represents a rapid, and high-efficiency differentiation protocol for generating mouse OLGs from bone marrow-derived cells using growth-factor defined media. With this protocol, it is possible to obtain mature OLGs in 7–8 weeks. Within 2–3 weeks from bone marrow (BM) isolation, after neurospheres formed, the cells differentiate into Nestin+ Sox2+ neural stem cells (NSCs), around 30 days. OPCs specific markers start to be expressed around day 38, followed by RIP+O4+ around day 42. CNPase+ mature OLGs are finally obtained around 7–8 weeks. Further, bone marrow-derived OPCs exhibited therapeutic effect in shiverer (Shi) mice, promoting myelin regeneration and reducing the tremor. Here, we propose a method by which OLGs can be generated starting from BM cells and have similar abilities to subventricular zone (SVZ)-derived cells. This protocol significantly decreases the timing and costs of the OLGs differentiation within 2 months of culture.
Collapse
Affiliation(s)
- Yuan Zhang
- The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Xin-Yu Lu
- The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Giacomo Casella
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Jing Tian
- The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Ze-Qing Ye
- The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Ting Yang
- The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Juan-Juan Han
- The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Ling-Yu Jia
- The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Abdolmohamad Rostami
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Xing Li
- The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
10
|
Yue Y, Zhang L, Qu Y, Mu DZ. [Neuroprotective effects of oligodendrocyte precursor cells on white matter damage in preterm infants]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2018; 20:326-331. [PMID: 29658460 PMCID: PMC7390025 DOI: 10.7499/j.issn.1008-8830.2018.04.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 02/27/2018] [Indexed: 06/08/2023]
Abstract
White matter damage, characterized by demyelination due to the damage of oligodendrocyte precursor cells (OPCs), is the most common type of brain damage in preterm infants. Survivors are often subject to long-term neurodevelopmental sequelae because of the lack of effective treatment. In recent years, it has been found that cell transplantation has the potential for the treatment of white matter damage. OPCs are frequently used cells in cell transplantation therapy. With abilities of migration and myelinization, OPCs are the best seed cells for the treatment of white matter damage. Several studies have found that OPCs may not only replace impaired cells to reconstruct the structure and function of white matter, but also inhibit neuronal apoptosis, promote the proliferation of endogenous neural stem cells, and enhance the repairment of the blood-brain barrier. However, the clinical application of OPC transplantation therapy faces many challenges, such as the effectiveness, risk of tumorigenesis and immune rejection. With reference to these studies, this article reviewed the development of myelination, the obtainment of OPCs, the therapeutic mechanism as well as application research, and analyzed the current challenges of OPC transplantation, in order to provide a new direction for clinical treatment of white matter damage in preterm infants.
Collapse
Affiliation(s)
- Yan Yue
- Department of Pediatrics, West China Second University Hospital/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, China.
| | | | | | | |
Collapse
|
11
|
Marei HE, Shouman Z, Althani A, Afifi N, A AE, Lashen S, Hasan A, Caceci T, Rizzi R, Cenciarelli C, Casalbore P. Differentiation of human olfactory bulb-derived neural stem cells toward oligodendrocyte. J Cell Physiol 2018; 233:1321-1329. [PMID: 28500734 DOI: 10.1002/jcp.26008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 05/12/2017] [Indexed: 12/24/2022]
Abstract
In the central nervous system (CNS), oligodendrocytes are the glial element in charge of myelin formation. Obtaining an overall presence of oligodendrocyte precursor cells/oligodendrocytes (OPCs/OLs) in culture from different sources of NSCs is an important research area, because OPCs/OLs may provide a promising therapeutic strategy for diseases affecting myelination of axons. The present study was designed to differentiate human olfactory bulb NSCs (OBNSCs) into OPCs/OLs and using expression profiling (RT-qPCR) gene, immunocytochemistry, and specific protein expression to highlight molecular mechanism(s) underlying differentiation of human OBNSCs into OPCs/OLs. The differentiation of OBNSCs was characterized by a simultaneous appearance of neurons and glial cells. The differentiation medium, containing cAMP, PDGFA, T3, and all-trans-retinoic acid (ATRA), promotes OBNSCs to generate mostly oligodendrocytes (OLs) displaying morphological changes, and appearance of long cytoplasmic processes. OBNSCs showed, after 5 days in OLs differentiation medium, a considerable decrease in the number of nestin positive cells, which was associated with a concomitant increase of NG2 immunoreactive cells and few O4(+)-OPCs. In addition, a significant up regulation in gene and protein expression profile of stage specific cell markers for OPCs/OLs (CNPase, Galc, NG2, MOG, OLIG1, OLIG2, MBP), neurons, and astrocytes (MAP2, β-TubulinIII, GFAP) and concomitant decrease of OBNSCs pluripotency markers (Oct4, Sox2, Nestin), was demonstrated following induction of OBNSCs differentiation. Taken together, the present study demonstrate the marked ability of a cocktail of factors containing PDGFA, T3, cAMP, and ATRA, to induce OBNSCs differentiation into OPCs/OLs and shed light on the key genes and pathological pathways involved in this process.
Collapse
Affiliation(s)
- Hany E Marei
- Biomedical Research Center, Qatar University, Doha, Qatar
| | - Zeinab Shouman
- Faculty of Veterinary Medicine, Department of Cytology and Histology, Mansoura University, Mansoura, Egypt
| | - Asma Althani
- Biomedical Research Center, Qatar University, Doha, Qatar
| | | | - Abd-Elmaksoud A
- Faculty of Veterinary Medicine, Department of Cytology and Histology, Mansoura University, Mansoura, Egypt
| | - Samah Lashen
- Faculty of Veterinary Medicine, Department of Cytology and Histology, Mansoura University, Mansoura, Egypt
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, Qatar University, Doha, Qatar
| | - Thomas Caceci
- Biomedical Sciences, Virginia Tech Carilion School of Medicine, Roanoke, Virginia
| | - Roberto Rizzi
- Institute of Cell Biology and Neurobiology, National Research Council of Italy, Rome, Italy
| | | | - Patrizia Casalbore
- Institute of Cell Biology and Neurobiology, National Research Council of Italy, Rome, Italy
| |
Collapse
|
12
|
Dolci S, Pino A, Berton V, Gonzalez P, Braga A, Fumagalli M, Bonfanti E, Malpeli G, Pari F, Zorzin S, Amoroso C, Moscon D, Rodriguez FJ, Fumagalli G, Bifari F, Decimo I. High Yield of Adult Oligodendrocyte Lineage Cells Obtained from Meningeal Biopsy. Front Pharmacol 2017; 8:703. [PMID: 29075188 PMCID: PMC5643910 DOI: 10.3389/fphar.2017.00703] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 09/21/2017] [Indexed: 12/25/2022] Open
Abstract
Oligodendrocyte loss can lead to cognitive and motor deficits. Current remyelinating therapeutic strategies imply either modulation of endogenous oligodendrocyte precursors or transplantation of in vitro expanded oligodendrocytes. Cell therapy, however, still lacks identification of an adequate source of oligodendrocyte present in adulthood and able to efficiently produce transplantable cells. Recently, a neural stem cell-like population has been identified in meninges. We developed a protocol to obtain high yield of oligodendrocyte lineage cells from one single biopsy of adult rat meningeal tissue. From 1 cm2 of adult rat spinal cord meninges, we efficiently expanded a homogenous culture of 10 millions of meningeal-derived oligodendrocyte lineage cells in a short period of time (approximately 4 weeks). Meningeal-derived oligodendrocyte lineage cells show typical mature oligodendrocyte morphology and express specific oligodendrocyte markers, such as galactosylceramidase and myelin basic protein. Moreover, when transplanted in a chemically demyelinated spinal cord model, meningeal-derived oligodendrocyte lineage cells display in vivo-remyelinating potential. This oligodendrocyte lineage cell population derives from an accessible and adult source, being therefore a promising candidate for autologous cell therapy of demyelinating diseases. In addition, the described method to differentiate meningeal-derived neural stem cells into oligodendrocyte lineage cells may represent a valid in vitro model to dissect oligodendrocyte differentiation and to screen for drugs capable to promote oligodendrocyte regeneration.
Collapse
Affiliation(s)
- Sissi Dolci
- Section of Pharmacology, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Annachiara Pino
- Section of Pharmacology, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Valeria Berton
- Section of Pharmacology, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Pau Gonzalez
- Group of Molecular Neurology, Hospital Nacional de Parapléjicos, Toledo, Spain
| | - Alice Braga
- Section of Pharmacology, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Marta Fumagalli
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Elisabetta Bonfanti
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Giorgio Malpeli
- Section of General and Pancreatic Surgery, Department of Surgery, Dentistry, Paediatrics and Gynaecology, University of Verona, Verona, Italy
| | - Francesca Pari
- Section of Pharmacology, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Stefania Zorzin
- Section of Pharmacology, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Clelia Amoroso
- Section of Pharmacology, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Denny Moscon
- Section of Pharmacology, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | | | - Guido Fumagalli
- Section of Pharmacology, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Francesco Bifari
- Laboratory of Cell Metabolism and Regenerative Medicine, Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Ilaria Decimo
- Section of Pharmacology, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| |
Collapse
|
13
|
Kroehne V, Tsata V, Marrone L, Froeb C, Reinhardt S, Gompf A, Dahl A, Sterneckert J, Reimer MM. Primary Spinal OPC Culture System from Adult Zebrafish to Study Oligodendrocyte Differentiation In Vitro. Front Cell Neurosci 2017; 11:284. [PMID: 28959189 PMCID: PMC5603699 DOI: 10.3389/fncel.2017.00284] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 08/31/2017] [Indexed: 01/24/2023] Open
Abstract
Endogenous oligodendrocyte progenitor cells (OPCs) are a promising target to improve functional recovery after spinal cord injury (SCI) by remyelinating denuded, and therefore vulnerable, axons. Demyelination is the result of a primary insult and secondary injury, leading to conduction blocks and long-term degeneration of the axons, which subsequently can lead to the loss of their neurons. In response to SCI, dormant OPCs can be activated and subsequently start to proliferate and differentiate into mature myelinating oligodendrocytes (OLs). Therefore, researchers strive to control OPC responses, and utilize small molecule screening approaches in order to identify mechanisms of OPC activation, proliferation, migration and differentiation. In zebrafish, OPCs remyelinate axons of the optic tract after lysophosphatidylcholine (LPC)-induced demyelination back to full thickness myelin sheaths. In contrast to zebrafish, mammalian OPCs are highly vulnerable to excitotoxic stress, a cause of secondary injury, and remyelination remains insufficient. Generally, injury induced remyelination leads to shorter internodes and thinner myelin sheaths in mammals. In this study, we show that myelin sheaths are lost early after a complete spinal transection injury, but are re-established within 14 days after lesion. We introduce a novel, easy-to-use, inexpensive and highly reproducible OPC culture system based on dormant spinal OPCs from adult zebrafish that enables in vitro analysis. Zebrafish OPCs are robust, can easily be purified with high viability and taken into cell culture. This method enables to examine why zebrafish OPCs remyelinate better than their mammalian counterparts, identify cell intrinsic responses, which could lead to pro-proliferating or pro-differentiating strategies, and to test small molecule approaches. In this methodology paper, we show efficient isolation of OPCs from adult zebrafish spinal cord and describe culture conditions that enable analysis up to 10 days in vitro. Finally, we demonstrate that zebrafish OPCs differentiate into Myelin Basic Protein (MBP)-expressing OLs when co-cultured with human motor neurons differentiated from induced pluripotent stem cells (iPSCs). This shows that the basic mechanisms of oligodendrocyte differentiation are conserved across species and that understanding the regulation of zebrafish OPCs can contribute to the development of new treatments to human diseases.
Collapse
Affiliation(s)
- Volker Kroehne
- DFG-Center for Regenerative Therapies Dresden, Cluster of Excellence, Technische Universität DresdenDresden, Germany
| | - Vasiliki Tsata
- DFG-Center for Regenerative Therapies Dresden, Cluster of Excellence, Technische Universität DresdenDresden, Germany
| | - Lara Marrone
- DFG-Center for Regenerative Therapies Dresden, Cluster of Excellence, Technische Universität DresdenDresden, Germany
| | - Claudia Froeb
- DFG-Center for Regenerative Therapies Dresden, Cluster of Excellence, Technische Universität DresdenDresden, Germany
| | - Susanne Reinhardt
- DFG-Center for Regenerative Therapies Dresden, Cluster of Excellence, Technische Universität DresdenDresden, Germany.,Deep Sequencing Group, Center for Molecular and Cellular Bioengineering (CMCB), Biotechnologisches Zentrum (BIOTEC), Technische Universität DresdenDresden, Germany
| | - Anne Gompf
- DFG-Center for Regenerative Therapies Dresden, Cluster of Excellence, Technische Universität DresdenDresden, Germany
| | - Andreas Dahl
- DFG-Center for Regenerative Therapies Dresden, Cluster of Excellence, Technische Universität DresdenDresden, Germany.,Deep Sequencing Group, Center for Molecular and Cellular Bioengineering (CMCB), Biotechnologisches Zentrum (BIOTEC), Technische Universität DresdenDresden, Germany
| | - Jared Sterneckert
- DFG-Center for Regenerative Therapies Dresden, Cluster of Excellence, Technische Universität DresdenDresden, Germany
| | - Michell M Reimer
- DFG-Center for Regenerative Therapies Dresden, Cluster of Excellence, Technische Universität DresdenDresden, Germany
| |
Collapse
|
14
|
Zhang Z, Li Z, Deng W, He Q, Wang Q, Shi W, Chen Q, Yang W, Spector M, Gong A, Yu J, Xu X. Ectoderm mesenchymal stem cells promote differentiation and maturation of oligodendrocyte precursor cells. Biochem Biophys Res Commun 2016; 480:727-733. [PMID: 27983986 DOI: 10.1016/j.bbrc.2016.10.115] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 10/26/2016] [Indexed: 11/24/2022]
Abstract
Many neurological diseases are closely associated with demyelination caused by pathological changes of oligodendrocytes. Although intrinsic remyelination occurs after injury, the regeneration efficiency of myelinating oligodendrocytes remains to be improved. Herein, we reported an initiative finding of employing a valuable cell source, namely neural crest-derived ectoderm mesenchymal stem cells (EMSCs), for promoting oligodendrocyte differentiation and maturation by co-culturing oligodendrocyte precursor cells (OPCs) with the EMSCs. The results demonstrated that the OPCs/EMSCs co-culture could remarkably increase the number and length of oligodendrocyte processes in comparison with the mono-cultured OPCs and non-contact OPCs/EMSCs transwell culture. Furthermore, the inhibition experiments revealed that the EMSCs-produced soluble factor Sonic hedgehog, gap junction protein connexin 43 and extracellular matrix molecule laminin accounted for the promoted OPC differentiation since inhibiting the function of anyone of the three proteins led to substantial retraction of processes and detachment of oligodendrocytes. Altogether, OPCs/EMSCs co-culture system could be a paradigmatic approach for promoting differentiation and maturation of oligodendrocytes, and EMSCs will be a promising cell source for the treatment of neurological diseases caused by oligodendrocyte death and demyelination.
Collapse
Affiliation(s)
- Zhijian Zhang
- School of Medicine, Jiangsu University, Zhenjiang, 212001, PR China; Center for Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, 212001, PR China
| | - Zhengnan Li
- School of Medicine, Jiangsu University, Zhenjiang, 212001, PR China; Center for Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, 212001, PR China
| | - Wenwen Deng
- Center for Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, 212001, PR China; Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang, 212001, PR China
| | - Qinghua He
- Center for Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, 212001, PR China; Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang, 212001, PR China
| | - Qiang Wang
- Center for Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, 212001, PR China; Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang, 212001, PR China
| | - Wentao Shi
- School of Medicine, Jiangsu University, Zhenjiang, 212001, PR China
| | - Qian Chen
- School of Medicine, Jiangsu University, Zhenjiang, 212001, PR China
| | - Wenjing Yang
- School of Medicine, Jiangsu University, Zhenjiang, 212001, PR China
| | - Myron Spector
- Department of Orthopedic Surgery, Harvard Medical School, Brigham and Women's Hospital, 75 Francis St, Boston, MA, 02115, USA
| | - Aihua Gong
- School of Medicine, Jiangsu University, Zhenjiang, 212001, PR China; Center for Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, 212001, PR China
| | - Jiangnan Yu
- Center for Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, 212001, PR China; Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang, 212001, PR China
| | - Ximing Xu
- Center for Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, 212001, PR China; Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang, 212001, PR China.
| |
Collapse
|
15
|
Madill M, Fitzgerald D, O'Connell KE, Dev KK, Shen S, FitzGerald U. In vitro and ex vivo models of multiple sclerosis. Drug Discov Today 2016; 21:1504-1511. [PMID: 27265771 DOI: 10.1016/j.drudis.2016.05.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 05/20/2016] [Accepted: 05/27/2016] [Indexed: 01/25/2023]
Abstract
Multiple sclerosis (MS) is an autoimmune disorder of the central nervous system (CNS). Current therapies suppress a misdirected myelin-destructive immune response. To combat the progressive, neurodestructive phase of MS, the therapeutic research focus is currently on compounds that might boost the endogenous potential of the brain to remyelinate axons, thereby achieving lesion repair. Here, we describe the testing of fingolimod on cultures of oligodendrocytes (OLs) and organotypic brain slices. We detail the protocols, pros, and cons of these in vitro and ex vivo approaches, along with the potential benefit of exploiting skin-punch biopsies from patients with MS, before concluding with a summary of future developments.
Collapse
Affiliation(s)
- Martin Madill
- Regenerative Medicine Institute (REMEDI), School of Medicine and School of Natural Sciences, National University of Ireland (NUI) Galway, Galway, Ireland
| | - Denise Fitzgerald
- Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, UK
| | - Kara E O'Connell
- Drug Development, School of Medicine, Trinity College Dublin, Ireland
| | - Kumlesh K Dev
- Drug Development, School of Medicine, Trinity College Dublin, Ireland
| | - Sanbing Shen
- Regenerative Medicine Institute (REMEDI), School of Medicine and School of Natural Sciences, National University of Ireland (NUI) Galway, Galway, Ireland
| | - Una FitzGerald
- Galway Neuroscience Centre, School of Natural Sciences, National University of Ireland, Galway, Ireland.
| |
Collapse
|
16
|
Effects of addictive drugs on adult neural stem/progenitor cells. Cell Mol Life Sci 2015; 73:327-48. [PMID: 26468052 DOI: 10.1007/s00018-015-2067-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 10/04/2015] [Accepted: 10/08/2015] [Indexed: 12/18/2022]
Abstract
Neural stem/progenitor cells (NSPCs) undergo a series of developmental processes before giving rise to newborn neurons, astrocytes and oligodendrocytes in adult neurogenesis. During the past decade, the role of NSPCs has been highlighted by studies on adult neurogenesis modulated by addictive drugs. It has been proven that these drugs regulate the proliferation, differentiation and survival of adult NSPCs in different manners, which results in the varying consequences of adult neurogenesis. The effects of addictive drugs on NSPCs are exerted via a variety of different mechanisms and pathways, which interact with one another and contribute to the complexity of NSPC regulation. Here, we review the effects of different addictive drugs on NSPCs, and the related experimental methods and paradigms. We also discuss the current understanding of major signaling molecules, especially the putative common mechanisms, underlying such effects. Finally, we review the future directions of research in this area.
Collapse
|