1
|
Jin J, Zeng Y, Gao X, Li J, Cui T, Xu X, Yang G, Zhang G, Hao C, Zhang J. Trehalose and mannitol based lyoprotection of Taq DNA polymerase for cold-chain-free long-term storage. J Pharm Sci 2025; 114:103656. [PMID: 39725227 DOI: 10.1016/j.xphs.2024.12.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/19/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024]
Abstract
Polymerase chain reactions (PCR) are most reliable and precise means for nucleic acid analysis of biological samples. A cold-chain system with temperature at around -20 °C is generally necessary for storage and transportation of PCR-related reagents. In order to facilitate ambient temperature storage and transportation, this study prepared Taq DNA polymerase and 5 × HS-Taq Mix (as low as 0.5 U/sample) into stable solid formulations using an optimized freeze-drying process and lyoprotectant formulations comprising trehalose dihydrate (3.3∼5%, w/v) and mannitol (10%, w/v). The lyocakes were characterized by scanning electron microscopy (SEM), powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). In the optimized freeze-drying process, trehalose dihydrate mainly formed an amorphous structure and acted as both cryoprotectant and lyoprotectant, while mannitol crystallized to serve as a bulking agent. The enzyme activities of Taq and 5 × HS-Taq Mix samples were measured via real-time quantitative PCR (qPCR). Long-term storage stability test demonstrated that freeze-dried samples with optimized formulations showed no remarkable reduction in amplification efficiencies for target sequence compared to freshly prepared corresponding samples after being stored at 37 °C and 55% relative humidity (RH) for 0, 1, 4, 8 and 12 weeks.
Collapse
Affiliation(s)
- Jian Jin
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Key Laboratory of Marine Biological Resources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yuyu Zeng
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Key Laboratory of Marine Biological Resources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xinyu Gao
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Key Laboratory of Marine Biological Resources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jing Li
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Key Laboratory of Marine Biological Resources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Ting Cui
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Key Laboratory of Marine Biological Resources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xiaqian Xu
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Key Laboratory of Marine Biological Resources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Gaojing Yang
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Key Laboratory of Marine Biological Resources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Guisen Zhang
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Key Laboratory of Marine Biological Resources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Chao Hao
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Key Laboratory of Marine Biological Resources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jian Zhang
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Key Laboratory of Marine Biological Resources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China.
| |
Collapse
|
2
|
Dong Y, Wang J, Chen L, Chen H, Dang S, Li F. Aptamer-based assembly systems for SARS-CoV-2 detection and therapeutics. Chem Soc Rev 2024; 53:6830-6859. [PMID: 38829187 DOI: 10.1039/d3cs00774j] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Nucleic acid aptamers are oligonucleotide chains with molecular recognition properties. Compared with antibodies, aptamers show advantages given that they are readily produced via chemical synthesis and elicit minimal immunogenicity in biomedicine applications. Notably, aptamer-encoded nucleic acid assemblies further improve the binding affinity of aptamers with the targets due to their multivalent synergistic interactions. Specially, aptamers can be engineered with special topological arrangements in nucleic acid assemblies, which demonstrate spatial and valence matching towards antigens on viruses, thus showing potential in the detection and therapeutic applications of viruses. This review presents the recent progress on the aptamers explored for SARS-CoV-2 detection and infection treatment, wherein applications of aptamer-based assembly systems are introduced in detail. Screening methods and chemical modification strategies for aptamers are comprehensively summarized, and the types of aptamers employed against different target domains of SARS-CoV-2 are illustrated. The evolution of aptamer-based assembly systems for the detection and neutralization of SARS-CoV-2, as well as the construction principle and characteristics of aptamer-based DNA assemblies are demonstrated. The typically representative works are presented to demonstrate how to assemble aptamers rationally and elaborately for specific applications in SARS-CoV-2 diagnosis and neutralization. Finally, we provide deep insights into the current challenges and future perspectives towards aptamer-based nucleic acid assemblies for virus detection and neutralization in nanomedicine.
Collapse
Affiliation(s)
- Yuhang Dong
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
| | - Jingping Wang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
| | - Ling Chen
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
| | - Haonan Chen
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
| | - Shuangbo Dang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
| | - Feng Li
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
| |
Collapse
|
3
|
Sadique MA, Yadav S, Khan R, Srivastava AK. Engineered two-dimensional nanomaterials based diagnostics integrated with internet of medical things (IoMT) for COVID-19. Chem Soc Rev 2024; 53:3774-3828. [PMID: 38433614 DOI: 10.1039/d3cs00719g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
More than four years have passed since an inimitable coronavirus disease (COVID-19) pandemic hit the globe in 2019 after an uncontrolled transmission of the severe acute respiratory syndrome (SARS-CoV-2) infection. The occurrence of this highly contagious respiratory infectious disease led to chaos and mortality all over the world. The peak paradigm shift of the researchers was inclined towards the accurate and rapid detection of diseases. Since 2019, there has been a boost in the diagnostics of COVID-19 via numerous conventional diagnostic tools like RT-PCR, ELISA, etc., and advanced biosensing kits like LFIA, etc. For the same reason, the use of nanotechnology and two-dimensional nanomaterials (2DNMs) has aided in the fabrication of efficient diagnostic tools to combat COVID-19. This article discusses the engineering techniques utilized for fabricating chemically active E2DNMs that are exceptionally thin and irregular. The techniques encompass the introduction of heteroatoms, intercalation of ions, and the design of strain and defects. E2DNMs possess unique characteristics, including a substantial surface area and controllable electrical, optical, and bioactive properties. These characteristics enable the development of sophisticated diagnostic platforms for real-time biosensors with exceptional sensitivity in detecting SARS-CoV-2. Integrating the Internet of Medical Things (IoMT) with these E2DNMs-based advanced diagnostics has led to the development of portable, real-time, scalable, more accurate, and cost-effective SARS-CoV-2 diagnostic platforms. These diagnostic platforms have the potential to revolutionize SARS-CoV-2 diagnosis by making it faster, easier, and more accessible to people worldwide, thus making them ideal for resource-limited settings. These advanced IoMT diagnostic platforms may help with combating SARS-CoV-2 as well as tracking and predicting the spread of future pandemics, ultimately saving lives and mitigating their impact on global health systems.
Collapse
Affiliation(s)
- Mohd Abubakar Sadique
- CSIR - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal 462026, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shalu Yadav
- CSIR - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal 462026, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Raju Khan
- CSIR - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal 462026, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Avanish K Srivastava
- CSIR - Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal 462026, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
4
|
Guo Y, Song W, Dong Y, Wang X, Nie G, Li F. A Poly Aptamer Encoded DNA Nanocatcher Informs Efficient Virus Trapping. NANO LETTERS 2024; 24:3614-3623. [PMID: 38497742 DOI: 10.1021/acs.nanolett.3c04510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Broad-spectrum antiviral platforms are always desired but still lack the ability to cope with the threats to global public health. Herein, we develop a poly aptamer encoded DNA nanocatcher platform that can trap entire virus particles to inhibit infection with a broad antiviral spectrum. Ultralong single-stranded DNA (ssDNA) containing repeated aptamers was synthesized as the scaffold of a nanocatcher via a biocatalytic process, wherein mineralization of magnesium pyrophosphate on the ssDNA could occur and consequently lead to the formation of nanocatcher with interfacial nanocaves decorated with virus-binding aptamers. Once the viruses were recognized by the apatmers, they would be captured and trapped in the nanocaves via multisite synergistic interactions. Meanwhile, the size of nanocatchers was optimized to prevent their cellular uptake, which further guaranteed inhibition of virus infection. By taking SARS-CoV-2 variants as a model target, we demonstrated the broad virus-trapping capability of a DNA nanocatcher in engulfing the variants and blocking the infection to host cells.
Collapse
Affiliation(s)
- Yunhua Guo
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wenzhe Song
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuhang Dong
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xuejun Wang
- Bioinformatics Center of AMMS, Taiping Rd, Haidian District, Beijing, 100850, China
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Feng Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
5
|
Drevinek P, Flisiak R, Nemes R, Nogales Crespo KA, Tomasiewicz K. The Role and Value of Professional Rapid Testing of Acute Respiratory Infections (ARIs) in Europe: A Special Focus on the Czech Republic, Poland, and Romania. Diagnostics (Basel) 2024; 14:631. [PMID: 38535051 PMCID: PMC10969707 DOI: 10.3390/diagnostics14060631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/04/2024] [Accepted: 03/13/2024] [Indexed: 01/03/2025] Open
Abstract
This review aims to explore the role of professional diagnostic rapid testing of acute respiratory infections (ARIs), especially COVID-19 and influenza, ensuring proper disease management and treatment in Europe, and particularly in Czech Republic, Poland, and Romania. The paper was constructed based on a review of scientific evidence and national and international policies and recommendations, as well as a process of validation by four experts. The development of new testing technologies, treatment options, and increased awareness of the negative multidimensional impact of ARI profiles transformed differential diagnosis into a tangible and desirable reality. This review covers the following topics: (1) the multidimensional impact of ARIs, (2) ARI rapid diagnostic testing platforms and their value, (3) the policy landscape, (4) challenges and barriers to implementation, and (5) a set of recommendations illustrating a path forward. The findings indicate that rapid diagnostic testing, including at the point of care (POC), can have a positive impact on case management, antimicrobial and antibiotic stewardship, epidemiological surveillance, and decision making. Integrating this strategy will require the commitment of governments and the international and academic communities, especially as we identified room for improvement in the access and expansion of POC rapid testing in the focus countries and the inclusion of rapid testing in relevant policies.
Collapse
Affiliation(s)
- Pavel Drevinek
- Department of Medical Microbiology, Second Faculty of Medicine, Charles University and Motol University Hospital, 150 06 Prague, Czech Republic;
- Czech Society for Medical Microbiology, Czech Medical Association of J.E. Purkyne, 142 20 Prague, Czech Republic
| | - Robert Flisiak
- Department of Infectious Diseases and Hepatology, Medical University of Bialystok, 15-540 Białystok, Poland;
- Polish Association of Epidemiologists and Infectiologists, 15-540 Białystok, Poland;
| | - Roxana Nemes
- Department of Preclinical Disciplines, Faculty of Medicine, Titu Maiorescu University, 040441 Bucharest, Romania;
- Romanian Society of Pneumonology, 050159 Bucharest, Romania
| | | | - Krzysztof Tomasiewicz
- Polish Association of Epidemiologists and Infectiologists, 15-540 Białystok, Poland;
- Department and Clinic of Infectious Diseases and Hepatology SPSK-1, Medical University of Lublin, 20-081 Lublin, Poland
| |
Collapse
|
6
|
Umrao S, Zheng M, Jin X, Yao S, Wang X. Net-Shaped DNA Nanostructure-Based Lateral Flow Assays for Rapid and Sensitive SARS-CoV-2 Detection. Anal Chem 2024; 96:3291-3299. [PMID: 38306661 PMCID: PMC10922791 DOI: 10.1021/acs.analchem.3c03698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2024]
Abstract
Lateral flow assay (LFA)-based rapid antigen tests are experiencing extensive global uptake as an expeditious and highly effective modality for the screening of viral infections during the COVID-19 pandemic. While these devices have played a significant role in alleviating the burden on the public healthcare system, their specificity and sensitivity fall short compared with molecular tests. In this study, we endeavor to address both limitations through the utilization of DNA nanotechnology in LFA format, wherein we substitute the target-specific antibody with designer DNA nanostructure-based molecular probes for recognizing the SARS-CoV-2 virus via multivalent, pattern-matching interactions. We meticulously designed a Net-shaped DNA nanostructure and strategically arranged trimeric clusters of aptamers that specifically recognize the spike proteins of SARS-CoV-2. This approach has proven instrumental in bolstering virus-binding affinity on the LFAs. Our findings indicate high LFA sensitivity, enabling the detection of viral loads ranging from 103 to 108 viral copies/mL. This notable sensitivity is maintained across various SARS-CoV-2 viral strains, obviating the need for intricate sample preparation protocols. The significance of this heightened sensitivity lies in the crucial role played by the designer DNA nanostructure, which facilitates the detection of extremely low levels of viral loads. This not only enhances the overall reliability of self-testing but also reduces the likelihood of false-negative results, especially in cases of low viral load within patient samples.
Collapse
Affiliation(s)
- Saurabh Umrao
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory (HMNTL), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Carl R. Woese Institute for Genomic Biology (IGB), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Mengxi Zheng
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Carl R. Woese Institute for Genomic Biology (IGB), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Xiaohe Jin
- Atom Bioworks Inc., Cary, North Carolina 27513, United States
| | - Sherwood Yao
- Atom Bioworks Inc., Cary, North Carolina 27513, United States
| | - Xing Wang
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory (HMNTL), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Carl R. Woese Institute for Genomic Biology (IGB), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
7
|
Tian L, Qiang T, Yang X, Gao Y, Zhai X, Kang K, Du C, Lu Q, Gao H, Zhang D, Xie X, Liang C. Development of de-novo coronavirus 3-chymotrypsin-like protease (3CL pro) inhibitors since COVID-19 outbreak: A strategy to tackle challenges of persistent virus infection. Eur J Med Chem 2024; 264:115979. [PMID: 38048696 DOI: 10.1016/j.ejmech.2023.115979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/30/2023] [Accepted: 11/18/2023] [Indexed: 12/06/2023]
Abstract
Although no longer a public health emergency of international concern, COVID-19 remains a persistent and critical health concern. The development of effective antiviral drugs could serve as the ultimate piece of the puzzle to curbing this global crisis. 3-chymotrypsin-like protease (3CLpro), with its substrate specificity mirroring that of the main picornavirus 3C protease and conserved across various coronaviruses, emerges as an ideal candidate for broad-spectrum antiviral drug development. Moreover, it holds the potential as a reliable contingency option to combat emerging SARS-CoV-2 variants. In this light, the approved drugs, promising candidates, and de-novo small molecule therapeutics targeting 3CLpro since the COVID-19 outbreak in 2020 are discussed. Emphasizing the significance of diverse structural characteristics in inhibitors, be they peptidomimetic or nonpeptidic, with a shared mission to minimize the risk of cross-resistance. Moreover, the authors propose an innovative optimization strategy for 3CLpro reversible covalent PROTACs, optimizing pharmacodynamics and pharmacokinetics to better prepare for potential future viral outbreaks.
Collapse
Affiliation(s)
- Lei Tian
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China; Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Taotao Qiang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, PR China.
| | - Xiuding Yang
- Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Shaanxi University of Science & Technology, Xi'an, 710021, PR China; School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Yue Gao
- College of Pharmacy, Jinan University, Guangzhou, 511436, PR China
| | - Xiaopei Zhai
- Department of Pharmaceutics, School of Pharmacy, Air Force Medical University, Xi'an, 710032, PR China
| | - Kairui Kang
- Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Shaanxi University of Science & Technology, Xi'an, 710021, PR China; School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Cong Du
- Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Shaanxi University of Science & Technology, Xi'an, 710021, PR China; School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Qi Lu
- Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Shaanxi University of Science & Technology, Xi'an, 710021, PR China; School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Hong Gao
- Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Shaanxi University of Science & Technology, Xi'an, 710021, PR China; Shaanxi Pioneer Biotech Co., Ltd., Xi'an, 710021, PR China
| | - Dezhu Zhang
- Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Shaanxi University of Science & Technology, Xi'an, 710021, PR China; Shaanxi Panlong Pharmaceutical Group Co., Ltd., Xi'an, 710025, PR China
| | - Xiaolin Xie
- Shaanxi Panlong Pharmaceutical Group Co., Ltd., Xi'an, 710025, PR China
| | - Chengyuan Liang
- Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Shaanxi University of Science & Technology, Xi'an, 710021, PR China; School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an, 710021, PR China.
| |
Collapse
|
8
|
Liang QH, Cao BP, Xiao Q, Wei D. The Application of Graphene Field-Effect Transistor Biosensors in COVID-19 Detection Technology: A Review. SENSORS (BASEL, SWITZERLAND) 2023; 23:8764. [PMID: 37960464 PMCID: PMC10650741 DOI: 10.3390/s23218764] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/30/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is a disease caused by the infectious agent of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2). The primary method of diagnosing SARS-CoV-2 is nucleic acid detection, but this method requires specialized equipment and is time consuming. Therefore, a sensitive, simple, rapid, and low-cost diagnostic test is needed. Graphene field-effect transistor (GFET) biosensors have become the most promising diagnostic technology for detecting SARS-CoV-2 due to their advantages of high sensitivity, fast-detection speed, label-free operation, and low detection limit. This review mainly focus on three types of GFET biosensors to detect SARS-CoV-2. GFET biosensors can quickly identify SARS-CoV-2 within ultra-low detection limits. Finally, we will outline the pros and cons of the diagnostic approaches as well as future directions.
Collapse
Affiliation(s)
- Qin-Hong Liang
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, China; (Q.-H.L.); (Q.X.)
| | - Ban-Peng Cao
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, China; (Q.-H.L.); (Q.X.)
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Qiang Xiao
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, China; (Q.-H.L.); (Q.X.)
| | - Dacheng Wei
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| |
Collapse
|
9
|
Elsamahy T, Al-Tohamy R, Abdelkarim EA, Zhu D, El-Sheekh M, Sun J, Ali SS. Strategies for efficient management of microplastics to achieve life cycle assessment and circular economy. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1361. [PMID: 37870605 DOI: 10.1007/s10661-023-11955-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 10/05/2023] [Indexed: 10/24/2023]
Abstract
The anticipated increase in the influx of plastic waste into aquatic environments has propelled the identification and elimination of plastic waste into the global agenda. The plastics sector generates a significant volume of materials, which, due to their extended durability, accumulate rapidly in natural ecosystems. Consequently, this indiscriminate utilization, along with the deposition of plastic waste (PW) in landfills and inadequate recycling practices, leads to diverse economic, social, and environmental consequences. Microplastics (MPs) are a type of PW that has been fragmented into particles measuring less than 5 mm. These particles have been found in several environments, including the air, soil, freshwater, and ocean ecosystems, where they accumulate in large quantities. In order to gain insight into the ecological risks and resource implications associated with a plastic product, it is strongly advised to conduct life cycle and sustainability analyses. Therefore, this paper examines various strategies aimed at achieving effective management of MP waste in order to develop a conceptual framework for MPs in circular economy and life cycle assessment (LCA). The findings of this study provides a new avenue for future research and contribution to manage MP waste as well as reduce their environmentally hazardous impact.
Collapse
Affiliation(s)
- Tamer Elsamahy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Rania Al-Tohamy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Esraa A Abdelkarim
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Daochen Zhu
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Mostafa El-Sheekh
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Jianzhong Sun
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Sameh S Ali
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China.
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| |
Collapse
|