1
|
Liang Y, Du M, Li X, Gao J, Li Q, Li H, Li J, Gao X, Cong H, Huang Y, Li X, Wang L, Cui J, Gan Y, Tu H. Upregulation of Lactobacillus spp. in gut microbiota as a novel mechanism for environmental eustress-induced anti-pancreatic cancer effects. Gut Microbes 2025; 17:2470372. [PMID: 39988618 PMCID: PMC11853549 DOI: 10.1080/19490976.2025.2470372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/01/2024] [Accepted: 02/17/2025] [Indexed: 02/25/2025] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignancy with limited effective treatment options. Emerging evidence links enriched environment (EE)-induced eustress to PDAC inhibition. However, the underlying mechanisms remain unclear. In this study, we explored the role of gut microbiota in PDAC-suppressive effects of EE. We demonstrated that depletion of gut microbiota with antibiotics abolished EE-induced tumor suppression, while fecal microbiota transplantation (FMT) from EE mice significantly inhibited tumor growth in both subcutaneous and orthotopic PDAC models housed in standard environment. 16S rRNA sequencing revealed that EE enhanced gut microbiota diversity and selectively enriched probiotic Lactobacillus, particularly L. reuteri. Treatment with L. reuteri significantly suppressed PDAC tumor growth and increased natural killer (NK) cell infiltration into the tumor microenvironment. Depletion of NK cells alleviated the anti-tumor effects of L. reuteri, underscoring the essential role of NK cell-mediated immunity in anti-tumor response. Clinical analysis of PDAC patients showed that higher fecal Lactobacillus abundance correlated with improved progression-free and overall survival, further supporting the therapeutic potential of L. reuteri in PDAC. Overall, this study identifies gut microbiota as a systemic regulator of PDAC under psychological stress. Supplementation of psychobiotic Lactobacillus may offer a novel therapeutic strategy for PDAC.
Collapse
Affiliation(s)
- Yiyi Liang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Du
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin Li
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Gao
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Li
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huimin Li
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jin Li
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiang Gao
- School of Basic Medicine, Fudan University, Shanghai, China
| | - Hui Cong
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yimeng Huang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinran Li
- School of Basic Medicine, Fudan University, Shanghai, China
| | - Liwei Wang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Oncology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiujie Cui
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Oncology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Gan
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong Tu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Ju C, Ogura A, Hayashi Y, Kawabata Y, D’Acquisto F, Kawakubo-Yasukochi T, Jimi E. The impact of environmental enrichment on energy metabolism in ovariectomized mice. PLoS One 2025; 20:e0320180. [PMID: 40173406 PMCID: PMC11964458 DOI: 10.1371/journal.pone.0320180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Accepted: 02/15/2025] [Indexed: 04/04/2025] Open
Abstract
After menopause, a decline in ovarian function leads to various physical and psychological changes, potentially resulting in a range of pathological conditions, including abnormalities in energy metabolism. In recent years, environmental enrichment, which is characterized by positive and comfortable eustress, has been shown to improve various physiological and pathological conditions. This study investigated the effects of environmental factors on energy metabolism in a menopause model using an ovariectomized (OVX) mouse model. Wild-type female mice (8-week-old) were subjected to OVX or a sham operation and maintained under standard condition (SC), enriched environment (EE), or isolated (IS) condition for 4 weeks. OVX led to weight gain and disruption of circadian rhythms, along with changes in various metabolic parameters influenced by differences in housing environments; i.e., EE improved metabolic parameters, but IS deteriorated them. Physical activity and social interaction were factors that determined these differences. Menopause is usually a significant transitional period in a woman's life, and changes in the social environment during this period can contribute to a diverse range of physical and psychological symptoms. Consequently, when implementing interventions to alleviate menopause-related pathological conditions, not only physical symptoms but also the social context should be carefully considered.
Collapse
Affiliation(s)
- Chaoran Ju
- Laboratory of Molecular and Cellular Biochemistry, Division of Oral Biological Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Ayano Ogura
- Laboratory of Molecular and Cellular Biochemistry, Division of Oral Biological Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
- Division of Oral Biological Sciences, Department of Cell Biology, Aging Science, and Pharmacology, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Yoshikazu Hayashi
- Oral Health/Brain Health/Total Health Research Center, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
- Division of Functional Structure, Department of Morphological Biology, Fukuoka Dental College, Fukuoka, Japan
- Oral Medicine Research Center, Fukuoka Dental College, Fukuoka, Japan
| | - Yuko Kawabata
- Section of Oral Neuroscience, Division of Oral Biological Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Fulvio D’Acquisto
- School of Life and Health Science, University of Roehampton, London, United Kingdom
- William Harvey Research Institute, School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Tomoyo Kawakubo-Yasukochi
- Oral Health/Brain Health/Total Health Research Center, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Eijiro Jimi
- Laboratory of Molecular and Cellular Biochemistry, Division of Oral Biological Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
- Oral Health/Brain Health/Total Health Research Center, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| |
Collapse
|
3
|
Cui B, Luo H, He B, Liu X, Lv D, Zhang X, Su K, Zheng S, Lu J, Wang C, Yang Y, Zhao Z, Liu X, Wang X, Zhao Y, Nie X, Jiang Y, Zhang Z, Liu C, Chen X, Cai A, Lv Z, Liu Z, An F, Zhang Y, Yan Q, Kelley KW, Xu G, Xu L, Liu Q, Peng F. Gut dysbiosis conveys psychological stress to activate LRP5/β-catenin pathway promoting cancer stemness. Signal Transduct Target Ther 2025; 10:79. [PMID: 40038255 PMCID: PMC11880501 DOI: 10.1038/s41392-025-02159-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 01/02/2025] [Accepted: 01/23/2025] [Indexed: 03/06/2025] Open
Abstract
Psychological stress causes gut microbial dysbiosis and cancer progression, yet how gut microbiota determines psychological stress-induced tumor development remains unclear. Here we showed that psychological stress promotes breast tumor growth and cancer stemness, an outcome that depends on gut microbiota in germ-free and antibiotic-treated mice. Metagenomic and metabolomic analyses revealed that psychological stress markedly alters the composition and abundance of gut microbiota, especially Akkermansia muciniphila (A. muciniphila), and decreases short-chain fatty acid butyrate. Supplement of active A. muciniphila, butyrate or a butyrate-producing high fiber diet dramatically reversed the oncogenic property and anxiety-like behavior of psychological stress in a murine spontaneous tumor model or an orthotopic tumor model. Mechanistically, RNA sequencing analysis screened out that butyrate decreases LRP5 expression to block the activation of Wnt/β-catenin signaling pathway, dampening breast cancer stemness. Moreover, butyrate as a HDAC inhibitor elevated histone H3K9 acetylation level to transcriptionally activate ZFP36, which further accelerates LRP5 mRNA decay by binding adenine uridine-rich (AU-rich) elements of LRP5 transcript. Clinically, fecal A. muciniphila and serum butyrate were inversely correlated with tumoral LRP5/β-catenin expression, poor prognosis and negative mood in breast cancer patients. Altogether, our findings uncover a microbiota-dependent mechanism of psychological stress-triggered cancer stemness, and provide both clinical biomarkers and potential therapeutic avenues for cancer patients undergoing psychological stress.
Collapse
Affiliation(s)
- Bai Cui
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Huandong Luo
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - Bin He
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Xinyu Liu
- Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, China
| | - Dekang Lv
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Xiaoyu Zhang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Keyu Su
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Sijia Zheng
- Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, China
| | - Jinxin Lu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Cenxin Wang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Yuqing Yang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Zhuoran Zhao
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Xianxian Liu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Xu Wang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Yingrui Zhao
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Xiaoshan Nie
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Yuanyuan Jiang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Ziyu Zhang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Congcong Liu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Xinyi Chen
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Anqi Cai
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Zhumeng Lv
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Zhihang Liu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Fan An
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Yunkun Zhang
- Department of Pathology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Qiulong Yan
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Keith W Kelley
- Department of Pathology, College of Medicine and Department of Animal Sciences, College of ACES, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Guowang Xu
- Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, China
| | - Lingzhi Xu
- Department of Oncology, the Second Affiliated Hospital, Dalian Medical University, Dalian, China.
| | - Quentin Liu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China.
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, China.
| | - Fei Peng
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China.
| |
Collapse
|
4
|
Sun VKT, Lam JWY, Ng MHF, Wong WY, Tai WCS, Chow DHK, Cheung AKK, Lau BWM, Cheng ASK, Yee BK. Early life environmental enrichment yields resilience to selected behavioural and brain responses to 5-fluorouracil in mice. Brain Behav Immun 2025; 125:334-354. [PMID: 39826582 DOI: 10.1016/j.bbi.2025.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/10/2024] [Accepted: 01/13/2025] [Indexed: 01/22/2025] Open
Abstract
Chemotherapy remains the primary treatment modality for multiple cancer types, but the cytotoxicity of chemotherapeutic drugs often leads to persistent psychological disturbances that undermine daily function. Minimizing such unwanted effects is challenging in the rehabilitation/prehabilitation of cancer survivors, hence the impetus to identify modifiable external factors capable of improving the recovery process. The importance of social stimulation has been demonstrated in a mouse model showing that grouped housing lowered the likelihood of developing mood disturbance following exposure to chemotherapeutic drugs compared with isolated housing. Social impoverishment thus constitutes a risk factor, and social enrichment may be protective. However, the potential benefits of conventional environmental enrichment that entails extensive sensory and physical stimulation have remained untested in mice. Using C57BL/6 mice, we investigated this research gap by introducing environmental enrichment from an early age (at weaning) to maximize its resilience potential and delaying exposure to the common chemotherapeutic drug, 5-fluorouracil (5-FU), until adulthood (10 weeks old), which comprised six cycles of injections at 40 mg/kg/day × 5 days per fortnight. Our results showed that enriched housing nullified the elevation in anxiety behaviour and proliferation of hippocampal microglial cells caused by chronic 5-FU exposure. Enriched housing also lowered hippocampal IL-17 expression, effectively buffered against the stimulated release of IL-17 by 5-FU. These data extended the potential benefits of social engagement and an active lifestyle in easing the burdens of chemotherapy. Notwithstanding, the negative impacts of 5-FU on hippocampal neurogenesis and musculoskeletal properties were only notable in the enriched mice, suggesting that while environmental enrichment can buffer against certain psychological side effects, the enhanced adaptive plasticity may also increase the susceptibility to specific antineoplastic effects of chemotherapy.
Collapse
Affiliation(s)
- Vic K T Sun
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong
| | - Jimmy W Y Lam
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong
| | - Marcus H F Ng
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong
| | - Wing-Yan Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong; The Laboratory for Probiotic and Prebiotic Research in Human Health, The Hong Kong Polytechnic University, Hong Kong
| | - William C S Tai
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong; The Laboratory for Probiotic and Prebiotic Research in Human Health, The Hong Kong Polytechnic University, Hong Kong; Research Institute for Future Food, The Hong Kong Polytechnic University, Hong Kong
| | - Dick H K Chow
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong; Department of Health Sciences, Hong Kong Metropolitan University, Hong Kong
| | - Alex K K Cheung
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong
| | - Benson W M Lau
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong
| | - Andy S K Cheng
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong
| | - Benjamin K Yee
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong; Mental Health Research Centre, The Hong Kong Polytechnic University, Hong Kong.
| |
Collapse
|
5
|
Queen NJ, Zou X, Huang W, Mohammed T, Cao L. Environmental Enrichment Normalizes Metabolic Function in the Murine Model of Prader-Willi Syndrome Magel2-Null Mice. Endocrinology 2025; 166:bqaf001. [PMID: 39801003 PMCID: PMC11808065 DOI: 10.1210/endocr/bqaf001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Indexed: 02/11/2025]
Abstract
Prader-Willi syndrome (PWS) is a rare genetic disease that causes developmental delays, intellectual impairment, constant hunger, obesity, endocrine dysfunction, and various behavioral and neuropsychiatric abnormalities. Standard care of PWS is limited to strict supervision of food intake and GH therapy, highlighting the unmet need for new therapeutic strategies. Environmental enrichment (EE), a housing environment providing physical, social, and cognitive stimulations, exerts broad benefits on mental and physical health. Here we assessed the metabolic and behavioral effects of EE in the Magel2-null mouse model of PWS. EE initiated after the occurrence of metabolic abnormality was sufficient to normalize body weight and body composition, reverse hyperleptinemia, and improve glucose metabolism in the male Magel2-null mice. These metabolic improvements induced by EE were comparable to those achieved by a hypothalamic brain-derived neurotrophic factor gene therapy although the underlying mechanisms remain to be determined. These data suggest biobehavioral interventions such as EE could be effective in the treatment of PWS-related metabolic abnormalities.
Collapse
Affiliation(s)
- Nicholas J Queen
- Department of Cancer Biology & Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Xunchang Zou
- Department of Cancer Biology & Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Wei Huang
- Department of Cancer Biology & Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Tawfiq Mohammed
- Department of Cancer Biology & Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Lei Cao
- Department of Cancer Biology & Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| |
Collapse
|
6
|
Huang Q, Hu B, Zhang P, Yuan Y, Yue S, Chen X, Liang J, Tang Z, Zhang B. Neuroscience of cancer: unraveling the complex interplay between the nervous system, the tumor and the tumor immune microenvironment. Mol Cancer 2025; 24:24. [PMID: 39825376 PMCID: PMC11740516 DOI: 10.1186/s12943-024-02219-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 12/26/2024] [Indexed: 01/20/2025] Open
Abstract
The study of the multifaceted interactions between neuroscience and cancer is an emerging field with significant implications for understanding tumor biology and the innovation in therapeutic approaches. Increasing evidence suggests that neurological functions are connected with tumorigenesis. In particular, the peripheral and central nervous systems, synapse, neurotransmitters, and neurotrophins affect tumor progression and metastasis through various regulatory approaches and the tumor immune microenvironment. In this review, we summarized the neurological functions that affect tumorigenesis and metastasis, which are controlled by the central and peripheral nervous systems. We also explored the roles of neurotransmitters and neurotrophins in cancer progression. Moreover, we examined the interplay between the nervous system and the tumor immune microenvironment. We have also identified drugs that target the nervous system for cancer treatment. In this review we present the work supporting that therapeutic agent targeting the nervous system could have significant potential to improve cancer therapy.
Collapse
Affiliation(s)
- Qibo Huang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
- Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Wuhan, Hubei, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences, NHC Key Laboratory of Organ Transplantation, Wuhan, China
| | - Bai Hu
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ping Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ye Yuan
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, China
| | - Shiwei Yue
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
- Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Wuhan, Hubei, China
- Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences, NHC Key Laboratory of Organ Transplantation, Wuhan, China
| | - Xiaoping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China.
- Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Wuhan, Hubei, China.
- Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences, NHC Key Laboratory of Organ Transplantation, Wuhan, China.
| | - Junnan Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China.
- Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Wuhan, Hubei, China.
- Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences, NHC Key Laboratory of Organ Transplantation, Wuhan, China.
| | - Zhouping Tang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China.
- Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Wuhan, Hubei, China.
- Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences, NHC Key Laboratory of Organ Transplantation, Wuhan, China.
| |
Collapse
|
7
|
Wang YH, Yang X, Liu CC, Wang X, Yu KD. Unraveling the peripheral nervous System's role in tumor: A Double-edged Sword. Cancer Lett 2025; 611:217451. [PMID: 39793755 DOI: 10.1016/j.canlet.2025.217451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/01/2025] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
The peripheral nervous system (PNS) includes all nerves outside the brain and spinal cord, comprising various cells like neurons and glial cells, such as schwann and satellite cells. The PNS is increasingly recognized for its bidirectional interactions with tumors, exhibiting both pro- and anti-tumor effects. Our review delves into the complex mechanisms underlying these interactions, highlighting recent findings that challenge the conventional understanding of PNS's role in tumorigenesis. We emphasize the contradictory results in the literature and propose novel perspectives on how these discrepancies can be resolved. By focusing on the PNS's influence on tumor initiation, progression, and microenvironment remodeling, we provide a comprehensive analysis that goes beyond the structural description of the PNS. Our review suggests that a deeper comprehension of the PNS-tumor crosstalk is pivotal for developing targeted anticancer strategies. We conclude by emphasizing the need for future research to unravel the intricate dynamics of the PNS in cancer, which may lead to innovative diagnostic tools and therapeutic approaches.
Collapse
Affiliation(s)
- Yan-Hao Wang
- Department of Breast Surgery, Fudan University Shanghai Cancer Center and Cancer Institute, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, PR China; Key Laboratory of Breast Cancer in Shanghai, Shanghai, 200032, PR China
| | - Xuan Yang
- Department of General Surgery, Shanxi Provincial People's Hospital, Taiyuan, 030000, PR China
| | - Cui-Cui Liu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center and Cancer Institute, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, PR China; Key Laboratory of Breast Cancer in Shanghai, Shanghai, 200032, PR China
| | - Xin Wang
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, PR China
| | - Ke-Da Yu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center and Cancer Institute, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, PR China; Key Laboratory of Breast Cancer in Shanghai, Shanghai, 200032, PR China.
| |
Collapse
|
8
|
Li X, Ye C, Wang M, Kwan P, Tian X, Zhang Y. Crosstalk Between the Nervous System and Colorectal Cancer. Neurosci Bull 2025; 41:93-106. [PMID: 38879846 PMCID: PMC11748644 DOI: 10.1007/s12264-024-01238-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/22/2024] [Indexed: 01/05/2025] Open
Abstract
The nervous system is the dominant regulatory system in the human body. The traditional theory is that tumors lack innervation. However, an increasing number of studies have shown complex bidirectional interactions between tumors and the nervous system. Globally, colorectal cancer (CRC) is the third most common cancer. With the rise of tumor neuroscience, the role of nervous system imbalances in the occurrence and development of CRC has attracted increasing amounts of attention. However, there are still many gaps in the research on the interactions and mechanisms involved in the nervous system in CRC. This article systematically reviews emerging research on the bidirectional relationships between the nervous system and CRC, focusing on the following areas: (1) Effects of the nervous system on colon cancer. (2) Effects of CRC on the nervous system. (3) Treatment of CRC associated with the nervous system.
Collapse
Affiliation(s)
- Xi Li
- Jining Medical University, Jining, 272000, China
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining, 272000, China
| | - Chunshui Ye
- Department of Gastrointestinal Surgery, Jining No. 1 People's Hospital, Jining, 272000, China
| | - Min Wang
- Department of Neurology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China
| | - Patrick Kwan
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, 400016, China.
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia.
- Department of Neurology, Alfred Health, Melbourne, VIC, 3004, Australia.
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Melbourne, VIC, 3004, Australia.
| | - Xin Tian
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, 400016, China.
| | - Yanke Zhang
- Department of Neurology, Affiliated Hospital of Jining Medical University, Jining, 272000, China.
- Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
| |
Collapse
|
9
|
Venditti S. Remodeling the Epigenome Through Meditation: Effects on Brain, Body, and Well-being. Subcell Biochem 2025; 108:231-260. [PMID: 39820865 DOI: 10.1007/978-3-031-75980-2_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Epigenetic mechanisms are key processes that constantly reshape genome activity carrying out physiological responses to environmental stimuli. Such mechanisms regulate gene activity without modifying the DNA sequence, providing real-time adaptation to changing environmental conditions. Both favorable and unfavorable lifestyles have been shown to influence body and brain by means of epigenetics, leaving marks on the genome that can either be rapidly reversed or persist in time and even be transmitted trans-generationally. Among virtuous habits, meditation seemingly represents a valuable way of activating inner resources to cope with adverse experiences. While unhealthy habits, stress, and traumatic early-life events may favor the onset of diseases linked to inflammation, neuroinflammation, and neuroendocrine dysregulation, the practice of mindfulness-based techniques was associated with the alleviation of many of the above symptoms, underlying the importance of lifestyles for health and well-being. Meditation influences brain and body systemwide, eliciting structural/morphological changes as well as modulating the levels of circulating factors and the expression of genes linked to the HPA axis and the immune and neuroimmune systems. The current chapter intends to give an overview of pioneering research showing how meditation can promote health through epigenetics, by reshaping the profiles of the three main epigenetic markers, namely DNA methylation, histone modifications, and non-coding RNAs.
Collapse
Affiliation(s)
- Sabrina Venditti
- Department of Biology and Biotechnologies C. Darwin, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
10
|
Dong ZK, Wang YF, Li WP, Jin WL. Neurobiology of cancer: Adrenergic signaling and drug repurposing. Pharmacol Ther 2024; 264:108750. [PMID: 39527999 DOI: 10.1016/j.pharmthera.2024.108750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/04/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Cancer neuroscience, as an emerging converging discipline, provides us with new perspectives on the interactions between the nervous system and cancer progression. As the sympathetic nervous system, in particular adrenergic signaling, plays an important role in the regulation of tumor activity at every hierarchical level of life, from the tumor cell to the tumor microenvironment, and to the tumor macroenvironment, it is highly desirable to dissect its effects. Considering the far-reaching implications of drug repurposing for antitumor drug development, such a large number of adrenergic receptor antagonists on the market has great potential as one of the means of antitumor therapy, either as primary or adjuvant therapy. Therefore, this review aims to summarize the impact of adrenergic signaling on cancer development and to assess the status and prospects of intervening in adrenergic signaling as a therapeutic tool against tumors.
Collapse
Affiliation(s)
- Zi-Kai Dong
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, PR China; Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou 730000, PR China
| | - Yong-Fei Wang
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, PR China; Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou 730000, PR China
| | - Wei-Ping Li
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, PR China; Department of Urology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Wei-Lin Jin
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, PR China; Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou 730000, PR China.
| |
Collapse
|
11
|
Zhang Z, He Z, Pan J, Yuan M, Lang Y, Wei X, Zhang C. The interaction of BDNF with estrogen in the development of hypertension and obesity, particularly during menopause. Front Endocrinol (Lausanne) 2024; 15:1384159. [PMID: 39655343 PMCID: PMC11625588 DOI: 10.3389/fendo.2024.1384159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 11/05/2024] [Indexed: 12/12/2024] Open
Abstract
The expression of BDNF in both neuronal and non-neuronal cells is influenced by various stimuli, including prenatal developmental factors and postnatal conditions such as estrogens, dietary habits, and lifestyle factors like obesity, blood pressure, and aging. Central BDNF plays a crucial role in modulating how target tissues respond to these stimuli, influencing the pathogenesis of hypertension, mitigating obesity, and protecting neurons from aging. Thus, BDNF serves as a dynamic mediator of environmental influences, reflecting an individual's unique history of exposure. Estrogens, on the other hand, regulate various processes to maintain overall physiological well-being. Through nuclear estrogen receptors (ERα, ERβ) and the membrane estrogen receptor (GPER1), estrogens modulate transcriptional processes and signaling events that regulate the expression of target genes, such as ERα, components of the renin-angiotensin system (RAS), and hormone-sensitive lipase. Estrogens are instrumental in maintaining the set point for blood pressure and energy balance. BDNF and estrogens work cooperatively to prevent obesity by favoring lipolysis, and counteractively regulate blood pressure to adapt to the environment. Estrogen deficiency leads to menopause in women with low central BDNF level. This review delves into the complex mechanisms involving BDNF and estrogen, especially in the context of hypertension and obesity, particularly among postmenopausal women. The insights gained aim to inform the development of comprehensive therapeutic strategies for these prevalent syndromes affecting approximately 68% of adults.
Collapse
Affiliation(s)
- Zhongming Zhang
- Zhang Zhongjing College of Chinese Medicine, Henan Key Laboratory of Zhang Zhongjing’s Formulas for Immunoregulation, Nanyang Institute of Technology, Nanyang, Henan, China
- School of Medicine, Zhengzhou University of Industrial Technology, Xinzheng, Henan, China
| | - Ziyi He
- Zhang Zhongjing College of Chinese Medicine, Henan Key Laboratory of Zhang Zhongjing’s Formulas for Immunoregulation, Nanyang Institute of Technology, Nanyang, Henan, China
| | - Jing Pan
- The First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Minghui Yuan
- Zhang Zhongjing College of Chinese Medicine, Henan Key Laboratory of Zhang Zhongjing’s Formulas for Immunoregulation, Nanyang Institute of Technology, Nanyang, Henan, China
| | - Yini Lang
- Zhang Zhongjing College of Chinese Medicine, Henan Key Laboratory of Zhang Zhongjing’s Formulas for Immunoregulation, Nanyang Institute of Technology, Nanyang, Henan, China
| | - Xiaomeng Wei
- School of Medicine, Zhengzhou University of Industrial Technology, Xinzheng, Henan, China
| | - Chaoyun Zhang
- Zhang Zhongjing College of Chinese Medicine, Henan Key Laboratory of Zhang Zhongjing’s Formulas for Immunoregulation, Nanyang Institute of Technology, Nanyang, Henan, China
| |
Collapse
|
12
|
Takai D. Does environmental enrichment mitigate the adverse effects of chronic low dose-rate radiation exposure on mice? RADIATION PROTECTION DOSIMETRY 2024; 200:1625-1630. [PMID: 39540512 DOI: 10.1093/rpd/ncae090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/12/2024] [Accepted: 04/03/2024] [Indexed: 11/16/2024]
Abstract
The purpose of the study was to determine whether environmental enrichments (EE) can mitigate the adverse effects of chronic low-dose-rate radiation exposure in mice. Female B6C3F1 mice were continuously exposed to 20 mGy d-1 gamma-rays under specific-pathogen-free conditions since 8 weeks of age for 400 d. After completion of the radiation exposure, OV3121 cells, derived from an ovarian granulosa cell tumor, were inoculated subcutaneously alongside age-matched non-irradiated control mice. Irradiated mice were shown to have a significantly reduced ability to eliminate inoculated tumors. The results indicate that EE may be able to mitigate the adverse effects of low-dose-rate radiation exposure, but the effects vary greatly and are complex depending on the type of EE.
Collapse
Affiliation(s)
- Daisaku Takai
- Department of Radiobiology, Institute for Environmental Sciences, 2-121 Hacchazawa, Rokkasho, Aomori 039-3213, Japan
| |
Collapse
|
13
|
Chen X, Geng Y, Wei G, He D, Lv J, Wen W, Xiang F, Tao K, Wu C. Neural Circuitries between the Brain and Peripheral Solid Tumors. Cancer Res 2024; 84:3509-3521. [PMID: 39226520 PMCID: PMC11532784 DOI: 10.1158/0008-5472.can-24-1779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/03/2024] [Accepted: 08/27/2024] [Indexed: 09/05/2024]
Abstract
The recent discovery of the pivotal role of the central nervous system in controlling tumor initiation and progression has opened a new field of research. Increasing evidence suggests a bidirectional interaction between the brain and tumors. The brain influences the biological behavior of tumor cells through complex neural networks involving the peripheral nervous system, the endocrine system, and the immune system, whereas tumors can establish local autonomic and sensory neural networks to transmit signals into the central nervous system, thereby affecting brain activity. This review aims to summarize the latest research in brain-tumor cross-talk, exploring neural circuitries between the brain and various peripheral solid tumors, analyzing the roles in tumor development and the related molecular mediators and pathologic mechanisms, and highlighting the critical impact on the understanding of cancer biology. Enhanced understanding of reciprocal communication between the brain and tumors will establish a solid theoretical basis for further research and could open avenues for repurposing psychiatric interventions in cancer treatment.
Collapse
Affiliation(s)
- Xiang Chen
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuli Geng
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guanxin Wei
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Danzeng He
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jialong Lv
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenhao Wen
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fan Xiang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kaixiong Tao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chuanqing Wu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
14
|
Hjorth M, Egan CL, Telles GD, Pal M, Gallego-Ortega D, Fuller OK, McLennan ED, Gillis RD, Oh TG, Muscat GEO, Tegegne S, Mah MSM, Skhinas J, Estevez E, Adams TE, McKay MJ, Molloy M, Watt KI, Qian H, Gregorevic P, Cox TR, Hojman P, Midtgaard J, Christensen JF, Friedrichsen M, Iozzo RV, Sloan EK, Drew BG, Wojtaszewski JFP, Whitham M, Febbraio MA. Decorin, an exercise-induced secretory protein, is associated with improved prognosis in breast cancer patients but does not mediate anti-tumorigenic tissue crosstalk in mice. JOURNAL OF SPORT AND HEALTH SCIENCE 2024; 14:100991. [PMID: 39341495 PMCID: PMC11809198 DOI: 10.1016/j.jshs.2024.100991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/19/2024] [Accepted: 08/08/2024] [Indexed: 10/01/2024]
Abstract
PURPOSE Regular exercise can reduce incidence and progression of breast cancer, but the mechanisms for such effects are not fully understood. The purpose of this study was to examine the mechanisms behind the protective effects of exercise. METHODS We used a variety of rodent and human experimental model systems to determine whether exercise training can reduce tumor burden in breast cancer and to identify mechanism associated with any exercise training effects on tumor burden. RESULTS We show that voluntary wheel running slows tumor development in the mammary specific polyomavirus middle T antigen overexpression (MMTV-PyMT) mouse model of breast cancer but only when mice are not housed alone. We identify the proteoglycan decorin as a contraction-induced secretory factor that systemically increases in patients with breast cancer immediately following exercise. Moreover, high expression of decorin in tumors is associated with improved prognosis in patients, while treatment of breast cancer cells in vitro with decorin reduces cell proliferation. Notwithstanding, when we overexpressed decorin in murine muscle or injected recombinant decorin systemically into mouse models of breast cancer, elevated plasma decorin concentrations did not result in higher tumor decorin levels and tumor burden was not improved. CONCLUSION Exercise training is anti-tumorigenic in a mouse model of luminal breast cancer, but the effect is abrogated by social isolation. The proteoglycan decorin is an exercise-induced secretory protein, and tumor decorin levels are positively associated with improved prognosis in patients. The hypothesis that elevated plasma decorin is a mechanism by which exercise training improves breast cancer progression in humans is not, however, supported by our pre-clinical data since elevated circulating decorin did not increase tumor decorin levels in these models.
Collapse
Affiliation(s)
- Marit Hjorth
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo 0317, Norway; Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Casey L Egan
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC 3052, Australia
| | - Guilherme D Telles
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC 3052, Australia; Laboratory of Neuromuscular Adaptations to Strength Training, School of Physical Education and Sport, University of São Paulo (USP), São Paulo 05508-030, Brazil; Center of Study in Exercise and Oncology (CEEO), Campinas 13083-888, Brazil
| | - Martin Pal
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; School of Dentistry & Medical Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
| | - David Gallego-Ortega
- School of Biomedical Engineering, University of Technology, Sydney, NSW 2678, Australia
| | - Oliver K Fuller
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC 3052, Australia
| | - Emma D McLennan
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC 3052, Australia
| | - Ryan D Gillis
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC 3052, Australia
| | - Tae Gyu Oh
- College of Medicine, University of Oklahoma, Oklahoma City, OK 73117, USA; Institute of Molecular Biosciences, University of Queensland, St. Lucia, QLD 4072, Australia
| | - George E O Muscat
- Institute of Molecular Biosciences, University of Queensland, St. Lucia, QLD 4072, Australia
| | - Surafel Tegegne
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC 3052, Australia
| | - Michael S M Mah
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC 3052, Australia
| | - Joanna Skhinas
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Emma Estevez
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | | | - Matthew J McKay
- Australian Proteome Analysis Facility, Macquarie University, Sydney, NSW 2109, Australia; School of Medical Sciences, University of Sydney, Sydney, NSW 2050, Australia
| | - Mark Molloy
- Australian Proteome Analysis Facility, Macquarie University, Sydney, NSW 2109, Australia; School of Medical Sciences, University of Sydney, Sydney, NSW 2050, Australia
| | - Kevin I Watt
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, VIC 3053, Australia; Department of Physiology, The University of Melbourne, Melbourne, VIC 3052, Australia
| | - Hongwei Qian
- Department of Physiology, The University of Melbourne, Melbourne, VIC 3052, Australia
| | - Paul Gregorevic
- Department of Physiology, The University of Melbourne, Melbourne, VIC 3052, Australia
| | - Thomas R Cox
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | | | | | | | - Martin Friedrichsen
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen 2100, Denmark
| | - Renato V Iozzo
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19144, USA
| | - Erica K Sloan
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC 3052, Australia
| | - Brian G Drew
- Baker Heart and Diabetes Institute, Prahran, VIC 3004, Australia
| | - Jørgen F P Wojtaszewski
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen 2100, Denmark
| | - Martin Whitham
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Edgbaston B15 2TT, UK.
| | - Mark A Febbraio
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC 3052, Australia.
| |
Collapse
|
15
|
Kump DS. Mechanisms Underlying the Rarity of Skeletal Muscle Cancers. Int J Mol Sci 2024; 25:6480. [PMID: 38928185 PMCID: PMC11204341 DOI: 10.3390/ijms25126480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Skeletal muscle (SKM), despite comprising ~40% of body mass, rarely manifests cancer. This review explores the mechanisms that help to explain this rarity, including unique SKM architecture and function, which prohibits the development of new cancer as well as negates potential metastasis to SKM. SKM also presents a unique immune environment that may magnify the anti-tumorigenic effect. Moreover, the SKM microenvironment manifests characteristics such as decreased extracellular matrix stiffness and altered lactic acid, pH, and oxygen levels that may interfere with tumor development. SKM also secretes anti-tumorigenic myokines and other molecules. Collectively, these mechanisms help account for the rarity of SKM cancer.
Collapse
Affiliation(s)
- David S Kump
- Department of Biological Sciences, Winston-Salem State University, 601 Martin Luther King Jr. Dr., Winston-Salem, NC 27110, USA
| |
Collapse
|
16
|
Magnon C. Cancer Builds a Noxious Partnership with Psychologic Stress. Cancer Res 2024; 84:956-957. [PMID: 38558129 DOI: 10.1158/0008-5472.can-24-0628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 02/22/2024] [Indexed: 04/04/2024]
Abstract
I was recently surprised to hear a medical doctor on a TV show refute the role of stress in cancer, assuming that "the whole population would have cancer if this was the case." This statement illustrates a long and winding road since Hippocrates suggested the potential relationship between cancer and psychologic disturbances. The 20th and 21st centuries have finally witnessed the evidence of how physical or psychosocial stress situations contribute to the development and progression of cancer, and it is now assumed that psychologic stress does affect multiple aspects of cancer such as angiogenesis, immunologic escape, invasion, and metastasis. The 2010 publication by Sloan and colleagues in Cancer Research achieved a mechanistic step toward the understanding of how physical distress enhances metastasis through perturbation of the tumor immune system and paves the way for future cancer research in psychoneuroimmunology. This Landmark commentary places this publication in the historical context of science, discusses major advances in the field, and asks questions to be answered while drawing perspectives on the key role of the peripheral and central nervous systems in cancer. See related article by Sloan and colleagues, Cancer Res 2010;70:7042-52.
Collapse
Affiliation(s)
- Claire Magnon
- Laboratory of Cancer and Microenvironment-National Institute of Health and Medical Research (INSERM), Institute of Biology François Jacob-Atomic Energy Commission (CEA), University of Paris Cité, University of Paris-Saclay, Paris, France
| |
Collapse
|
17
|
Abstract
Although there is little direct evidence supporting that stress affects cancer incidence, it does influence the evolution, dissemination and therapeutic outcomes of neoplasia, as shown in human epidemiological analyses and mouse models. The experience of and response to physiological and psychological stressors can trigger neurological and endocrine alterations, which subsequently influence malignant (stem) cells, stromal cells and immune cells in the tumour microenvironment, as well as systemic factors in the tumour macroenvironment. Importantly, stress-induced neuroendocrine changes that can regulate immune responses have been gradually uncovered. Numerous stress-associated immunomodulatory molecules (SAIMs) can reshape natural or therapy-induced antitumour responses by engaging their corresponding receptors on immune cells. Moreover, stress can cause systemic or local metabolic reprogramming and change the composition of the gastrointestinal microbiota which can indirectly modulate antitumour immunity. Here, we explore the complex circuitries that link stress to perturbations in the cancer-immune dialogue and their implications for therapeutic approaches to cancer.
Collapse
Affiliation(s)
- Yuting Ma
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China.
| | - Guido Kroemer
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
- Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM U1138, Centre de Recherche des Cordeliers, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
- Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
18
|
Gouhari F, Zandi R, Mehrvar A, Talebi S, Vahdat Shariatpanahi Z. Improved physical disability and nutritional status by bovine colostrum supplementation in adults with traumatic peri-trochanteric femoral fracture: A randomized, controlled, clinical trial. Injury 2024; 55:111253. [PMID: 38042695 DOI: 10.1016/j.injury.2023.111253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/26/2023] [Accepted: 11/26/2023] [Indexed: 12/04/2023]
Abstract
OBJECTIVES Patients with femur fracture after surgery are at risk of malnutrition, weight loss, disability, and mobility complications. In the present study the role of colostrum supplementation on physical disability, and some nutritional variables after surgery has been investigated. RESEARCH METHODS & PROCEDURES Patients were randomly assigned to two groups. The intervention group received 45 g colostrum and the control group received 15 g whey protein daily for 21 days (each containing 12 g of protein). The trend comparison during 30 days of variables including weight, appetite, serum albumin level, hemoglobin and lymphocytes between the two groups was modeled with the generalized estimation equation. Moreover, the trend comparison during 90 days of Oswestry Disability Index (ODI) between the two groups was calculated. RESULTS The basic characteristics were the same between the two groups (colostrum, n = 46; control, n = 48). Protein intake was the same in both groups during the study period. There was a significant difference in weight gain (ß = 0.32, 95 % CI: 0.09-0.54; P = 0.005) within 30 days after operation between the colostrum and control groups in favor of the increase in the colostrum group. Compared to the control group, patients in the colostrum group had a 0.31 score more appetite (P < 0.001), 0.17 g/dL higher serum albumin level (P = 0.001), 0.5 mg/dL higher hemoglobin level and 440 more blood lymphocytes (P < 0.001) during the 30 days of intervention. Regarding physical function disability, patients in the colostrum group had about 4 ODI scores lower than the control group during the study period. CONCLUSION Colostrum supplement can increase appetite, hemoglobin, serum albumin level and the number of blood lymphocytes more than the control group. It can also accelerate weight gain and physical performance after surgery.
Collapse
Affiliation(s)
- Faezeh Gouhari
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Zandi
- Department of Orthopedics, Taleghani Hospital, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Mehrvar
- Department of Orthopedics, Taleghani Hospital, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahin Talebi
- Department of Orthopedics, Taleghani Hospital, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Vahdat Shariatpanahi
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
19
|
Wang W, Yang Y, Chen Z, Wang X, Zhang GL, He T, Tong L, Tang B. Simultaneous Detection of Aldehyde Metabolites by Light-Assisted Ambient Ionization Mass Spectrometry. Anal Chem 2024; 96:787-793. [PMID: 38170819 DOI: 10.1021/acs.analchem.3c04124] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
In the clinic, small-molecule metabolites (SMMs) in blood are highly convincing indicators for disease diagnosis, such as cancer. However, challenges still exist for detection of SMMs due to their low concentration and complicated components in blood. In this work, we report the design of a novel "selenium signature" nanoprobe (Se nanoprobe) for efficient identification of multiple aldehyde metabolites in blood. This Se nanoprobe consists of magnetic nanoparticles that can enrich aldehyde metabolites from a complex environment, functionalized with photosensitive "selenium signature" hydrazide molecules that can react with aldehyde metabolites. Upon irradiation with UV, the aldehyde derivatives can be released from the Se nanoprobe and further sprayed by mass spectrometry through ambient ionization (AIMS). By quantifying the selenium isotope distribution (MS/MS) from the derivatization product, accurate detection of several aldehyde metabolites, including valeraldehyde (Val), heptaldehyde (Hep), 2-furaldehyde (2-Fur), 10-undecenal aldehyde (10-Und), and benzaldehyde (Ben), is realized. This strategy reveals a new solution for quick and accurate cancer diagnosis in the clinic.
Collapse
Affiliation(s)
- Weiqing Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China
| | - Yanmei Yang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China
| | - Zhenzhen Chen
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China
| | - Xiaoxiao Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China
| | - Guang-Lu Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China
| | - Tairan He
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China
| | - Lili Tong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China
- Laoshan Laboratory, Qingdao 266237, P. R. China
| |
Collapse
|
20
|
Lyu Y, Xie F, Chen B, Shin WS, Chen W, He Y, Leung KT, Tse GMK, Yu J, To KF, Kang W. The nerve cells in gastrointestinal cancers: from molecular mechanisms to clinical intervention. Oncogene 2024; 43:77-91. [PMID: 38081962 PMCID: PMC10774121 DOI: 10.1038/s41388-023-02909-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 01/10/2024]
Abstract
Gastrointestinal (GI) cancer is a formidable malignancy with significant morbidity and mortality rates. Recent studies have shed light on the complex interplay between the nervous system and the GI system, influencing various aspects of GI tumorigenesis, such as the malignance of cancer cells, the conformation of tumor microenvironment (TME), and the resistance to chemotherapies. The discussion in this review first focused on exploring the intricate details of the biological function of the nervous system in the development of the GI tract and the progression of tumors within it. Meanwhile, the cancer cell-originated feedback regulation on the nervous system is revealed to play a crucial role in the growth and development of nerve cells within tumor tissues. This interaction is vital for understanding the complex relationship between the nervous system and GI oncogenesis. Additionally, the study identified various components within the TME that possess a significant influence on the occurrence and progression of GI cancer, including microbiota, immune cells, and fibroblasts. Moreover, we highlighted the transformation relationship between non-neuronal cells and neuronal cells during GI cancer progression, inspiring the development of strategies for nervous system-guided anti-tumor drugs. By further elucidating the deep mechanism of various neuroregulatory signals and neuronal intervention, we underlined the potential of these targeted drugs translating into effective therapies for GI cancer treatment. In summary, this review provides an overview of the mechanisms of neuromodulation and explores potential therapeutic opportunities, providing insights into the understanding and management of GI cancers.
Collapse
Affiliation(s)
- Yang Lyu
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China
- CUHK-Shenzhen Research Institute, Shenzhen, China
| | - Fuda Xie
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China
- CUHK-Shenzhen Research Institute, Shenzhen, China
| | - Bonan Chen
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China
- CUHK-Shenzhen Research Institute, Shenzhen, China
| | - Wing Sum Shin
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Wei Chen
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Yulong He
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Kam Tong Leung
- Department of Pediatrics, The Chinese University of Hong Kong, Hong Kong, China
| | - Gary M K Tse
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Jun Yu
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Ka Fai To
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Wei Kang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China.
- CUHK-Shenzhen Research Institute, Shenzhen, China.
| |
Collapse
|
21
|
Oi-Kano Y, Goto T, Takahashi H, Iwasaki Y, Kawada T. Effect of Oleuropein on Anti-Obesity and Uncoupling Protein 1 Level in Brown Adipose Tissue in Mild Treadmill Walking Rats with Diet-Induced Obesity. J Nutr Sci Vitaminol (Tokyo) 2024; 70:193-202. [PMID: 38945884 DOI: 10.3177/jnsv.70.193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Oleuropein aglycone (OA), which is the absorbed form of oleuropein, is a major phenolic compound in extra virgin olive oil. We analyzed the anti-obesity effect of OA intake combined with mild treadmill walking (MTW, 4 m/min for 20 min/d, 5-6 d/wk, without electric shocks and slope) in rats under a high-fat diet (HF). Four-week-old male Sprague-Dawley rats (n=28) were equally divided into four groups: control (HF), 0.08% oleuropein-supplemented HF (HFO), HF with MTW (HF+W), and HFO with MTW (HFO+W) groups. After 28 d, the inguinal subcutaneous fat content and weight gain were significantly lower in the HFO+W group than in the control group. The HFO+W group also had significantly higher levels of urinary noradrenaline secretion, interscapular brown adipose tissue, uncoupling protein 1, brain transient receptor potential ankyrin subtype 1 (TRPA1), vanilloid subtype 1 (TRPV1), and brain-derived neurotrophic factor (BDNF) than the control group. Especially, the HFO+W group showed a synergistic effect on noradrenaline secretion. Therefore, OA combined with MTW may accelerate the enhancement of UCP1 and BDNF levels in rats with HF-induced obesity by increasing noradrenaline secretion after TRPA1 and TRPV1 activation.
Collapse
Affiliation(s)
- Yuriko Oi-Kano
- Laboratory of Nutrition Chemistry, Faculty of Home Economics, Kobe Women's University
| | - Tsuyoshi Goto
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University
| | - Haruya Takahashi
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University
| | - Yusaku Iwasaki
- Laboratory of Animal Function, Kyoto Prefectural University
| | - Teruo Kawada
- Laboratory of Molecular Function of Food, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University
| |
Collapse
|
22
|
Huang W, Bates R, Zou X, Queen NJ, Mo X, Arnold WD, Ray A, Owendoff G, Cao L. Environmental Enrichment Improves Motor Function and Muscle Transcriptome of Aged Mice. Adv Biol (Weinh) 2024; 8:e2300148. [PMID: 37518850 PMCID: PMC10825065 DOI: 10.1002/adbi.202300148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/29/2023] [Indexed: 08/01/2023]
Abstract
Aging results in the progressive decline of muscle strength. Interventions to maintain muscle strength may mitigate the age-related loss of physical function, thus maximizing health span. The work on environmental enrichment (EE), an experimental paradigm recapitulating aspects of an active lifestyle, has revealed EE-induced metabolic benefits mediated by a brain-fat axis across the lifespan of mice. EE initiated at 18-month of age shows a trend toward an increased mean lifespan. While previous work described EE's influences on the aging dynamics of several central-peripheral processes, its influence on muscle remained understudied. Here, the impact of EE is investigated on motor function, neuromuscular physiology, and the skeletal muscle transcriptome. EE is initiated in 20-month-old mice for a five-month period. EE mice exhibit greater relative lean mass that is associated with improved mobility and hindlimb grip strength. Transcriptomic profiling of muscle tissue reveals an EE-associated enrichment of gene expression within several metabolic pathways related to oxidative phosphorylation and the TCA cycle. Many mitochondrial-related genes-several of which participate in the electron transport chain-are upregulated. Stress-responsive signaling pathways are downregulated because of EE. The results suggest that EE improves motor function-possibly through preservation of mitochondrial function-even late in life.
Collapse
Affiliation(s)
- Wei Huang
- Department of Cancer Biology & Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Rhiannon Bates
- The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Xunchang Zou
- Department of Cancer Biology & Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Nicholas J. Queen
- Department of Cancer Biology & Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Xiaokui Mo
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - W. David Arnold
- Department of Neurology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Alissa Ray
- Department of Neurology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Gregory Owendoff
- Department of Neurology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Lei Cao
- Department of Cancer Biology & Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| |
Collapse
|
23
|
Ichimura-Shimizu M, Kojima M, Suzuki S, Miyata M, Osaki Y, Matsui K, Mizui T, Tsuneyama K. Brain-derived neurotrophic factor knock-out mice develop non-alcoholic steatohepatitis. J Pathol 2023; 261:465-476. [PMID: 37781961 DOI: 10.1002/path.6204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 07/26/2023] [Accepted: 08/17/2023] [Indexed: 10/03/2023]
Abstract
While brain-derived neurotrophic factor (BDNF), which is a growth factor associated with cognitive improvement and the alleviation of depression symptoms, is known to regulate food intake and body weight, the role of BDNF in peripheral disease is not fully understood. Here, we show that reduced BDNF expression is associated with weight gain and the chronic liver disease non-alcoholic steatohepatitis (NASH). At 10 months of age, BDNF-heterozygous (BDNF+/- ) mice developed symptoms of NASH: centrilobular/perivenular steatosis, lobular inflammation with infiltration of neutrophils, ballooning hepatocytes, and fibrosis of the liver. Obesity and higher serum levels of glucose and insulin - major pathologic features in human NASH - were dramatic. Dying adipocytes were surrounded by macrophages in visceral fat, suggesting that chronic inflammation occurs in peripheral organs. RNA sequencing (RNA-seq) studies of the liver revealed that the most significantly enriched Gene Ontology term involved fatty acid metabolic processes and the modulation of neutrophil aggregation, pathologies that well characterise NASH. Gene expression analysis by RNA-seq also support the notion that BDNF+/- mice are under oxidative stress, as indicated by alterations in the expression of the cytochrome P450 family and a reduction in glutathione S-transferase p, an antioxidant enzyme. Histopathologic phenotypes of NASH were also observed in a knock-in mouse (BDNF+/pro ), in which the precursor BDNF is inefficiently converted into the mature form of BDNF. Lastly, as BDNF reduction causes overeating and subsequent obesity, a food restriction study was conducted in BDNF+/pro mice. Pair-fed BDNF+/pro mice developed hepatocellular damage and showed infiltration of inflammatory cells, including neutrophils in the liver, despite having body weights and blood parameters that were comparable to those of controls. This is the first report demonstrating that reduced BDNF expression plays a role in the pathogenic mechanism of NASH, which is a hepatic manifestation of metabolic syndrome. © 2023 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Mayuko Ichimura-Shimizu
- Department of Pathology and Laboratory Medicine, Tokushima University Graduate School, Tokushima, Japan
| | - Masami Kojima
- Department of Applied Bioscience, College of Bioscience and Chemistry, Kanazawa Institute of Technology, Ishikawa, Japan
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Osaka, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Kawaguchi, Japan
| | - Shingo Suzuki
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kagawa University, Kagawa, Japan
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Takamatsu, Japan
| | - Misaki Miyata
- Department of Applied Bioscience, College of Bioscience and Chemistry, Kanazawa Institute of Technology, Ishikawa, Japan
| | - Yui Osaki
- Department of Pathology and Laboratory Medicine, Tokushima University Graduate School, Tokushima, Japan
| | - Konomi Matsui
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Osaka, Japan
| | - Toshiyuki Mizui
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Osaka, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Kawaguchi, Japan
| | - Koichi Tsuneyama
- Department of Pathology and Laboratory Medicine, Tokushima University Graduate School, Tokushima, Japan
| |
Collapse
|
24
|
Fernandes MSDS, Lacerda TR, Fidélis DEDS, Santos GCJ, Filgueira TO, de Souza RF, Lagranha CJ, Lira FS, Castoldi A, Souto FO. Environmental Enrichment in Cancer as a Possible Tool to Combat Tumor Development: A Systematic Review. Int J Mol Sci 2023; 24:16516. [PMID: 38003706 PMCID: PMC10671353 DOI: 10.3390/ijms242216516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
This systematic review aims to evaluate the influence of environmental enrichment (EE) on oncological factors in experimental studies involving various types of cancer models. A comprehensive search was conducted in three databases: PubMed (161 articles), Embase (335 articles), and Scopus (274 articles). Eligibility criteria were applied based on the PICOS strategy to minimize bias. Two independent researchers performed the searches, with a third participant resolving any discrepancies. The selected articles were analyzed, and data regarding sample characteristics and EE protocols were extracted. The outcomes focused solely on cancer and tumor-related parameters, including cancer type, description of the cancer model, angiogenesis, tumor occurrence, volume, weight, mice with tumors, and tumor inhibition rate. A total of 770 articles were identified across the three databases, with 12 studies meeting the inclusion criteria for this systematic review. The findings demonstrated that different EE protocols were effective in significantly reducing various aspects of tumor growth and development, such as angiogenesis, volume, weight, and the number of mice with tumors. Furthermore, EE enhanced the rate of tumor inhibition in mouse cancer models. This systematic review qualitatively demonstrates the impacts of EE protocols on multiple parameters associated with tumor growth and development, including angiogenesis, occurrence, volume, weight, and tumor incidence. Moreover, EE demonstrated the potential to increase the rate of tumor inhibition. These findings underscore the importance of EE as a valuable tool in the management of cancer.
Collapse
Affiliation(s)
- Matheus Santos de Sousa Fernandes
- Instituto Keizo Asami, Universidade Federal de Pernambuco, Recife 50740-600, Pernambuco, Brazil; (M.S.d.S.F.); (T.O.F.); (A.C.)
- Programa de Pós-Graduação em Biologia Aplicada à Saúde, Centro de Biociências, Universidade Federal de Pernambuco, Recife 50740-600, Pernambuco, Brazil; (T.R.L.); (D.E.d.S.F.)
| | - Tiago Ramos Lacerda
- Programa de Pós-Graduação em Biologia Aplicada à Saúde, Centro de Biociências, Universidade Federal de Pernambuco, Recife 50740-600, Pernambuco, Brazil; (T.R.L.); (D.E.d.S.F.)
| | - Débora Eduarda da Silva Fidélis
- Programa de Pós-Graduação em Biologia Aplicada à Saúde, Centro de Biociências, Universidade Federal de Pernambuco, Recife 50740-600, Pernambuco, Brazil; (T.R.L.); (D.E.d.S.F.)
| | | | - Tayrine Ordonio Filgueira
- Instituto Keizo Asami, Universidade Federal de Pernambuco, Recife 50740-600, Pernambuco, Brazil; (M.S.d.S.F.); (T.O.F.); (A.C.)
- Programa de Pós-Graduação em Biologia Aplicada à Saúde, Centro de Biociências, Universidade Federal de Pernambuco, Recife 50740-600, Pernambuco, Brazil; (T.R.L.); (D.E.d.S.F.)
| | - Raphael Fabrício de Souza
- Department of Physical Education, Federal University of Sergipe, São Cristovão 49100-000, Sergipe, Brazil;
| | - Claúdia Jacques Lagranha
- Programa de Pós-Graduação em Nutrição Atividade Física e Plasticidade Fenotípica, Centro Acadêmico de Vitória, Vitória de Santo Antão 55608-680, Pernambuco, Brazil;
| | - Fábio S. Lira
- Exercise and Immunometabolism Research Group, Postgraduate Program in Movement Sciences, Department of Physical Education, Universidade Estadual Paulista (UNESP), Presidente Prudente 19060-900, São Paulo, Brazil;
- Faculty of Sport Science and Physical Education, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Angela Castoldi
- Instituto Keizo Asami, Universidade Federal de Pernambuco, Recife 50740-600, Pernambuco, Brazil; (M.S.d.S.F.); (T.O.F.); (A.C.)
- Programa de Pós-Graduação em Biologia Aplicada à Saúde, Centro de Biociências, Universidade Federal de Pernambuco, Recife 50740-600, Pernambuco, Brazil; (T.R.L.); (D.E.d.S.F.)
| | - Fabrício Oliveira Souto
- Instituto Keizo Asami, Universidade Federal de Pernambuco, Recife 50740-600, Pernambuco, Brazil; (M.S.d.S.F.); (T.O.F.); (A.C.)
- Programa de Pós-Graduação em Biologia Aplicada à Saúde, Centro de Biociências, Universidade Federal de Pernambuco, Recife 50740-600, Pernambuco, Brazil; (T.R.L.); (D.E.d.S.F.)
- Núcleo de Ciências da Vida—NCV, Centro Acadêmico do Agreste—CAA, Caruaru 50670-901, Pernambuco, Brazil
| |
Collapse
|
25
|
Park SY, Hwang BO, Song NY. The role of myokines in cancer: crosstalk between skeletal muscle and tumor. BMB Rep 2023; 56:365-373. [PMID: 37291054 PMCID: PMC10390289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/02/2023] [Accepted: 06/01/2023] [Indexed: 06/10/2023] Open
Abstract
Loss of skeletal muscle mass is a primary feature of sarcopenia and cancer cachexia. In cancer patients, tumor-derived inflammatory factors promote muscle atrophy via tumor-to-muscle effects, which is closely associated with poor prognosis. During the past decade, skeletal muscle has been considered to function as an autocrine, paracrine, and endocrine organ by releasing numerous myokines. The circulating myokines can modulate pathophysiology in the other organs, as well as in the tumor microenvironment, suggesting myokines function as muscleto-tumor signaling molecules. Here, we highlight the roles of myokines in tumorigenesis, particularly in terms of crosstalk between skeletal muscle and tumor. Better understanding of tumor-to-muscle and muscle-to-tumor effects will shed light on novel strategies for the diagnosis and treatment of cancer. [BMB Reports 2023; 56(7): 365-373].
Collapse
Affiliation(s)
- Se-Young Park
- Department of Applied Life Science, The Graduate School, Yonsei University, Seoul 03722, Korea
- BK21 Four Project, Yonsei University College of Dentistry, Seoul 03722, Korea
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul 03722, Korea
| | - Byeong-Oh Hwang
- Department of Applied Life Science, The Graduate School, Yonsei University, Seoul 03722, Korea
- BK21 Four Project, Yonsei University College of Dentistry, Seoul 03722, Korea
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul 03722, Korea
| | - Na-Young Song
- Department of Applied Life Science, The Graduate School, Yonsei University, Seoul 03722, Korea
- BK21 Four Project, Yonsei University College of Dentistry, Seoul 03722, Korea
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul 03722, Korea
- Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul 03722, Korea
| |
Collapse
|
26
|
Liu T, Li J, Li Q, Liang Y, Gao J, Meng Z, Li P, Yao M, Gu J, Tu H, Gan Y. Environmental eustress promotes liver regeneration through the sympathetic regulation of type 1 innate lymphoid cells to increase IL-22 in mice. Hepatology 2023; 78:136-149. [PMID: 36631003 DOI: 10.1097/hep.0000000000000239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 12/02/2022] [Indexed: 01/13/2023]
Abstract
BACKGROUND AND AIMS The liver has the unique ability of regeneration, which is extremely important for restoring homeostasis after liver injury. Although clinical observations have revealed an association between psychological stress and the liver, whether stress has a causal influence on the liver regeneration remains markedly less defined. APPROACH AND RESULTS Rearing rodents in an enriched environment (EE) can induce eustress or positive psychological stress. Herein, EE-induced eustress was found to significantly enhance the ability of liver regeneration after partial hepatectomy or carbon tetrachloride-induced liver injury based on the more rapid restoration of liver/body weight ratio and the significantly increased number of proliferating hepatocytes in EE mice. Mechanistically, the cytokine array revealed that IL-22 was markedly increased in the regenerating liver in response to EE. Blockade of IL-22 signaling abrogated the enhanced liver regeneration induced by EE. Group 1 innate lymphoid cells (ILCs), including type 1 ILCs (ILC1s), have been identified as the major sources of IL-22 in the regenerating liver. EE housing led to a rapid accumulation of hepatic ILC1s after partial hepatectomy and the EE-induced enhancement of liver regeneration and elevation of IL-22 was nearly eliminated in ILC1-deficient Tbx21-/- mice. Chemical sympathectomy or blockade of β-adrenergic signaling also abolished the effect of EE on ILC1s and attenuated the enhanced liver regeneration of EE-housed mice. CONCLUSION The study findings support the brain-liver axis and suggest that environment-induced eustress promotes liver regeneration through the sympathetic nerve/ILC1/IL-22 axis.
Collapse
Affiliation(s)
- Tingting Liu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jin Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiyi Liang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Gao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zihong Meng
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peiying Li
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ming Yao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinyang Gu
- Center for Liver Transplantation, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Transplantation, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong Tu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Gan
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
27
|
Park SY, Hwang BO, Song NY. The role of myokines in cancer: crosstalk between skeletal muscle and tumor. BMB Rep 2023; 56:365-373. [PMID: 37291054 PMCID: PMC10390289 DOI: 10.5483/bmbrep.2023-0064] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/02/2023] [Accepted: 06/01/2023] [Indexed: 09/22/2023] Open
Abstract
Loss of skeletal muscle mass is a primary feature of sarcopenia and cancer cachexia. In cancer patients, tumor-derived inflammatory factors promote muscle atrophy via tumor-to-muscle effects, which is closely associated with poor prognosis. During the past decade, skeletal muscle has been considered to function as an autocrine, paracrine, and endocrine organ by releasing numerous myokines. The circulating myokines can modulate pathophysiology in the other organs, as well as in the tumor microenvironment, suggesting myokines function as muscleto-tumor signaling molecules. Here, we highlight the roles of myokines in tumorigenesis, particularly in terms of crosstalk between skeletal muscle and tumor. Better understanding of tumor-to-muscle and muscle-to-tumor effects will shed light on novel strategies for the diagnosis and treatment of cancer. [BMB Reports 2023; 56(7): 365-373].
Collapse
Affiliation(s)
- Se-Young Park
- Department of Applied Life Science, The Graduate School, Yonsei University, Seoul 03722, Korea
- BK21 Four Project, Yonsei University College of Dentistry, Seoul 03722, Korea
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul 03722, Korea
| | - Byeong-Oh Hwang
- Department of Applied Life Science, The Graduate School, Yonsei University, Seoul 03722, Korea
- BK21 Four Project, Yonsei University College of Dentistry, Seoul 03722, Korea
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul 03722, Korea
| | - Na-Young Song
- Department of Applied Life Science, The Graduate School, Yonsei University, Seoul 03722, Korea
- BK21 Four Project, Yonsei University College of Dentistry, Seoul 03722, Korea
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul 03722, Korea
- Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul 03722, Korea
| |
Collapse
|
28
|
Abstract
The recently uncovered key role of the peripheral and central nervous systems in controlling tumorigenesis and metastasis has opened a new area of research to identify innovative approaches against cancer. Although the 'neural addiction' of cancer is only partially understood, in this Perspective we discuss the current knowledge and perspectives on peripheral and central nerve circuitries and brain areas that can support tumorigenesis and metastasis and the possible reciprocal influence that the brain and peripheral tumours exert on one another. Tumours can build up local autonomic and sensory nerve networks and are able to develop a long-distance relationship with the brain through circulating adipokines, inflammatory cytokines, neurotrophic factors or afferent nerve inputs, to promote cancer initiation, growth and dissemination. In turn, the central nervous system can affect tumour development and metastasis through the activation or dysregulation of specific central neural areas or circuits, as well as neuroendocrine, neuroimmune or neurovascular systems. Studying neural circuitries in the brain and tumours, as well as understanding how the brain communicates with the tumour or how intratumour nerves interplay with the tumour microenvironment, can reveal unrecognized mechanisms that promote cancer development and progression and open up opportunities for the development of novel therapeutic strategies. Targeting the dysregulated peripheral and central nervous systems might represent a novel strategy for next-generation cancer treatment that could, in part, be achieved through the repurposing of neuropsychiatric drugs in oncology.
Collapse
Affiliation(s)
- Claire Magnon
- Laboratory of Cancer and Microenvironment-National Institute of Health and Medical Research (INSERM), Institute of Biology François Jacob-Atomic Energy Commission (CEA), University of Paris Cité, University of Paris-Saclay, Paris, France.
| | - Hubert Hondermarck
- School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|
29
|
Queen NJ, Huang W, Komatineni S, Mansour AG, Xiao R, Chrislip LA, Cao L. Social isolation exacerbates diet-induced obesity and peripheral inflammation in young male mice under thermoneutrality. iScience 2023; 26:106259. [PMID: 36915694 PMCID: PMC10006833 DOI: 10.1016/j.isci.2023.106259] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 01/10/2023] [Accepted: 02/17/2023] [Indexed: 02/25/2023] Open
Abstract
Social isolation (SI) is associated with an increased risk of mortality and various chronic diseases-including obesity-in humans. Murine studies probing SI metabolic outcomes remain inconsistent, due in part to a lack of consideration for housing temperature. Such experiments typically occur at room temperature, subjecting mice to chronic cold stress. Single housing prevents social thermoregulation, further exacerbating cold stress and obscuring psychosocial influences on metabolism at room temperature. In this study, C57BL/6 and BALB/c male mice were group- and single-housed under thermoneutral conditions to determine whether SI affects the development of high-fat diet-induced obesity. We report SI promotes weight gain, increases food intake, increases adiposity, worsens glycemic control, reduces insulin signaling, exacerbates systemic and adipose inflammatory responses, and induces a molecular signature within the hypothalamus. This study establishes a murine model that recapitulates the SI-induced propensity for obesity, which may further our understanding of SI's influence on health and disease.
Collapse
Affiliation(s)
- Nicholas J. Queen
- Department of Cancer Biology & Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Wei Huang
- Department of Cancer Biology & Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Suraj Komatineni
- Department of Cancer Biology & Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Anthony G. Mansour
- Department of Cancer Biology & Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
- Department of Hematological Malignancies and Stem Cell Transplantation, City of Hope, National Medical Center and the Beckman Research Institute, Los Angeles, CA 91010, USA
| | - Run Xiao
- Department of Cancer Biology & Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Logan A. Chrislip
- Department of Cancer Biology & Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Lei Cao
- Department of Cancer Biology & Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| |
Collapse
|
30
|
Anderson JM, Boardman AA, Bates R, Zou X, Huang W, Cao L. Hypothalamic TrkB.FL overexpression improves metabolic outcomes in the BTBR mouse model of autism. PLoS One 2023; 18:e0282566. [PMID: 36893171 PMCID: PMC9997972 DOI: 10.1371/journal.pone.0282566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 02/20/2023] [Indexed: 03/10/2023] Open
Abstract
BTBR T+ Itpr3tf/J (BTBR) mice are used as a model of autism spectrum disorder (ASD), displaying similar behavioral and physiological deficits observed in patients with ASD. Our recent study found that implementation of an enriched environment (EE) in BTBR mice improved metabolic and behavioral outcomes. Brain-derived neurotrophic factor (Bdnf) and its receptor tropomyosin kinase receptor B (Ntrk2) were upregulated in the hypothalamus, hippocampus, and amygdala by implementing EE in BTBR mice, suggesting that BDNF-TrkB signaling plays a role in the EE-BTBR phenotype. Here, we used an adeno-associated virus (AAV) vector to overexpress the TrkB full-length (TrkB.FL) BDNF receptor in the BTBR mouse hypothalamus in order to assess whether hypothalamic BDNF-TrkB signaling is responsible for the improved metabolic and behavioral phenotypes associated with EE. Normal chow diet (NCD)-fed and high fat diet (HFD)-fed BTBR mice were randomized to receive either bilateral injections of AAV-TrkB.FL or AAV-YFP as control, and were subjected to metabolic and behavioral assessments up to 24 weeks post-injection. Both NCD and HFD TrkB.FL overexpressing mice displayed improved metabolic outcomes, characterized as reduced percent weight gain and increased energy expenditure. NCD TrkB.FL mice showed improved glycemic control, reduced adiposity, and increased lean mass. In NCD mice, TrkB.FL overexpression altered the ratio of TrkB.FL/TrkB.T1 protein expression and increased phosphorylation of PLCγ in the hypothalamus. TrkB.FL overexpression also upregulated expression of hypothalamic genes involved in energy regulation and altered expression of genes involved in thermogenesis, lipolysis, and energy expenditure in white adipose tissue and brown adipose tissue. In HFD mice, TrkB.FL overexpression increased phosphorylation of PLCγ. TrkB.FL overexpression in the hypothalamus did not improve behavioral deficits in either NCD or HFD mice. Together, these results suggest that enhancing hypothalamic TrkB.FL signaling improves metabolic health in BTBR mice.
Collapse
Affiliation(s)
- Jacqueline M. Anderson
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, United States of America
- The Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States of America
| | - Amber A. Boardman
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, United States of America
- The Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States of America
| | - Rhiannon Bates
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, United States of America
- The Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States of America
| | - Xunchang Zou
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, United States of America
- The Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States of America
| | - Wei Huang
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, United States of America
- The Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States of America
| | - Lei Cao
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, United States of America
- The Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States of America
| |
Collapse
|
31
|
Li S. The β-adrenergic hypothesis of synaptic and microglial impairment in Alzheimer's disease. J Neurochem 2023; 165:289-302. [PMID: 36799441 DOI: 10.1111/jnc.15782] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 02/06/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease originating partly from amyloid β protein-induced synaptic failure. As damaging of noradrenergic neurons in the locus coeruleus (LC) occurs at the prodromal stage of AD, activation of adrenergic receptors could serve as the first line of defense against the onset of the disease. Activation of β2 -ARs strengthens long-term potentiation (LTP) and synaptic activity, thus improving learning and memory. Physical stimulation of animals exposed to an enriched environment (EE) leads to the activation of β2 -ARs and prevents synaptic dysfunction. EE also suppresses neuroinflammation, suggesting that β2 -AR agonists may play a neuroprotective role. The β2 -AR agonists used for respiratory diseases have been shown to have an anti-inflammatory effect. Epidemiological studies further support the beneficial effects of β2 -AR agonists on several neurodegenerative diseases. Thus, I propose that β2 -AR agonists may provide therapeutic value in combination with novel treatments for AD.
Collapse
Affiliation(s)
- Shaomin Li
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
32
|
Canali MM, Guyot M, Simon T, Daoudlarian D, Chabry J, Panzolini C, Petit-Paitel A, Hypolite N, Nicolas S, Bourdely P, Schmid-Antomarchi H, Schmid-Alliana A, Soria J, Karimdjee Soilihi B, Hofman P, Prevost-Blondel A, Kato M, Mougneau E, Glaichenhaus N, Blancou P. Environmental signals perceived by the brain abate pro-metastatic monocytes by dampening glucocorticoids receptor signaling. Cancer Cell Int 2023; 23:15. [PMID: 36726173 PMCID: PMC9893572 DOI: 10.1186/s12935-023-02855-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 01/19/2023] [Indexed: 02/03/2023] Open
Abstract
While positive social-behavioral factors predict longer survival in cancer patients, the underlying mechanisms are unknown. Since tumor metastasis are the major cancer mortality factor, we investigated how an enriched environment (EE) conductive to enhanced sensory, cognitive and motor stimulation impact metastatic progression in lungs following intravasation in the circulation. We find that mice housed in EE exhibited reduced number of lung metastatic foci compared to control mice housed in a standard environment (SE). Compared to SE mice, EE mice increased lung inflammation as early as 4 days after circulating tumor cells extravasation. The impact of environmental signals on lung metastasis is independent of adrenergic receptors signaling. By contrast, we find that serum corticosterone levels are lower in EE mice and that glucocorticoid receptor (GR) antagonist reduces the number of lung metastasis in SE mice. In addition, the difference of the number of lung metastasis between SE and EE mice is abolished when inflammatory monocytes are rendered deficient in GR signaling. This decreased GR signaling in inflammatory monocytes of SE mice results in an exacerbated inflammatory profile in the lung. Our study shows that not only EE reduces late stages of metastatic progression in lungs but disclose a novel anti-tumor mechanism whereby GR-dependent reprogramming of inflammatory monocytes can inhibit metastatic progression in lungs. Moreover, while inflammatory monocytes have been shown to promote cancer progression, they also have an anti-tumor effect, suggesting that their role is more complex than currently thought.
Collapse
Affiliation(s)
- María Magdalena Canali
- grid.460782.f0000 0004 4910 6551Molecular and Cellular Pharmacology Institute, Université Côte d’Azur, CNRS, 660 Route des Lucioles, Valbonne, France
| | - Mélanie Guyot
- grid.460782.f0000 0004 4910 6551Molecular and Cellular Pharmacology Institute, Université Côte d’Azur, CNRS, 660 Route des Lucioles, Valbonne, France
| | - Thomas Simon
- grid.460782.f0000 0004 4910 6551Molecular and Cellular Pharmacology Institute, Université Côte d’Azur, CNRS, 660 Route des Lucioles, Valbonne, France
| | - Douglas Daoudlarian
- grid.460782.f0000 0004 4910 6551Molecular and Cellular Pharmacology Institute, Université Côte d’Azur, CNRS, 660 Route des Lucioles, Valbonne, France
| | - Joelle Chabry
- grid.460782.f0000 0004 4910 6551Molecular and Cellular Pharmacology Institute, Université Côte d’Azur, CNRS, 660 Route des Lucioles, Valbonne, France
| | - Clara Panzolini
- grid.460782.f0000 0004 4910 6551Molecular and Cellular Pharmacology Institute, Université Côte d’Azur, CNRS, 660 Route des Lucioles, Valbonne, France
| | - Agnès Petit-Paitel
- grid.460782.f0000 0004 4910 6551Molecular and Cellular Pharmacology Institute, Université Côte d’Azur, CNRS, 660 Route des Lucioles, Valbonne, France
| | - Nicolas Hypolite
- grid.460782.f0000 0004 4910 6551Molecular and Cellular Pharmacology Institute, Université Côte d’Azur, CNRS, 660 Route des Lucioles, Valbonne, France
| | - Sarah Nicolas
- grid.460782.f0000 0004 4910 6551Molecular and Cellular Pharmacology Institute, Université Côte d’Azur, CNRS, 660 Route des Lucioles, Valbonne, France
| | - Pierre Bourdely
- grid.460782.f0000 0004 4910 6551Molecular and Cellular Pharmacology Institute, Université Côte d’Azur, CNRS, 660 Route des Lucioles, Valbonne, France
| | - Heidy Schmid-Antomarchi
- grid.460782.f0000 0004 4910 6551Université Côte d’Azur, CNRS, INSERM, Valrose Biology Institute, 28 Avenue de Valombrose, Nice, France
| | - Annie Schmid-Alliana
- grid.460782.f0000 0004 4910 6551Université Côte d’Azur, CNRS, INSERM, Valrose Biology Institute, 28 Avenue de Valombrose, Nice, France
| | - Javier Soria
- grid.460782.f0000 0004 4910 6551Molecular and Cellular Pharmacology Institute, Université Côte d’Azur, CNRS, 660 Route des Lucioles, Valbonne, France
| | - Babou Karimdjee Soilihi
- grid.460782.f0000 0004 4910 6551Université Côte d’Azur, CNRS, INSERM, Valrose Biology Institute, 28 Avenue de Valombrose, Nice, France ,Polyclinique Saint Jean, Cagnes sur mer, France
| | - Paul Hofman
- grid.410528.a0000 0001 2322 4179Laboratory of Clinical and Experimental Pathology and Biobank, Nice University Hospital, Nice, France ,grid.460782.f0000 0004 4910 6551Research Institute on Cancer and Aging, Université Côte d’Azur, CNRS, INSERM, 28 Avenue de Valombrose, Nice, France
| | - Armelle Prevost-Blondel
- grid.462098.10000 0004 0643 431XUniversité Paris Descartes, CNRS, INSERM, Institut Cochin, 22 rue Méchain, 75014 Paris, France
| | - Masashi Kato
- grid.27476.300000 0001 0943 978XDepartment of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya, Aichi Japan
| | - Evelyne Mougneau
- grid.460782.f0000 0004 4910 6551Molecular and Cellular Pharmacology Institute, Université Côte d’Azur, CNRS, 660 Route des Lucioles, Valbonne, France
| | - Nicolas Glaichenhaus
- grid.460782.f0000 0004 4910 6551Molecular and Cellular Pharmacology Institute, Université Côte d’Azur, CNRS, 660 Route des Lucioles, Valbonne, France
| | - Philippe Blancou
- grid.460782.f0000 0004 4910 6551Molecular and Cellular Pharmacology Institute, Université Côte d’Azur, CNRS, 660 Route des Lucioles, Valbonne, France
| |
Collapse
|
33
|
Fuochi S, Galligioni V. Disease Animal Models for Cancer Research. Methods Mol Biol 2023; 2645:105-125. [PMID: 37202613 DOI: 10.1007/978-1-0716-3056-3_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Despite nonanimal methods (NAMs) are more and more exploited and new NAMs are developed and validated, animal models are still used in cancer research. Animals are used at multiple levels, from understanding molecular traits and pathways, to mimicking clinical aspects of tumor progression, to drug testing. In vivo approaches are not trivial and involve cross-disciplinary knowledge: animal biology and physiology, genetics, pathology, and animal welfare.The aim of this chapter is not to list and address all animal models used in cancer research. Instead, the authors would like to guide experimenters in the strategies to adopt in both planning and performing in vivo experimental procedures, including the choice of cancer animal models.
Collapse
Affiliation(s)
- Sara Fuochi
- Universität Bern, Experimental Animal Center, Bern, Switzerland
| | - Viola Galligioni
- Netherlands Institute for Neuroscience - KNAW, Amsterdam, The Netherlands.
| |
Collapse
|
34
|
Paul D, Nedelcu AM. The underexplored links between cancer and the internal body climate: Implications for cancer prevention and treatment. Front Oncol 2022; 12:1040034. [PMID: 36620608 PMCID: PMC9815514 DOI: 10.3389/fonc.2022.1040034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/25/2022] [Indexed: 12/24/2022] Open
Abstract
In order to effectively manage and cure cancer we should move beyond the general view of cancer as a random process of genetic alterations leading to uncontrolled cell proliferation or simply a predictable evolutionary process involving selection for traits that increase cell fitness. In our view, cancer is a systemic disease that involves multiple interactions not only among cells within tumors or between tumors and surrounding tissues but also with the entire organism and its internal "milieu". We define the internal body climate as an emergent property resulting from spatial and temporal interactions among internal components themselves and with the external environment. The body climate itself can either prevent, promote or support cancer initiation and progression (top-down effect; i.e., body climate-induced effects on cancer), as well as be perturbed by cancer (bottom-up effect; i.e., cancer-induced body climate changes) to further favor cancer progression and spread. This positive feedback loop can move the system towards a "cancerized" organism and ultimately results in its demise. In our view, cancer not only affects the entire system; it is a reflection of an imbalance of the entire system. This model provides an integrated framework to study all aspects of cancer as a systemic disease, and also highlights unexplored links that can be altered to both prevent body climate changes that favor cancer initiation, progression and dissemination as well as manipulate or restore the body internal climate to hinder the success of cancer inception, progression and metastasis or improve therapy outcomes. To do so, we need to (i) identify cancer-relevant factors that affect specific climate components, (ii) develop 'body climate biomarkers', (iii) define 'body climate scores', and (iv) develop strategies to prevent climate changes, stop or slow the changes, or even revert the changes (climate restoration).
Collapse
Affiliation(s)
- Doru Paul
- Weill Cornell Medicine, New York, NY, United States
| | - Aurora M. Nedelcu
- Biology Department, University of New Brunswick, Fredericton, NB, Canada
| |
Collapse
|
35
|
Queen NJ, Zou X, Anderson JM, Huang W, Appana B, Komatineni S, Wevrick R, Cao L. Hypothalamic AAV-BDNF gene therapy improves metabolic function and behavior in the Magel2-null mouse model of Prader-Willi syndrome. Mol Ther Methods Clin Dev 2022; 27:131-148. [PMID: 36284766 PMCID: PMC9573893 DOI: 10.1016/j.omtm.2022.09.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/23/2022] [Indexed: 11/25/2022]
Abstract
Individuals with Prader-Willi syndrome (PWS) display developmental delays, cognitive impairment, excessive hunger, obesity, and various behavioral abnormalities. Current PWS treatments are limited to strict supervision of food intake and growth hormone therapy, highlighting the need for new therapeutic strategies. Brain-derived neurotrophic factor (BDNF) functions downstream of hypothalamic feeding circuitry and has roles in energy homeostasis and behavior. In this preclinical study, we assessed the translational potential of hypothalamic adeno-associated virus (AAV)-BDNF gene therapy as a therapeutic for metabolic dysfunction in the Magel2-null mouse model of PWS. To facilitate clinical translation, our BDNF vector included an autoregulatory element allowing for transgene titration in response to the host's physiological needs. Hypothalamic BDNF gene transfer prevented weight gain, decreased fat mass, increased lean mass, and increased relative energy expenditure in female Magel2-null mice. Moreover, BDNF gene therapy improved glucose metabolism, insulin sensitivity, and circulating adipokine levels. Metabolic improvements were maintained through 23 weeks with no adverse behavioral effects, indicating high levels of efficacy and safety. Male Magel2-null mice also responded positively to BDNF gene therapy, displaying improved body composition, insulin sensitivity, and glucose metabolism. Together, these data suggest that regulating hypothalamic BDNF could be effective in the treatment of PWS-related metabolic abnormalities.
Collapse
Affiliation(s)
- Nicholas J. Queen
- Department of Cancer Biology & Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Xunchang Zou
- Department of Cancer Biology & Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Jacqueline M. Anderson
- Department of Cancer Biology & Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Wei Huang
- Department of Cancer Biology & Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Bhavya Appana
- Department of Cancer Biology & Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Suraj Komatineni
- Department of Cancer Biology & Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Rachel Wevrick
- Department of Medical Genetics, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Lei Cao
- Department of Cancer Biology & Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| |
Collapse
|
36
|
Dun L, Mei-Jing C, Si-Ting H, Xin-Yuan Y, Yu-Xuan W. Effects of different environmental intervention durations on the intestinal mucosal barrier and the brain-gut axis in rats with colorectal cancer. Sci Rep 2022; 12:20442. [PMID: 36443338 PMCID: PMC9705392 DOI: 10.1038/s41598-022-24861-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
An enriched environment (EE) is a promising strategy for protecting the intestinal mucosal barrier and regulating the brain-gut axis, but the optimal EE intervention duration is unknown. Here, different EE intervention durations were applied to assess the optimal intervention duration in rats with colorectal cancer. We used a rat model of 1, 2-dimethylhydrazine-induced colorectal cancer. The rats were housed in an EE for 0, 2, 4, 8 weeks and 8-week blank group. The intestinal mucosa and serum TNF-α, IL-6, IL-10, ATP, CRF, and occludin levels and bacterial translocation (BT) were measured, and the intestinal mucosa morphology was evaluated. In 8 weeks, the effect of tumor on intestinal mucosal barrier was not obvious and the EE had a greater impact on it. Eight weeks of EE was more beneficial to the intestinal mucosal mechanical barrier than 2 or 4 weeks of intervention. A significant difference in BT was found between the 4- and 8-week groups. Overall, the analysis of inflammatory factor regulation revealed that the two blank groups exhibited the worst effect, and the intervention effect at 8 weeks was better than that at 2 and 4 weeks. CRF at 4 weeks was higher than that at 8-week blank group. The effect of 8-week intervention duration on the intestinal mucosal barrier was generally better than that of 2- and 4-week durations and intervention within 4 weeks can help to stabilize and promote the secretion of brain gut peptide, but the effect of different intervention durations on the brain-gut peptide levels was not obvious. In the future, we can further explore the molecular biological mechanism of the effect of different EE intervention durations on the intestinal mucosal barrier and analyze the effect of an EE on other brain-gut peptides.
Collapse
Affiliation(s)
- Liu Dun
- grid.256112.30000 0004 1797 9307The School of Nursing, Fujian Medical University, No. 1 Xuefu North Road, Minhou County, Fuzhou, 350122 Fujian China
| | - Chen Mei-Jing
- grid.256112.30000 0004 1797 9307The School of Nursing, Fujian Medical University, No. 1 Xuefu North Road, Minhou County, Fuzhou, 350122 Fujian China
| | - Huang Si-Ting
- grid.256112.30000 0004 1797 9307The School of Nursing, Fujian Medical University, No. 1 Xuefu North Road, Minhou County, Fuzhou, 350122 Fujian China
| | - Yu Xin-Yuan
- grid.256112.30000 0004 1797 9307The School of Nursing, Fujian Medical University, No. 1 Xuefu North Road, Minhou County, Fuzhou, 350122 Fujian China
| | - Wu Yu-Xuan
- grid.256112.30000 0004 1797 9307The School of Nursing, Fujian Medical University, No. 1 Xuefu North Road, Minhou County, Fuzhou, 350122 Fujian China
| |
Collapse
|
37
|
Wu Y, Zhou L, Zhang X, Yang X, Niedermann G, Xue J. Psychological distress and eustress in cancer and cancer treatment: Advances and perspectives. SCIENCE ADVANCES 2022; 8:eabq7982. [PMID: 36417542 PMCID: PMC9683699 DOI: 10.1126/sciadv.abq7982] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 10/03/2022] [Indexed: 05/31/2023]
Abstract
Facing cancer diagnosis, patients with cancer are prone to psychological stress and consequent psychological disorders. The association between psychological stress and cancer has long been a subject of high interest. To date, preclinical studies have gradually uncovered the promotive effects of psychological distress on tumor hallmarks. In contrast, eustress may exert suppressive effects on tumorigenesis and beneficial effects on tumor treatment, which brings a practicable means and psychosocial perspective to cancer treatment. However, the underlying mechanisms remain incompletely understood. Here, by focusing on the hypothalamic-pituitary-adrenal axis and the sympathetic nervous system, as well as stress-related crucial neurotransmitters and hormones, we highlight the effects of distress and eustress on tumorigenesis, the tumor microenvironment, and tumor treatment. We also discuss the findings of clinical studies on stress management in patients with cancer. Last, we summarize questions that remain to be addressed and provide suggestions for future research directions.
Collapse
Affiliation(s)
- Yuanjun Wu
- Thoracic Oncology Ward, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Laiyan Zhou
- Thoracic Oncology Ward, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xuanwei Zhang
- Thoracic Oncology Ward, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xue Yang
- Thoracic Oncology Ward, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Gabriele Niedermann
- Department of Radiation Oncology, Faculty of Medicine, University of Freiburg, Freiburg, Germany, German Cancer Consortium, partner site Freiburg, and German Cancer Research Center, Heidelberg, Germany
| | - Jianxin Xue
- Thoracic Oncology Ward, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
38
|
Di Castro MA, Garofalo S, De Felice E, Meneghetti N, Di Pietro E, Mormino A, Mazzoni A, Caleo M, Maggi L, Limatola C. Environmental enrichment counteracts the effects of glioma in primary visual cortex. Neurobiol Dis 2022; 174:105894. [DOI: 10.1016/j.nbd.2022.105894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 11/25/2022] Open
|
39
|
Wang C, Shen Y, Ni J, Hu W, Yang Y. Effect of chronic stress on tumorigenesis and development. Cell Mol Life Sci 2022; 79:485. [PMID: 35974132 PMCID: PMC11071880 DOI: 10.1007/s00018-022-04455-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 11/03/2022]
Abstract
Chronic stress activates the sympathetic nervous system (SNS) and hypothalamic-pituitary-adrenal (HPA) axis to aggravates tumorigenesis and development. Although the importance of SNS and HPA in maintaining homeostasis has already attracted much attention, there is still a lot remained unknown about the molecular mechanisms by which chronic stress influence the occurrence and development of tumor. While some researches have already concluded the mechanisms underlying the effect of chronic stress on tumor, complicated processes of tumor progression resulted in effects of chronic stress on various stages of tumor remains elusive. In this reviews we concluded recent research progresses of chronic stress and its effects on premalignancy, tumorigenesis and tumor development, we comprehensively summarized the molecular mechanisms in between. And we highlight the available treatments and potential therapies for stressed patients with tumor.
Collapse
Affiliation(s)
- Chen Wang
- State Key Laboratory of Natural Medicines, Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, No. 639 Long Mian Avenue, Jiangning District, Nanjing, 211198, Jiangsu, People's Republic of China
| | - Yumeng Shen
- State Key Laboratory of Natural Medicines, Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, No. 639 Long Mian Avenue, Jiangning District, Nanjing, 211198, Jiangsu, People's Republic of China
| | - Jiaping Ni
- State Key Laboratory of Natural Medicines, Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, No. 639 Long Mian Avenue, Jiangning District, Nanjing, 211198, Jiangsu, People's Republic of China
| | - Weiwei Hu
- State Key Laboratory of Natural Medicines, Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, No. 639 Long Mian Avenue, Jiangning District, Nanjing, 211198, Jiangsu, People's Republic of China.
- Lingang Laboratory, Shanghai, 200032, People's Republic of China.
| | - Yong Yang
- State Key Laboratory of Natural Medicines, Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, No. 639 Long Mian Avenue, Jiangning District, Nanjing, 211198, Jiangsu, People's Republic of China.
| |
Collapse
|
40
|
Emerging Roles of the Nervous System in Gastrointestinal Cancer Development. Cancers (Basel) 2022; 14:cancers14153722. [PMID: 35954387 PMCID: PMC9367305 DOI: 10.3390/cancers14153722] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/23/2022] [Accepted: 07/27/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary Nerve–cancer cross-talk has increasingly become a focus of the oncology field, particularly in gastrointestinal (GI) cancers. The indispensable roles of the nervous system in GI tumorigenesis and malignancy have been dissected by epidemiological, experimental animal and mechanistic data. Herein, we review and integrate recent discoveries linking the nervous system to GI cancer initiation and progression, and focus on the molecular mechanisms by which nerves and neural receptor pathways drive GI malignancy. Abstract Our understanding of the fascinating connection between nervous system and gastrointestinal (GI) tumorigenesis has expanded greatly in recent years. Recent studies revealed that neurogenesis plays an active part in GI tumor initiation and progression. Tumor-driven neurogenesis, as well as neurite outgrowth of the pre-existing peripheral nervous system (PNS), may fuel GI tumor progression via facilitating cancer cell proliferation, chemoresistance, invasion and immune escape. Neurotransmitters and neuropeptides drive the activation of various oncogenic pathways downstream of neural receptors within cancer cells, underscoring the importance of neural signaling pathways in GI tumor malignancy. In addition, neural infiltration also plays an integral role in tumor microenvironments, and contributes to an environment in favor of tumor angiogenesis, immune evasion and invasion. Blockade of tumor innervation via denervation or pharmacological agents may serve as a promising therapeutic strategy against GI tumors. In this review, we summarize recent findings linking the nervous system to GI tumor progression, set the spotlight on the molecular mechanisms by which neural signaling fuels cancer aggressiveness, and highlight the importance of targeting neural mechanisms in GI tumor therapy.
Collapse
|
41
|
Aldhshan MS, Mizuno TM. Effect of environmental enrichment on aggression and the expression of brain-derived neurotrophic factor transcript variants in group-housed male mice. Behav Brain Res 2022; 433:113986. [DOI: 10.1016/j.bbr.2022.113986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 04/20/2022] [Accepted: 06/28/2022] [Indexed: 11/02/2022]
|
42
|
Zhao X, Wang Y, Meng F, Liu Z, Xu B. Risk Stratification and Validation of Eleven Autophagy-Related lncRNAs for Esophageal Squamous Cell Carcinoma. Front Genet 2022; 13:894990. [PMID: 35832188 PMCID: PMC9271611 DOI: 10.3389/fgene.2022.894990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 06/03/2022] [Indexed: 12/24/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC), the most prevalent subtype of esophageal cancer, ranks sixth in cancer-related mortality, making it one of the deadliest cancers worldwide. The identification of potential risk factors for ESCC might help in implementing precision therapies. Autophagy-related lncRNAs are a group of non-coding RNAs that perform critical functions in the tumor immune microenvironment and therapeutic response. Therefore, we aimed to establish a risk model composed of autophagy-related lncRNAs that can serve as a potential biomarker for ESCC risk stratification. Using the RNA expression profile from 179 patients in the GSE53622 and GSE53624 datasets, we found 11 lncRNAs (AC004690.2, AC092159.3, AC093627.4, AL078604.2, BDNF-AS, HAND2-AS1, LINC00410, LINC00588, PSMD6-AS2, ZEB1-AS1, and LINC02586) that were co-expressed with autophagy genes and were independent prognostic factors in multivariate Cox regression analysis. The risk model was constructed using these autophagy-related lncRNAs, and the area under the receiver operating characteristic curve (AUC) of the risk model was 0.728. To confirm that the model is reliable, the data of 174 patients from The Cancer Genome Atlas (TCGA) esophageal cancer dataset were analyzed as the testing set. A nomogram for ESCC prognosis was developed using the risk model and clinic-pathological characteristics. Immune function annotation and tumor mutational burden of the two risk groups were analyzed and the high-risk group displayed higher sensitivity in chemotherapy and immunotherapy. Expression of differentially expressed lncRNAs were further validated in human normal esophageal cells and esophageal cancer cells. The constructed lncRNA risk model provides a useful tool for stratifying risk and predicting the prognosis of patients with ESCC, and might provide novel targets for ESCC treatment.
Collapse
Affiliation(s)
- Xu Zhao
- Department of Biochemistry and Molecular Biology, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University, Tianjin, China
| | - Yulun Wang
- Department of Biochemistry and Molecular Biology, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University, Tianjin, China
| | - Fanbiao Meng
- Department of Biochemistry and Molecular Biology, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University, Tianjin, China
| | - Zhuang Liu
- Department of Biochemistry and Molecular Biology, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University, Tianjin, China
| | - Bo Xu
- Department of Biochemistry and Molecular Biology, Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University, Tianjin, China
- Center for Intelligent Oncology, Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Chongqing University Cancer Hospital, Chongqing University School of Medicine, Chongqing, China
- *Correspondence: Bo Xu,
| |
Collapse
|
43
|
Creasey HN, Zhang W, Widmer G. Effect of Caging on Cryptosporidium parvum Proliferation in Mice. Microorganisms 2022; 10:1242. [PMID: 35744762 PMCID: PMC9230662 DOI: 10.3390/microorganisms10061242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 02/01/2023] Open
Abstract
Cryptosporidiosis is an enteric infection caused by several protozoan species in the genus Cryptosporidium (phylum Apicomplexa). Immunosuppressed mice are commonly used to model this infection. Surprisingly, for a pathogen like Cryptosporidium parvum, which is readily transmitted fecal-orally, mice housed in the same cage can develop vastly different levels of infection, ranging from undetectable to lethal. The motivation for this study was to investigate this phenomenon and assess the association between the severity of cryptosporidiosis and the fecal microbiota. To this aim, the association between severity of cryptosporidiosis and caging (group caged vs. individually caged) and between the microbiota taxonomy and the course of the infection was examined. In contrast to mice caged in groups of four, a majority of mice caged individually did not excrete a detectable level of oocysts. Microbiota α diversity in samples collected between three days prior to infection and one day post-infection was negatively correlated with the severity of cryptosporidiosis, suggesting a causal negative relationship between microbiota diversity and susceptibility to C. parvum.
Collapse
Affiliation(s)
- Hannah N. Creasey
- Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536, USA; (H.N.C.); (W.Z.)
| | - Wen Zhang
- Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536, USA; (H.N.C.); (W.Z.)
- Gerald J. and Dorothy R. Friedman School of Nutrition, Tufts University, Boston, MA 02111, USA
| | - Giovanni Widmer
- Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536, USA; (H.N.C.); (W.Z.)
| |
Collapse
|
44
|
Zhao Y, Tan DC, Peng B, Yang L, Zhang SY, Shi RP, Chong CM, Zhong ZF, Wang SP, Liang QL, Wang YT. Neuroendocrine-Immune Regulatory Network of Eucommia ulmoides Oliver. Molecules 2022; 27:molecules27123697. [PMID: 35744822 PMCID: PMC9229650 DOI: 10.3390/molecules27123697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/23/2022] [Accepted: 05/31/2022] [Indexed: 02/04/2023] Open
Abstract
Eucommia ulmoides Oliver (E. ulmoides) is a popular medicinal herb and health supplement in China, Japan, and Korea, and has a variety of pharmaceutical properties. The neuroendocrine-immune (NEI) network is crucial in maintaining homeostasis and physical or psychological functions at a holistic level, consistent with the regulatory theory of natural medicine. This review aims to systematically summarize the chemical compositions, biological roles, and pharmacological properties of E. ulmoides to build a bridge between it and NEI-associated diseases and to provide a perspective for the development of its new clinical applications. After a review of the literature, we found that E. ulmoides has effects on NEI-related diseases including cancer, neurodegenerative disease, hyperlipidemia, osteoporosis, insomnia, hypertension, diabetes mellitus, and obesity. However, clinical studies on E. ulmoides were scarce. In addition, E. ulmoides derivatives are diverse in China, and they are mainly used to enhance immunity, improve hepatic damage, strengthen bones, and lower blood pressure. Through network pharmacological analysis, we uncovered the possibility that E. ulmoides is involved in functional interactions with cancer development, insulin resistance, NAFLD, and various inflammatory pathways associated with NEI diseases. Overall, this review suggests that E. ulmoides has a wide range of applications for NEI-related diseases and provides a direction for its future research and development.
Collapse
Affiliation(s)
- Yi Zhao
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China; (Y.Z.); (D.-C.T.); (B.P.); (L.Y.); (S.-Y.Z.); (R.-P.S.); (C.-M.C.); (Z.-F.Z.); (S.-P.W.)
| | - De-Chao Tan
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China; (Y.Z.); (D.-C.T.); (B.P.); (L.Y.); (S.-Y.Z.); (R.-P.S.); (C.-M.C.); (Z.-F.Z.); (S.-P.W.)
| | - Bo Peng
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China; (Y.Z.); (D.-C.T.); (B.P.); (L.Y.); (S.-Y.Z.); (R.-P.S.); (C.-M.C.); (Z.-F.Z.); (S.-P.W.)
| | - Lin Yang
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China; (Y.Z.); (D.-C.T.); (B.P.); (L.Y.); (S.-Y.Z.); (R.-P.S.); (C.-M.C.); (Z.-F.Z.); (S.-P.W.)
| | - Si-Yuan Zhang
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China; (Y.Z.); (D.-C.T.); (B.P.); (L.Y.); (S.-Y.Z.); (R.-P.S.); (C.-M.C.); (Z.-F.Z.); (S.-P.W.)
| | - Rui-Peng Shi
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China; (Y.Z.); (D.-C.T.); (B.P.); (L.Y.); (S.-Y.Z.); (R.-P.S.); (C.-M.C.); (Z.-F.Z.); (S.-P.W.)
| | - Cheong-Meng Chong
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China; (Y.Z.); (D.-C.T.); (B.P.); (L.Y.); (S.-Y.Z.); (R.-P.S.); (C.-M.C.); (Z.-F.Z.); (S.-P.W.)
| | - Zhang-Feng Zhong
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China; (Y.Z.); (D.-C.T.); (B.P.); (L.Y.); (S.-Y.Z.); (R.-P.S.); (C.-M.C.); (Z.-F.Z.); (S.-P.W.)
| | - Sheng-Peng Wang
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China; (Y.Z.); (D.-C.T.); (B.P.); (L.Y.); (S.-Y.Z.); (R.-P.S.); (C.-M.C.); (Z.-F.Z.); (S.-P.W.)
| | - Qiong-Lin Liang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Beijing Key Lab of Microanalytical Methods & Instrumentation, Department of Chemistry, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
- Correspondence: (Q.-L.L.); (Y.-T.W.); Tel.: +86-010-6277-2263 (Q.-L.L.); +853-8822-4691 (Y.-T.W.); Fax: +86-010-6277-2263 (Q.-L.L.); +853-2884-1358 (Y.-T.W.)
| | - Yi-Tao Wang
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China; (Y.Z.); (D.-C.T.); (B.P.); (L.Y.); (S.-Y.Z.); (R.-P.S.); (C.-M.C.); (Z.-F.Z.); (S.-P.W.)
- Correspondence: (Q.-L.L.); (Y.-T.W.); Tel.: +86-010-6277-2263 (Q.-L.L.); +853-8822-4691 (Y.-T.W.); Fax: +86-010-6277-2263 (Q.-L.L.); +853-2884-1358 (Y.-T.W.)
| |
Collapse
|
45
|
Akça İİ, Bodur A, Kahraman C, Abidin İ, Aydın-Abidin S, Alver A. The regulation of adipokines related to obesity and diabetes is sensitive to BDNF levels and adipose tissue location. Hormones (Athens) 2022; 21:295-303. [PMID: 35298831 DOI: 10.1007/s42000-022-00364-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 03/09/2022] [Indexed: 11/04/2022]
Abstract
PURPOSE The role of BDNF in adipose tissue metabolism is poorly understood. We investigated the effects of decreased levels of BDNF on the expression of major adipokines in different fat depots (e.g., subcutaneous and epididymal) of mouse groups fed three different diet protocols. METHODS BDNF heterozygous (+ / -) mice were used to evaluate the effect of reduced BDNF levels. Six groups of C57BL/6 J breed wild type (WT) and BDNF (+ / -) mice were formed. These groups were fed, respectively, a control diet (CD), a high-fat diet (HFD), and a high-sucrose diet (HSD) for 4 months. Serum samples and adipose tissues were used for biochemical assays. The serum concentrations and tissue expression levels of leptin, adiponectin, and resistin were measured. RESULTS Compared to the CD-fed WT group (control group), serum leptin and leptin expression levels were found to be higher in all experimental groups. Serum adiponectin levels were lower in the BDNF (+ / -) groups and HFD-fed WT group than in the control group. Epididymal adiponectin expression was found to be lower in the HFD-fed BDNF (+ / -) group and higher in HSD-fed groups than in the control group. Compared to the control group, adiponectin expression increased in the WT groups in subcutaneous adipose tissue. Serum resistin levels were elevated in the HFD-fed groups. Resistin expression in epididymal adipose tissue was lower in the CD-fed and HFD-fed groups than in the control group. CONCLUSIONS BDNF levels and diet differentially affect the expression of adipokines in different fat tissues in the body. BDNF may play a protective role in obesity and diabetes.
Collapse
Affiliation(s)
- İmran İnce Akça
- Department of Medical Biochemistry, Faculty of Medicine, Tokat Gaziosmanpasa University, 60100, Tokat, Turkey.
| | - Akın Bodur
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Rumeli University, İstanbul, Turkey
| | - Cemil Kahraman
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Düzce University, Düzce, Turkey
| | - İsmail Abidin
- Department of Biophysics, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Selcen Aydın-Abidin
- Department of Biophysics, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Ahmet Alver
- Department of Medical Biochemistry, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| |
Collapse
|
46
|
Dialogue among Lymphocytes and Microglia in Glioblastoma Microenvironment. Cancers (Basel) 2022; 14:cancers14112632. [PMID: 35681612 PMCID: PMC9179556 DOI: 10.3390/cancers14112632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary In this review, we summarize in vitro and in vivo studies related to glioblastoma models and human patients to outline the symbiotic bidirectional interaction between microglia, lymphocytes, and tumor cells that develops during tumor progression. Particularly, we highlight the current experimental therapeutic approaches that aim to shape these interplays, such as adeno-associated virus (AAV) delivery and CAR-T and -NK cell infusion, and to modulate the tumor microenvironment in an anti-tumoral way, thus counteracting glioblastoma growth. Abstract Microglia and lymphocytes are fundamental constituents of the glioblastoma microenvironment. In this review, we summarize the current state-of-the-art knowledge of the microglial role played in promoting the development and aggressive hallmarks of this deadly brain tumor. Particularly, we report in vitro and in vivo studies related to glioblastoma models and human patients to outline the symbiotic bidirectional interaction between microglia, lymphocytes, and tumor cells that develops during tumor progression. Furthermore, we highlight the current experimental therapeutic approaches that aim to shape these interplays, such as adeno-associated virus (AAV) delivery and CAR-T and -NK cell infusion, and to modulate the tumor microenvironment in an anti-tumoral way, thus counteracting glioblastoma growth.
Collapse
|
47
|
Bai PY, Chen SQ, Jia DL, Pan LH, Liu CB, Liu J, Luo W, Yang Y, Sun MY, Wan NF, Rong WW, Sun AJ, Ge JB. Environmental eustress improves postinfarction cardiac repair via enhancing cardiac macrophage survival. SCIENCE ADVANCES 2022; 8:eabm3436. [PMID: 35476440 PMCID: PMC9045726 DOI: 10.1126/sciadv.abm3436] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 03/10/2022] [Indexed: 05/24/2023]
Abstract
Macrophages play a vital role in cardiac repair following myocardial infarction (MI). An enriched environment (EE) is involved in the regulation of macrophage-related activities and disease progression; however, whether EE affects the phenotype and function of macrophages to improve postinfarction cardiac repair remains unknown. In this study, we found that EE improved cardiac function, decreased mortality, and ameliorated adverse ventricular remodeling in mice after MI, with these outcomes closely related to the increased survival of Ly6Clow macrophages and their CCR2-MHCIIlow subsets. EE increased the expression of brain-derived neurotrophic factor (BDNF) in the hypothalamus, leading to higher circulating levels of BDNF, which, in turn, regulated the cardiac macrophages. BDNF bound to tropomyosin receptor kinase B to activate downstream ERK1/2 and AKT pathways, promoting macrophage survival. These findings demonstrate that EE optimizes postinfarction cardiac repair and highlights the significance of EE as a previously unidentified strategy for impeding adverse ventricular remodeling.
Collapse
Affiliation(s)
- Pei-Yuan Bai
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Si-Qin Chen
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Dai-Le Jia
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Li-Hong Pan
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Chao-Bao Liu
- School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jin Liu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Wei Luo
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Yang Yang
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ma-Yu Sun
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Nai-Fu Wan
- Department of Cardiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wu-Wei Rong
- Department of Cardiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ai-Jun Sun
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jun-Bo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
48
|
Enriched Environment Effects on Myelination of the Central Nervous System: Role of Glial Cells. Neural Plast 2022; 2022:5766993. [PMID: 35465398 PMCID: PMC9023233 DOI: 10.1155/2022/5766993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 01/20/2022] [Accepted: 03/09/2022] [Indexed: 12/24/2022] Open
Abstract
Myelination is regulated by various glial cells in the central nervous system (CNS), including oligodendrocytes (OLs), microglia, and astrocytes. Myelination of the CNS requires the generation of functionally mature OLs from OPCs. OLs are the myelin-forming cells in the CNS. Microglia play both beneficial and detrimental roles during myelin damage and repair. Astrocyte is responsible for myelin formation and regeneration by direct interaction with oligodendrocyte lineage cells. These glial cells are influenced by experience-dependent activities such as environmental enrichment (EE). To date, there are few studies that have investigated the association between EE and glial cells. EE with a complex combination of sensorimotor, cognitive, and social stimulation has a significant effect on cognitive impairment and brain plasticity. Hence, one mechanism through EE improving cognitive function may rely on the mutual effect of EE and glial cells. The purpose of this paper is to review recent research into the efficacy of EE for myelination and glial cells at cellular and molecular levels and offers critical insights for future research directions of EE and the treatment of EE in cognitive impairment disease.
Collapse
|
49
|
Early Social Enrichment Modulates Tumor Progression and p53 Expression in Adult Mice. Biomolecules 2022; 12:biom12040532. [PMID: 35454121 PMCID: PMC9032412 DOI: 10.3390/biom12040532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 03/29/2022] [Accepted: 03/29/2022] [Indexed: 12/07/2022] Open
Abstract
Epidemiological evidence indicates that stress and aversive psychological conditions can affect cancer progression, while well-being protects against it. Although a large set of studies have addressed the impact of stress on cancer, not much is known about the mechanisms that protect from cancer in healthy psychological conditions. C57BL/6J mouse pups were exposed to an environmental enrichment condition consisting of being raised until weaning by the biological lactating mother plus a non-lactating virgin female (LnL = Lactating and non-Lactating mothers). The Control group consisted of mice raised by a single lactating mother (L = Lactating). Four months after weaning, mice from LnL and L conditions were exposed to intramuscular injection of 3-methylcolantrene (3MCA), a potent tumorigenic drug, and onset and progression of 3MCA-induced fibrosarcomas were monitored over time. Pups from the LnL compared to the L group received more parental care and were more resilient to stressful events during the first week of life. In association, the onset of tumors in LnL adults was significantly delayed. At the molecular level, we observed increased levels of wild-type p53 protein in tumor samples of LnL compared to L adults and higher levels of its target p21 in healthy muscles of LnL mice compared to the L group, supporting the hypothesis of potential involvement of p53 in tumor development. Our study sustains the model that early life care protects against tumor susceptibility.
Collapse
|
50
|
The Nervous System Contributes to the Tumorigenesis and Progression of Human Digestive Tract Cancer. J Immunol Res 2022; 2022:9595704. [PMID: 35295188 PMCID: PMC8920690 DOI: 10.1155/2022/9595704] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 01/09/2022] [Accepted: 02/14/2022] [Indexed: 11/17/2022] Open
Abstract
Tumors of the gastrointestinal tract are one of the highest incidences of morbidity and mortality in humans. Recently, a growing number of researchers have indicated that nerve fibers and nerve signals participate in tumorigenesis. The current overarching view based on the responses to therapy revealed that tumors are partly promoted by the tumor microenvironment (TME), endogenous oncogenic factors, and complex systemic processes. Homeostasis of the neuroendocrine-immune axis (NEI axis) maintains a healthy in vivo environment in humans, and dysfunction of the axis contributes to various cancers, including the digestive tract. Interestingly, nerves might promote tumor development via multiple mechanisms, including perineural invasion (PNI), central level regulation, NEI axis effect, and neurotransmitter induction. This review focuses on the association between digestive tumors and nerve regulation, including PNI, the NEI axis, stress, and neurotransmitters, as well as on the potential clinical application of neurotherapy, aiming to provide a new perspective on the management of digestive cancers.
Collapse
|