1
|
O'Callahan BT, Larsen A, Leichty S, Cliff J, Gagnon AC, Raschke MB. Correlative chemical and elemental nano-imaging of morphology and disorder at the nacre-prismatic region interface in Pinctada margaritifera. Sci Rep 2023; 13:21258. [PMID: 38040799 PMCID: PMC10692121 DOI: 10.1038/s41598-023-47446-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/14/2023] [Indexed: 12/03/2023] Open
Abstract
Understanding biomineralization relies on imaging chemically heterogeneous organic-inorganic interfaces across a hierarchy of spatial scales. Further, organic minority phases are often responsible for emergent inorganic structures from the atomic arrangement of different polymorphs, to nano- and micrometer crystal dimensions, up to meter size mollusk shells. The desired simultaneous chemical and elemental imaging to identify sparse organic moieties across a large field-of-view with nanometer spatial resolution has not yet been achieved. Here, we combine nanoscale secondary ion mass spectroscopy (NanoSIMS) with spectroscopic IR s-SNOM imaging for simultaneous chemical, molecular, and elemental nanoimaging. At the example of Pinctada margaritifera mollusk shells we identify and resolve ~ 50 nm interlamellar protein sheets periodically arranged in regular ~ 600 nm intervals. The striations typically appear ~ 15 µm from the nacre-prism boundary at the interface between disordered neonacre to mature nacre. Using the polymorph distinctive IR-vibrational carbonate resonance, the nacre and prismatic regions are consistently identified as aragonite ([Formula: see text] cm-1) and calcite ([Formula: see text] cm-1), respectively. We observe previously unreported morphological features including aragonite subdomains encapsulated in extensions of the prism-covering organic membrane and regions of irregular nacre tablet formation coincident with dispersed organics. We also identify a ~ 200 nm region in the incipient nacre region with less well-defined crystal structure and integrated organics. These results show with the identification of the interlamellar protein layer how correlative nano-IR chemical and NanoSIMS elemental imaging can help distinguish different models proposed for shell growth in particular, and how organic function may relate to inorganic structure in other biomineralized systems in general.
Collapse
Affiliation(s)
- Brian T O'Callahan
- Environmental and Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA.
| | - Amy Larsen
- School of Oceanography, University of Washington, Seattle, WA, USA
| | - Sarah Leichty
- Environmental and Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - John Cliff
- Environmental and Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Alex C Gagnon
- School of Oceanography, University of Washington, Seattle, WA, USA
| | - Markus B Raschke
- Department of Physics, and JILA, University of Colorado at Boulder, Boulder, CO, USA.
| |
Collapse
|
2
|
Monteiro N, Fangueiro J, Reis R, Neves N. Replication of natural surface topographies to generate advanced cell culture substrates. Bioact Mater 2023; 28:337-347. [PMID: 37519922 PMCID: PMC10382971 DOI: 10.1016/j.bioactmat.2023.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/29/2023] [Accepted: 06/04/2023] [Indexed: 08/01/2023] Open
Abstract
Surface topographies of cell culture substrates can be used to generate in vitro cell culture environments similar to the in vivo cell niches. In vivo, the physical properties of the extracellular matrix (ECM), such as its topography, provide physical cues that play an important role in modulating cell function. Mimicking these properties remains a challenge to provide in vitro realistic environments for cells. Artificially generated substrates' topographies were used extensively to explore this important surface cue. More recently, the replication of natural surface topographies has been enabling to exploration of characteristics such as hierarchy and size scales relevant for cells as advanced biomimetic substrates. These substrates offer more realistic and mimetic environments regarding the topographies found in vivo. This review will highlight the use of natural surface topographies as a template to generate substrates for in-vitro cell culture. This review starts with an analysis of the main cell functions that can be regulated by the substrate's surface topography through cell-substrate interactions. Then, we will discuss research works wherein substrates for cell biology decorated with natural surface topographies were used and investigated regarding their influence on cellular performance. At the end of this review, we will highlight the advantages and challenges of the use of natural surface topographies as a template for the generation of advanced substrates for cell culture.
Collapse
Affiliation(s)
- N.O. Monteiro
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's–PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - J.F. Fangueiro
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's–PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - R.L. Reis
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's–PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - N.M. Neves
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's–PT Government Associate Laboratory, Braga, Guimarães, Portugal
| |
Collapse
|
3
|
Direct control of shell regeneration by the mantle tissue in the pearl oyster Pinctada fucata. J Struct Biol 2023; 215:107956. [PMID: 36934975 DOI: 10.1016/j.jsb.2023.107956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/12/2023] [Accepted: 03/13/2023] [Indexed: 03/19/2023]
Abstract
Molluscs rapidly repair the damaged shells to prevent further injury, which is vital for their survival after physical or biological aggression. However, it remains unclear how this process is precisely controlled. In this study, we applied scanning electronic microscopy and histochemical analysis to examine the detailed shell regeneration process in the pearl oyster Pinctada fucata. It was found that the shell damage caused the mantle tissue to retract, which resulted in relocation of the partitioned mantle zones with respect to their correspondingly secreting shell layers. As a result, the relocated mantle tissue dramatically altered the shell morphology by initiating de novo precipitation of prismatic layers on the former nacreous layers, leading to the formation of sandwich-like "prism-nacre-prism-nacre" structure. Real-time PCR revealed the up-regulation of the shell matrix protein genes, which was confirmed by the thermal gravimetric analysis of the newly formed shell. The increased matrix secretion might have led to the change of CaCO3 precipitation dynamics which altered the mineral morphology and promoted shell formation. Taken together, our study revealed the close relationship between the physiological activities of the mantle tissue and the morphological change of the regenerated shells.
Collapse
|
4
|
de Muizon CJ, Iandolo D, Nguyen DK, Al-Mourabit A, Rousseau M. Organic Matrix and Secondary Metabolites in Nacre. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:831-842. [PMID: 36057751 DOI: 10.1007/s10126-022-10145-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Nacre, also called mother-of-pearl, is a naturally occurring biomineral, largely studied by chemists, structural biologists, and physicists to understand its outstanding and diverse properties. Nacre is constituted of aragonite nanograins surrounded by organic matrix, and it has been established that the organic matrix is responsible for initiating and guiding the biomineralization process. The first challenge to study the organic matrix of nacre lays in its separation from the biomineral. Several extraction methods have been developed so far. They are categorized as either strong (e.g., decalcification) or soft (e.g., water, ethanol) and they allow specific extractions of targeted compounds. The structure of the nacreous organic matrix is complex, and it provides interesting clues to describe the mineralization process. Proteins, sugars, lipids, peptides, and other molecules have been identified and their role in mineralization investigated. Moreover, the organic matrix of nacre has shown interesting properties for human health. Several studies are investigating its activity on bone mineralization and its properties for skin care. In this review, we focus on the organic constituents, as lipids, sugars, and small metabolites which are less studied since present in small quantities.
Collapse
Affiliation(s)
- Capucine Jourdain de Muizon
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
- STANSEA, Saint-Étienne, France
| | - Donata Iandolo
- UMR5510 MATEIS, CNRS, University of Lyon, INSA-Lyon, Lyon, France
- U1059 INSERM - SAINBIOSE (SAnté INgéniérie BIOlogie St-Etienne) Campus Santé Innovation, Université Jean Monnet, Saint-Priest-en-Jarez, France
| | - Dung Kim Nguyen
- U1059 INSERM - SAINBIOSE (SAnté INgéniérie BIOlogie St-Etienne) Campus Santé Innovation, Université Jean Monnet, Saint-Priest-en-Jarez, France
| | - Ali Al-Mourabit
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Marthe Rousseau
- UMR5510 MATEIS, CNRS, University of Lyon, INSA-Lyon, Lyon, France.
- U1059 INSERM - SAINBIOSE (SAnté INgéniérie BIOlogie St-Etienne) Campus Santé Innovation, Université Jean Monnet, Saint-Priest-en-Jarez, France.
| |
Collapse
|
5
|
Duboisset J, Ferrand P, Baroni A, Grünewald TA, Dicko H, Grauby O, Vidal-Dupiol J, Saulnier D, Gilles LM, Rosenthal M, Burghammer M, Nouet J, Chevallard C, Baronnet A, Chamard V. Amorphous-to-crystal transition in the layer-by-layer growth of bivalve shell prisms. Acta Biomater 2022; 142:194-207. [PMID: 35041900 DOI: 10.1016/j.actbio.2022.01.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 12/21/2021] [Accepted: 01/13/2022] [Indexed: 11/28/2022]
Abstract
Biomineralization integrates complex physical and chemical processes bio-controlled by the living organisms through ionic concentration regulation and organic molecules production. It allows tuning the structural, optical and mechanical properties of hard tissues during ambient-condition crystallisation, motivating a deeper understanding of the underlying processes. By combining state-of-the-art optical and X-ray microscopy methods, we investigated early-mineralized calcareous units from two bivalve species, Pinctada margaritifera and Pinna nobilis, revealing chemical and crystallographic structural insights. In these calcite units, we observed ring-like structural features correlated with a lack of calcite and an increase of amorphous calcium carbonate and proteins contents. The rings also correspond to a larger crystalline disorder and a larger strain level. Based on these observations, we propose a temporal biomineralization cycle, initiated by the production of an amorphous precursor layer, which further crystallizes with a transition front progressing radially from the unit centre, while the organics are expelled towards the prism edge. Simultaneously, along the shell thickness, the growth occurs following a layer-by-layer mode. These findings open biomimetic perspectives for the design of refined crystalline materials. STATEMENT OF SIGNIFICANCE: Calcareous biominerals are amongst the most present forms of biominerals. They exhibit astonishing structural, optical and mechanical properties while being formed at ambient synthesis conditions from ubiquitous ions, motivating the deep understanding of biomineralization. Here, we unveil the first formation steps involved in the biomineralization cycle of prismatic units of two bivalve species by applying a new multi-modal non-destructive characterization approach, sensitive to chemical and crystalline properties. The observations of structural features in mineralized units of different ages allowed the derivation of a temporal sequence for prism biomineralization, involving an amorphous precursor, a radial crystallisation front and a layer-by-layer sequence. Beyond these chemical and physical findings, the herein introduced multi-modal approach is highly relevant to other biominerals and bio-inspired studies.
Collapse
Affiliation(s)
- Julien Duboisset
- Aix-Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, Marseille, France
| | - Patrick Ferrand
- Aix-Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, Marseille, France
| | - Arthur Baroni
- Aix-Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, Marseille, France
| | - Tilman A Grünewald
- Aix-Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, Marseille, France
| | - Hamadou Dicko
- Aix-Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, Marseille, France
| | - Olivier Grauby
- Aix-Marseille Univ, CNRS, CINaM, Campus Luminy, Case 913, 13288-Marseille cedex 9, France
| | - Jeremie Vidal-Dupiol
- IHPE, Univ. Montpellier, CNRS, Ifremer, Univ. Perpignan Via Domitia, Montpellier France
| | - Denis Saulnier
- Ifremer, UMR 241 Environnement Insulaire Océanien (EIO), Labex Corail, Centre du Pacifique, BP 49, Vairao 98719, French Polynesia
| | - Le Moullac Gilles
- Ifremer, UMR 241 Environnement Insulaire Océanien (EIO), Labex Corail, Centre du Pacifique, BP 49, Vairao 98719, French Polynesia
| | - Martin Rosenthal
- European Synchrotron Radiation Facility, F-38043 Grenoble Cedex, France
| | | | - Julius Nouet
- GEOPS, Univ. Paris-Sud, CNRS, Université Paris-Saclay, 91405 Orsay, France
| | - Corinne Chevallard
- NIMBE, CEA, CNRS, Université Paris-Saclay, CEA Saclay 91191 Gif-sur-Yvette Cedex, France
| | - Alain Baronnet
- Aix-Marseille Univ, CNRS, CINaM, Campus Luminy, Case 913, 13288-Marseille cedex 9, France
| | - Virginie Chamard
- Aix-Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, Marseille, France.
| |
Collapse
|
6
|
Chakraborty A, Parveen S, Chanda DK, Aditya G. An insight into the structure, composition and hardness of a biological material: the shell of freshwater mussels. RSC Adv 2020; 10:29543-29554. [PMID: 35521146 PMCID: PMC9055989 DOI: 10.1039/d0ra04271d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/29/2020] [Indexed: 12/17/2022] Open
Abstract
The shell of the freshwater mussel (Mollusca: Bivalvia) is a composite biological material linked with multifunctional roles in sustaining ecosystem services. Apart from providing mechanical strength and support, the shell is an important site for adherence and growth of multiple types of algae and periphyton. Variations in the shell architecture are observed in the mussels both within a species and among different species. Considering the prospective utility of the shell of the freshwater mussels as a biological material, an assessment of the shell characteristics was accomplished using Corbicula bensoni and Lamellidens marginalis as model species. The calcium carbonate (CaCO3) content of the shells, physical features and mechanical strength were assessed along with the morphometric analysis. The CaCO3 content of the shell (upto 95% to 96% of the shell weight) of both the mussels was positively correlated with the shell length, suggesting increased deposition of CaCO3 in shells with the growth of the species. The cross sectioned views of FE-SEM images of the shells exhibited distinct layered structure with external periostracum and inner nacreous layer varying distinctly. In the growing region, the growth line was prominent in the mussel shells revealed through the FESEM images. In addition XRD, FTIR and EDS studies on the mussel shells confirmed the existence of both aragonite and calcite forms of the calcium carbonate crystals with the incidence of various functional groups. The mechanical strength of the mussel shells was explored through nanoindentation experiments, revealed significant strength at the nanoparticle level of the shells. It was apparent from the results that the shell of the freshwater mussel L. marginalis and C. bensoni qualify as a biological material with prospective multiple applications for human well-being and sustaining environmental quality.
Collapse
Affiliation(s)
- Anupam Chakraborty
- Department of Zoology, University of Calcutta 35 Ballygunge Circular Road Kolkata 700019 India +91-8902595675
| | - Saida Parveen
- Department of Zoology, The University of Burdwan Golapbag Burdwan 713104 India
| | - Dipak Kr Chanda
- Advanced Mechanical and Materials Characterization Division, CSIR-Central Glass and Ceramic Research Institute Kolkata 700 032 India
| | - Gautam Aditya
- Department of Zoology, University of Calcutta 35 Ballygunge Circular Road Kolkata 700019 India +91-8902595675
- Department of Zoology, The University of Burdwan Golapbag Burdwan 713104 India
| |
Collapse
|
7
|
Suzuki M. Structural and functional analyses of organic molecules regulating biomineralization. Biosci Biotechnol Biochem 2020; 84:1529-1540. [DOI: 10.1080/09168451.2020.1762068] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Abstract
Biomineralization by living organisms are common phenomena observed everywhere. Molluskan shells are representative biominerals that have fine microstructures with controlled morphology, polymorph, and orientation of CaCO3 crystals. A few organic molecules involved in the biominerals play important roles in the formation of such microstructures. Analyses of structure–function relationships for matrix proteins in biominerals revealed that almost all matrix proteins have an acidic region for the binding of calcium ion in CaCO3 crystals and interaction domains for other organic molecules. On the other hand, biomineralization of metal nanoparticles by microorganisms were also investigated. Gold nanoparticles and quantum dots containing cadmium were successfully synthesized by bacteria or a fungus. The analyses of components revealed that glycolipids, oligosaccharides, and lactic acids have key roles to synthesize the gold nanoparticle in Lactobacillus casei as reductants and dispersants. These researches about biomineralization will give new insights for material and environmental sciences in the human society.
Collapse
Affiliation(s)
- Michio Suzuki
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, the University of Tokyo, Tokyo, Japan
| |
Collapse
|
8
|
Stenger PL, Vidal-Dupiol J, Reisser C, Planes S, Ky CL. Colour plasticity in the shells and pearls of animal graft model Pinctada margaritifera assessed by HSV colour quantification. Sci Rep 2019; 9:7520. [PMID: 31101851 PMCID: PMC6525208 DOI: 10.1038/s41598-019-43777-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 05/01/2019] [Indexed: 01/24/2023] Open
Abstract
The bivalve Pinctada margaritifera has the capacity to produce the most varied and colourful pearls in the world. Colour expression in the inner shell is under combined genetic and environmental control and is correlated with the colour of pearls produced when the same individual is used as a graft donor. One major limitation when studying colour phenotypes is grader subjectivity, which leads to inconsistent colour qualification and quantification. Through the use of HSV (Hue Saturation Value) colour space, we created an R package named 'ImaginR' to characterise inner shell colour variations in P. margaritifera. Using a machine-learning protocol with a training dataset, ImaginR was able to reassign individual oysters and pearls to predefined human-based phenotype categories. We then tested the package on samples obtained in an experiment testing the effects of donor conditioning depth on the colour of the donor inner shell and colour of the pearls harvested from recipients following grafting and 20 months of culture in situ. These analyses successfully detected donor shell colour modifications due to depth-related plasticity and the maintenance of these modifications through to the harvested pearls. Besides its potential interest for standardization in the pearl industry, this new method is relevant to other research projects using biological models.
Collapse
Affiliation(s)
- Pierre-Louis Stenger
- IFREMER, UMR 241 Écosystèmes Insulaires Océaniens, Labex Corail, Centre Ifremer du Pacifique, BP 49, 98725, Tahiti, French Polynesia
| | - Jérémie Vidal-Dupiol
- IFREMER, UMR 5244 IHPE, University Perpignan Via Domitia, CNRS, University Montpellier, F-34095, Montpellier, France
| | - Céline Reisser
- IFREMER, UMR 241 Écosystèmes Insulaires Océaniens, Labex Corail, Centre Ifremer du Pacifique, BP 49, 98725, Tahiti, French Polynesia
| | - Serge Planes
- PSL Research University, EPHE-UPVD-CNRS, USR 3278 CRIOBE, Labex Corail, Université de Perpignan, 52 Avenue Paul Alduy, 66860, Perpignan Cedex, France
| | - Chin-Long Ky
- IFREMER, UMR 241 Écosystèmes Insulaires Océaniens, Labex Corail, Centre Ifremer du Pacifique, BP 49, 98725, Tahiti, French Polynesia.
| |
Collapse
|
9
|
Ménez B, Pisapia C, Andreani M, Jamme F, Vanbellingen QP, Brunelle A, Richard L, Dumas P, Réfrégiers M. Abiotic synthesis of amino acids in the recesses of the oceanic lithosphere. Nature 2018; 564:59-63. [PMID: 30405236 DOI: 10.1038/s41586-018-0684-z] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 10/12/2018] [Indexed: 11/09/2022]
Abstract
Abiotic hydrocarbons and carboxylic acids are known to be formed on Earth, notably during the hydrothermal alteration of mantle rocks. Although the abiotic formation of amino acids has been predicted both from experimental studies and thermodynamic calculations, its occurrence has not been demonstrated in terrestrial settings. Here, using a multimodal approach that combines high-resolution imaging techniques, we obtain evidence for the occurrence of aromatic amino acids formed abiotically and subsequently preserved at depth beneath the Atlantis Massif (Mid-Atlantic Ridge). These aromatic amino acids may have been formed through Friedel-Crafts reactions catalysed by an iron-rich saponite clay during a late alteration stage of the massif serpentinites. Demonstrating the potential of fluid-rock interactions in the oceanic lithosphere to generate amino acids abiotically gives credence to the hydrothermal theory for the origin of life, and may shed light on ancient metabolisms and the functioning of the present-day deep biosphere.
Collapse
Affiliation(s)
- Bénédicte Ménez
- Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Université Paris Diderot, CNRS, Paris, France.
| | - Céline Pisapia
- Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Université Paris Diderot, CNRS, Paris, France.,Synchrotron SOLEIL, Gif-sur-Yvette, France
| | - Muriel Andreani
- Laboratoire de Géologie de Lyon: Terre, Planètes, Environnement, UMR5276, ENS-Université Lyon I, Villeurbanne, France
| | | | - Quentin P Vanbellingen
- Institut de Chimie des Substances Naturelles, CNRS UPR2301, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Alain Brunelle
- Institut de Chimie des Substances Naturelles, CNRS UPR2301, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Laurent Richard
- Nazarbayev University, School of Mining & Geosciences, Astana, Kazakhstan
| | - Paul Dumas
- Synchrotron SOLEIL, Gif-sur-Yvette, France
| | | |
Collapse
|
10
|
Revisiting the Organic Template Model through the Microstructural Study of Shell Development in Pinctada margaritifera, the Polynesian Pearl Oyster. MINERALS 2018. [DOI: 10.3390/min8090370] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A top-down approach to the mineralized structures and developmental steps that can be separated in the shells of Pinctada margaritifera was carried out. Detailed characterizations show that each of the two major layers usually taken into account (the outer prismatic layer and the inner nacreous layer) is actually the result of a complex process during which the microstructural patterns were progressively established. From its early growing stages in the deeper part of the periostracal grove up to the formation of the most inner nacreous layers, this species provides a demonstrative case study illustrating the leading role of specifically secreted organic structures as determinants of the crystallographic properties of the shell-building units. Gathering data established at various observational scales ranging from morphology to the nanometer level, this study allows for a reexamination of the recent and current biomineralization models.
Collapse
|
11
|
DAUPHIN Y, LUQUET G, SALOME M, BELLOT-GURLET L, CUIF J. Structure and composition of Unio pictorum
shell: arguments for the diversity of the nacroprismatic arrangement in molluscs. J Microsc 2017; 270:156-169. [DOI: 10.1111/jmi.12669] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/31/2017] [Accepted: 11/21/2017] [Indexed: 11/29/2022]
Affiliation(s)
- Y. DAUPHIN
- Institut de Systématique, Evolution, Biodiversité; UMR 7205 CNRS MNHN UPMC EPHE Muséum National d'Histoire Naturelle; Paris France
- Department of Biomaterials; Max-Planck-Institute of Colloids and Interfaces; Potsdam Germany
| | - G. LUQUET
- Biologie des Organismes et Ecosystèmes Aquatiques; UMR 7208 CNRS MNHN UPMC UA UC IRD 207; Sorbonne Universités; Muséum National d'Histoire Naturelle; Paris France
| | - M. SALOME
- ID21; European Synchrotron Radiation Facility; Grenoble Cedex 9 France
| | - L. BELLOT-GURLET
- De la Molécule aux Nano-Objets: Réactivité; Interactions et Spectroscopies; UMR 8233; UPMC CNRS Sorbonne Universités; Paris France
| | - J.P. CUIF
- CR2P; Centre de Recherche sur la Paléodiversité et les Paléoenvironnements; UMR 7207, MNHN CNRS Paris France
| |
Collapse
|
12
|
Mastropietro F, Godard P, Burghammer M, Chevallard C, Daillant J, Duboisset J, Allain M, Guenoun P, Nouet J, Chamard V. Revealing crystalline domains in a mollusc shell single-crystalline prism. NATURE MATERIALS 2017; 16:946-952. [PMID: 28692039 DOI: 10.1038/nmat4937] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 06/08/2017] [Indexed: 05/12/2023]
Abstract
Biomineralization integrates complex processes leading to an extraordinary diversity of calcareous biomineral crystalline architectures, in intriguing contrast with the consistent presence of a sub-micrometric granular structure. Hence, gaining access to the crystalline architecture at the mesoscale, that is, over a few granules, is key to building realistic biomineralization scenarios. Here we provide the nanoscale spatial arrangement of the crystalline structure within the 'single-crystalline' prisms of the prismatic layer of a Pinctada margaritifera shell, exploiting three-dimensional X-ray Bragg ptychography microscopy. We reveal the details of the mesocrystalline organization, evidencing a crystalline coherence extending over a few granules. We additionally prove the existence of larger iso-oriented crystalline domains, slightly misoriented with respect to each other, around one unique rotation axis, and whose shapes are correlated with iso-strain domains. The highlighted mesocrystalline properties support recent biomineralization models involving partial fusion of oriented nanoparticle assembly and/or liquid droplet precursors.
Collapse
Affiliation(s)
- F Mastropietro
- Aix-Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, F-13013 Marseille, France
| | - P Godard
- Aix-Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, F-13013 Marseille, France
| | - M Burghammer
- European Synchrotron Radiation Facility, F-38043 Grenoble Cedex, France
| | - C Chevallard
- NIMBE, CEA, CNRS, Université Paris-Saclay, CEA Saclay 91191 Gif-sur-Yvette Cedex, France
| | - J Daillant
- Synchrotron SOLEIL, F-91192 Gif-sur-Yvette Cedex, France
| | - J Duboisset
- Aix-Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, F-13013 Marseille, France
| | - M Allain
- Aix-Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, F-13013 Marseille, France
| | - P Guenoun
- NIMBE, CEA, CNRS, Université Paris-Saclay, CEA Saclay 91191 Gif-sur-Yvette Cedex, France
| | - J Nouet
- GEOPS, Univ. Paris-Sud, CNRS, Université Paris-Saclay, 91405 Orsay, France
| | - V Chamard
- Aix-Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, F-13013 Marseille, France
| |
Collapse
|
13
|
Liu W, Yu Z, Huang X, Shi Y, Lin J, Zhang H, Yi X, He M. Effect of ocean acidification on growth, calcification, and gene expression in the pearl oyster, Pinctada fucata. MARINE ENVIRONMENTAL RESEARCH 2017; 130:174-180. [PMID: 28760624 DOI: 10.1016/j.marenvres.2017.07.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 07/14/2017] [Accepted: 07/18/2017] [Indexed: 05/27/2023]
Abstract
In this study, shell growth, shell microstructure, and expression levels of shell matrix protein genes (aspein, n16, and nacrein) that play a key role in the CaCO3 crystal polymorphism (calcite and aragonite) of the shell were investigated in the pearl oyster Pinctada fucata at pH 8.10, 7.70, and 7.40. We found that the shell length and total weight index did not vary significantly between oysters reared at pH 8.10 and 7.70, but was significantly lower at pH 7.40. Calcium content and shell hardness were not significantly different between pH 8.10 and 7.70, but were significantly different at pH 7.40. At pH 7.40, the shell exhibited a poorly organized nacreous microstructure, and showed an apparent loss of structural integrity in the nacreous layer. The prismatic layer appeared morphologically dissimilar from the samples at pH 8.10 and 7.70. The internal layer was corroded and had dissolved. At pH 7.40, the expression levels of nacrein, aspein, and n16 decreased on day 1, and remained low between days 2 and 42. The expression levels of these genes were significantly lower at pH 7.40 than at pH 8.10 and 7.70 during days 2-42. These results suggest that ocean acidification will have a limited impact on shell growth, calcification, and associated gene expression levels at a pH of 7.70, which is projected to be reached by the end of the century. The negative effects were found on calcification and gene expression occurred at the lowest experimental pH (7.40).
Collapse
Affiliation(s)
- Wenguang Liu
- Key Laboratory of Tropical Marine Bioresources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangdong Provicial Key Laboratory of Applied Marine Biology, Guangzhou 510301, China
| | - Zonghe Yu
- Key Laboratory of Tropical Marine Bioresources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangdong Provicial Key Laboratory of Applied Marine Biology, Guangzhou 510301, China
| | - Xiande Huang
- Key Laboratory of Tropical Marine Bioresources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangdong Provicial Key Laboratory of Applied Marine Biology, Guangzhou 510301, China
| | - Yu Shi
- Key Laboratory of Tropical Marine Bioresources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangdong Provicial Key Laboratory of Applied Marine Biology, Guangzhou 510301, China
| | - Jianshi Lin
- Key Laboratory of Tropical Marine Bioresources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangdong Provicial Key Laboratory of Applied Marine Biology, Guangzhou 510301, China
| | - Hua Zhang
- Key Laboratory of Tropical Marine Bioresources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangdong Provicial Key Laboratory of Applied Marine Biology, Guangzhou 510301, China
| | - Xuejie Yi
- Key Laboratory of Tropical Marine Bioresources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangdong Provicial Key Laboratory of Applied Marine Biology, Guangzhou 510301, China
| | - Maoxian He
- Key Laboratory of Tropical Marine Bioresources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangdong Provicial Key Laboratory of Applied Marine Biology, Guangzhou 510301, China.
| |
Collapse
|
14
|
Arivalagan J, Marie B, Sleight VA, Clark MS, Berland S, Marie A. Shell matrix proteins of the clam, Mya truncata: Roles beyond shell formation through proteomic study. Mar Genomics 2016; 27:69-74. [DOI: 10.1016/j.margen.2016.03.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 02/13/2016] [Accepted: 03/11/2016] [Indexed: 11/30/2022]
|
15
|
DeVol RT, Sun CY, Marcus MA, Coppersmith SN, Myneni SCB, Gilbert PU. Nanoscale Transforming Mineral Phases in Fresh Nacre. J Am Chem Soc 2015; 137:13325-33. [DOI: 10.1021/jacs.5b07931] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Ross T. DeVol
- Department
of Physics, University of Wisconsin−Madison, 1150 University Avenue, Madison, Wisconsin 53706, United States
| | - Chang-Yu Sun
- Department
of Physics, University of Wisconsin−Madison, 1150 University Avenue, Madison, Wisconsin 53706, United States
| | - Matthew A. Marcus
- Advanced
Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron
Road, Berkeley, California 94720, United States
| | - Susan N. Coppersmith
- Department
of Physics, University of Wisconsin−Madison, 1150 University Avenue, Madison, Wisconsin 53706, United States
| | - Satish C. B. Myneni
- Department
of Geosciences, Princeton University, Princeton, New Jersey 08544, United States
| | - Pupa U.P.A. Gilbert
- Department
of Physics, University of Wisconsin−Madison, 1150 University Avenue, Madison, Wisconsin 53706, United States
- Department
of Chemistry, University of Wisconsin−Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
- Radcliffe
Institute for Advanced Study, Harvard University, 8 Garden Street, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
16
|
Lemer S, Saulnier D, Gueguen Y, Planes S. Identification of genes associated with shell color in the black-lipped pearl oyster, Pinctada margaritifera. BMC Genomics 2015; 16:568. [PMID: 26231360 PMCID: PMC4521380 DOI: 10.1186/s12864-015-1776-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Accepted: 07/14/2015] [Indexed: 11/13/2022] Open
Abstract
Background Color polymorphism in the nacre of pteriomorphian bivalves is of great interest for the pearl culture industry. The nacreous layer of the Polynesian black-lipped pearl oyster Pinctada margaritifera exhibits a large array of color variation among individuals including reflections of blue, green, yellow and pink in all possible gradients. Although the heritability of nacre color variation patterns has been demonstrated by experimental crossing, little is known about the genes involved in these patterns. In this study, we identify a set of genes differentially expressed among extreme color phenotypes of P. margaritifera using a suppressive and subtractive hybridization (SSH) method comparing black phenotypes with full and half albino individuals. Results Out of the 358 and 346 expressed sequence tags (ESTs) obtained by conducting two SSH libraries respectively, the expression patterns of 37 genes were tested with a real-time quantitative PCR (RT-qPCR) approach by pooling five individuals of each phenotype. The expression of 11 genes was subsequently estimated for each individual in order to detect inter-individual variation. Our results suggest that the color of the nacre is partially under the influence of genes involved in the biomineralization of the calcitic layer. A few genes involved in the formation of the aragonite tablets of the nacre layer and in the biosynthesis chain of melanin also showed differential expression patterns. Finally, high variability in gene expression levels were observed within the black phenotypes. Conclusions Our results revealed that three main genetic processes were involved in color polymorphisms: the biomineralization of the nacreous and calcitic layers and the synthesis of pigments such as melanin, suggesting that color polymorphism takes place at different levels in the shell structure. The high variability of gene expression found within black phenotypes suggests that the present work should serve as a basis for future studies exploring more thoroughly the expression patterns of candidate genes within black phenotypes with different dominant iridescent colors. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1776-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sarah Lemer
- Laboratoire d'Excellence "CORAIL", USR 3278 CNRS-CRIOBE- EPHE, Perpignan, France, Papetoai, Moorea, French Polynesia. .,Present address: Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA, 02138, USA.
| | - Denis Saulnier
- Ifremer, UMR 241 EIO, Laboratoire d'Excellence "CORAIL", BP 7004, 98719, Taravao, Tahiti, French Polynesia.
| | - Yannick Gueguen
- Ifremer, UMR 241 EIO, Laboratoire d'Excellence "CORAIL", BP 7004, 98719, Taravao, Tahiti, French Polynesia. .,Present address: Ifremer, UMR 5244 IHPE, UPVD, CNRS, Université de Montpellier, CC 80, F-34095, Montpellier, France.
| | - Serge Planes
- Laboratoire d'Excellence "CORAIL", USR 3278 CNRS-CRIOBE- EPHE, Perpignan, France, Papetoai, Moorea, French Polynesia.
| |
Collapse
|
17
|
Evidence of a Biological Control over Origin, Growth and End of the Calcite Prisms in the Shells of Pinctada margaritifera (Pelecypod, Pterioidea). MINERALS 2014. [DOI: 10.3390/min4040815] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
18
|
DeVol RT, Metzler RA, Kabalah-Amitai L, Pokroy B, Politi Y, Gal A, Addadi L, Weiner S, Fernandez-Martinez A, Demichelis R, Gale JD, Ihli J, Meldrum FC, Blonsky AZ, Killian CE, Salling CB, Young AT, Marcus MA, Scholl A, Doran A, Jenkins C, Bechtel HA, Gilbert PUPA. Oxygen spectroscopy and polarization-dependent imaging contrast (PIC)-mapping of calcium carbonate minerals and biominerals. J Phys Chem B 2014; 118:8449-57. [PMID: 24821199 DOI: 10.1021/jp503700g] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
X-ray absorption near-edge structure (XANES) spectroscopy and spectromicroscopy have been extensively used to characterize biominerals. Using either Ca or C spectra, unique information has been obtained regarding amorphous biominerals and nanocrystal orientations. Building on these results, we demonstrate that recording XANES spectra of calcium carbonate at the oxygen K-edge enables polarization-dependent imaging contrast (PIC) mapping with unprecedented contrast, signal-to-noise ratio, and magnification. O and Ca spectra are presented for six calcium carbonate minerals: aragonite, calcite, vaterite, monohydrocalcite, and both hydrated and anhydrous amorphous calcium carbonate. The crystalline minerals reveal excellent agreement of the extent and direction of polarization dependences in simulated and experimental XANES spectra due to X-ray linear dichroism. This effect is particularly strong for aragonite, calcite, and vaterite. In natural biominerals, oxygen PIC-mapping generated high-magnification maps of unprecedented clarity from nacre and prismatic structures and their interface in Mytilus californianus shells. These maps revealed blocky aragonite crystals at the nacre-prismatic boundary and the narrowest calcite needle-prisms. In the tunic spicules of Herdmania momus, O PIC-mapping revealed the size and arrangement of some of the largest vaterite single crystals known. O spectroscopy therefore enables the simultaneous measurement of chemical and orientational information in CaCO3 biominerals and is thus a powerful means for analyzing these and other complex materials. As described here, PIC-mapping and spectroscopy at the O K-edge are methods for gathering valuable data that can be carried out using spectromicroscopy beamlines at most synchrotrons without the expense of additional equipment.
Collapse
Affiliation(s)
- Ross T DeVol
- Department of Physics, University of Wisconsin-Madison , 1150 University Avenue, Madison, Wisconsin 53706, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Dauphin Y, Cuif JP, Castillo-Michel H, Chevallard C, Farre B, Meibom A. Unusual micrometric calcite-aragonite interface in the abalone shell Haliotis (Mollusca, Gastropoda). MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2014; 20:276-284. [PMID: 24188740 DOI: 10.1017/s1431927613013718] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Species of Haliotis (abalone) show high variety in structure and mineralogy of the shell. One of the European species (Haliotis tuberculata) in particular has an unusual shell structure in which calcite and aragonite coexist at a microscale with small patches of aragonite embedded in larger calcitic zones. A detailed examination of the boundary between calcite and aragonite using analytical microscopies shows that the organic contents of calcite and aragonite differ. Moreover, changes in the chemical composition of the two minerals seem to be gradual and define a micrometric zone of transition between the two main layers. A similar transition zone has been observed between the layers in more classical and regularly structured mollusk shells. The imbrication of microscopic patches of aragonite within a calcitic zone suggests the occurrence of very fast physiological changes in these taxa.
Collapse
Affiliation(s)
- Yannicke Dauphin
- UMR 8148 IDES, bât. 504, Université Paris Sud, 91405 Orsay cedex, France
| | - Jean-Pierre Cuif
- UMR 8148 IDES, bât. 504, Université Paris Sud, 91405 Orsay cedex, France
| | | | | | - Bastien Farre
- UMR 8148 IDES, bât. 504, Université Paris Sud, 91405 Orsay cedex, France
| | - Anders Meibom
- Laboratory for Biological Geochemistry, School of Architecture, ENAC, EPFL, 1015 Lausanne, Switzerland
| |
Collapse
|
20
|
Abstract
In the present study, glycerol was used as plasticizer to prepare silk fibroin (SF)/pearl powder (PP) blend films. The effects of amount of glycerol on structure and properties of the films were investigated. The surface morphology was observed with scanning electron microscopy. The structure of films was investigated by X-ray diffraction and thermal analysis. The mechanical properties of the films were measured on a universal testing machine, and the dissolution rate of SF was examined by ultraviolet spectroscopy. The results showed that surface of pure SF films was smooth, but the surface of films containingPP was uneven, particles of PP dispersed in the films. The structure of the film without glycerol was mainly amorphous structure. The structure of the SF in the film was mainly silk I and silk II when the proportion of glycerol added was in the range of 10%- 20%, while the main structure of the SF in the films was silk I when the proportion of glycerol was more than 20%. The dissolution rate of SF in films without glycerol is rather great, while the dissolution rate had a significant decrease by adding glycerol. There was no significant difference in dissolution rates of SF which were all below 1.3% when the proportion of glycerol is 10-40%. The films without glycerol had very small elongation at break. The elongation at break of SF films increased with the increased amount of glycerol. Compared to films without glycerol, there was a significant difference when the proportion of glycerol was greater than 10%. The tensile strength of the films dropped significantly with the increase of glycerol, but there was no significant difference when the proportion of glycerol was greater than 30%. Therefore, the advisable addition percentage of glycerol is 20%.
Collapse
|
21
|
Different secretory repertoires control the biomineralization processes of prism and nacre deposition of the pearl oyster shell. Proc Natl Acad Sci U S A 2012; 109:20986-91. [PMID: 23213212 DOI: 10.1073/pnas.1210552109] [Citation(s) in RCA: 205] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mollusca evolutionary success can be attributed partly to their efficiency to sustain and protect their soft body with an external biomineralized structure, the shell. Current knowledge of the protein set responsible for the formation of the shell microstructural polymorphism and unique properties remains largely patchy. In Pinctada margaritifera and Pinctada maxima, we identified 80 shell matrix proteins, among which 66 are entirely unique. This is the only description of the whole "biomineralization toolkit" of the matrices that, at least in part, is thought to regulate the formation of the prismatic and nacreous shell layers in the pearl oysters. We unambiguously demonstrate that prisms and nacre are assembled from very different protein repertoires. This suggests that these layers do not derive from each other.
Collapse
|
22
|
Cersoy S, Richardin P, Walter P, Brunelle A. Cluster TOF-SIMS imaging of human skin remains: analysis of a South-Andean mummy sample. JOURNAL OF MASS SPECTROMETRY : JMS 2012; 47:338-346. [PMID: 22431460 DOI: 10.1002/jms.2979] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A skin sample from a South-Andean mummy dating back from the XI(th) century was analyzed using time-of-flight secondary ion mass spectrometry imaging using cluster primary ion beams (cluster-TOF-SIMS). For the first time on a mummy, skin dermis and epidermis could be chemically differentiated using mass spectrometry imaging. Differences in amino-acid composition between keratin and collagen, the two major proteins of skin tissue, could indeed be exploited. A surprising lipid composition of hypodermis was also revealed and seems to result from fatty acids damage by bacteria. Using cluster-TOF-SIMS imaging skills, traces of bio-mineralization could be identified at the micrometer scale, especially formation of calcium phosphate at the skin surface. Mineral deposits at the surface were characterized using both scanning electron microscopy (SEM) in combination with energy-dispersive X-ray spectroscopy and mass spectrometry imaging. The stratigraphy of such a sample was revealed for the first time using this technique. More precise molecular maps were also recorded at higher spatial resolution, below 1 µm. This was achieved using a non-bunched mode of the primary ion source, while keeping intact the mass resolution thanks to a delayed extraction of the secondary ions. Details from biological structure as can be seen on SEM images are observable on chemical maps at this sub-micrometer scale. Thus, this work illustrates the interesting possibilities of chemical imaging by cluster-TOF-SIMS concerning ancient biological tissues.
Collapse
Affiliation(s)
- Sophie Cersoy
- Centre de Recherche et de Restauration des Musées de France (C2RMF), Palais du Louvre, Porte des Lions, 14 quai François Mitterrand, 75001, Paris, France
| | | | | | | |
Collapse
|