1
|
Kainat SF, Hawsawi MB, Mughal EU, Naeem N, Almohyawi AM, Altass HM, Hussein EM, Sadiq A, Moussa Z, Abd-El-Aziz AS, Ahmed SA. Recent developments in the synthesis and applications of terpyridine-based metal complexes: a systematic review. RSC Adv 2024; 14:21464-21537. [PMID: 38979466 PMCID: PMC11228761 DOI: 10.1039/d4ra04119d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 06/26/2024] [Indexed: 07/10/2024] Open
Abstract
Terpyridine-based metal complexes have emerged as versatile and indispensable building blocks in the realm of modern chemistry, offering a plethora of applications spanning from materials science to catalysis and beyond. This comprehensive review article delves into the multifaceted world of terpyridine complexes, presenting an overview of their synthesis, structural diversity, and coordination chemistry principles. Focusing on their diverse functionalities, we explore their pivotal roles in catalysis, supramolecular chemistry, luminescent materials, and nanoscience. Furthermore, we highlight the burgeoning applications of terpyridine complexes in sustainable energy technologies, biomimetic systems, and medicinal chemistry, underscoring their remarkable adaptability to address pressing challenges in these fields. By elucidating the pivotal role of terpyridine complexes as versatile building blocks, this review provides valuable insights into their current state-of-the-art applications and future potential, thus inspiring continued innovation and exploration in this exciting area of research.
Collapse
Affiliation(s)
| | - Mohammed B Hawsawi
- Department of Chemistry, Faculty of Science, Umm Al-Qura University 21955 Makkah Saudi Arabia
| | | | - Nafeesa Naeem
- Department of Chemistry, University of Gujrat Gujrat-50700 Pakistan
| | - Abdulaziz M Almohyawi
- Department of Chemistry, Faculty of Science, Umm Al-Qura University 21955 Makkah Saudi Arabia
| | - Hatem M Altass
- Department of Chemistry, Faculty of Science, Umm Al-Qura University 21955 Makkah Saudi Arabia
| | - Essam M Hussein
- Department of Chemistry, Faculty of Science, Umm Al-Qura University 21955 Makkah Saudi Arabia
- Department of Chemistry, Faculty of Science, Assiut University 71516 Assiut Egypt
| | - Amina Sadiq
- Department of Chemistry, Govt. College Women University Sialkot-51300 Pakistan
| | - Ziad Moussa
- Department of Chemistry, College of Science, United Arab Emirates University P.O. Box 15551 Al Ain United Arab Emirates
| | - Alaa S Abd-El-Aziz
- Qingdao Innovation and Development Centre, Harbin Engineering University Qingdao 266400 China
| | - Saleh A Ahmed
- Department of Chemistry, Faculty of Science, Umm Al-Qura University 21955 Makkah Saudi Arabia
| |
Collapse
|
2
|
Chen L, Cui Y, Ruan J, Zhang X, Zhang Y, Rao P, Ren W. Tough, Eu 3+ -Induced Luminescent Hydrogel as Flexible Chemosensor for Real-Time Quantitative Detection of Zn 2+ Ion. Macromol Rapid Commun 2023; 44:e2300170. [PMID: 37243910 DOI: 10.1002/marc.202300170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/05/2023] [Indexed: 05/29/2023]
Abstract
Herein, a novel tough luminescent hydrogel with Europium is fabricated using a facile copolymerization process by introducing 2,2':6',2-terpyridine (TPy) into a dual physical cross-linked hydrogel. The obtained P(NAGA-co-MAAc)/Eu/TPy (x) (x refers to the feed ratio of NAGA to MAAc) hydrogels not only show outstanding mechanical performances (fracture strength, ≈2.5 MPa), but also give a special ability of rapid detection to low concentrations of zinc ions. Attractively, the theoretical limits of detection (LOD) of the hydrogel sensors are calculated as 1.6 µm, which is acceptable within the WHO limit. Furthermore, the continuous change in fluorescence of P(NAGA-co-MAAc)/Eu/TPy (10) strips upon contact with Zn2+ can be clearly observed by the naked eyes with the aid of a portable UV lamp, resulting in semi-quantitative naked-eyes detection through a standard colorimetric card. Moreover, by identifying the RGB value of the hydrogel sensor, it can also realize quantitative analysis. Therefore, excellence in sensing, simplicity in structure, and convenience in using make P(NAGA-co-MAAc)/Eu/TPy (10) hydrogel as a superior fluorescent chemosensor of Zn2+ ions.
Collapse
Affiliation(s)
- Liang Chen
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
- Chongqing key laboratory of soft-matter material chemistry and function manufacturing, Southwest University, Chongqing, 400715, China
| | - Yuanzhi Cui
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Jiaping Ruan
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Xincheng Zhang
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Yifan Zhang
- State Key Laboratory of Fluid Power & Mechatronic System, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
| | - Ping Rao
- State Key Laboratory of Fluid Power & Mechatronic System, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
| | - Wenshan Ren
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
- Chongqing key laboratory of soft-matter material chemistry and function manufacturing, Southwest University, Chongqing, 400715, China
| |
Collapse
|
3
|
Amirthalingam S, Rajendran AK, Moon YG, Hwang NS. Stimuli-responsive dynamic hydrogels: design, properties and tissue engineering applications. MATERIALS HORIZONS 2023; 10:3325-3350. [PMID: 37387121 DOI: 10.1039/d3mh00399j] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
The field of tissue engineering and regenerative medicine has been evolving at a rapid pace with numerous novel and interesting biomaterials being reported. Hydrogels have come a long way in this regard and have been proven to be an excellent choice for tissue regeneration. This could be due to their innate properties such as water retention, and ability to carry and deliver a multitude of therapeutic and regenerative elements to aid in better outcomes. Over the past few decades, hydrogels have been developed into an active and attractive system that can respond to various stimuli, thereby presenting a wider control over the delivery of the therapeutic agents to the intended site in a spatiotemporal manner. Researchers have developed hydrogels that respond dynamically to a multitude of external as well as internal stimuli such as mechanics, thermal energy, light, electric field, ultrasonics, tissue pH, and enzyme levels, to name a few. This review gives a brief overview of the recent developments in such hydrogel systems which respond dynamically to various stimuli, some of the interesting fabrication strategies, and their application in cardiac, bone, and neural tissue engineering.
Collapse
Affiliation(s)
- Sivashanmugam Amirthalingam
- Institute of Engineering Research, Seoul National University, Seoul, 08826, Republic of Korea.
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Arun Kumar Rajendran
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Young Gi Moon
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Nathaniel S Hwang
- Institute of Engineering Research, Seoul National University, Seoul, 08826, Republic of Korea.
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
- Bio-MAX/N-Bio Institute, Institute of Bio-Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
4
|
Gao A, Han Q, Wang Q, Wan R, Wu H, Cao X. Bis-Pyridine-Based Organogel with AIE Effect and Sensing Performance towards Hg 2. Gels 2022; 8:gels8080464. [PMID: 35892723 PMCID: PMC9331886 DOI: 10.3390/gels8080464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 01/27/2023] Open
Abstract
A novel gelator (1) based on a bis-pyridine derivative was designed and synthesized, which could form stable gels in methanol, ethanol, acetonitrile, ethyl acetate, DMF/H2O (4/1, v/v) and DMSO/H2O (4/1, v/v). The self-assembly process of gelator 1 was studied by field emission scanning electron microscopy (FESEM), UV–vis absorption spectroscopy, fluorescence emission spectroscopy, Fourier transform infrared spectroscopy (FT-IR), X-ray powder diffraction and a water contact angle experiment. Gelator 1 exhibited obvious AIE behavior. On the base of its AIE, the gel of 1 could detect Hg2+, which resulted in fluorescence quenching and a gel–sol transition. 1H NMR titration experiments with Hg2+ revealed that the metal coordination interaction induced the fluorescence quenching and the breakdown of the noncovalent interaction in the gel system. This research provides a new molecular mode for designing a functional self-assembly gel system.
Collapse
|