1
|
Bhowmik D, Bhuyan A, Gunalan S, Kothandan G, Kumar D. In silico and immunoinformatics based multiepitope subunit vaccine design for protection against visceral leishmaniasis. J Biomol Struct Dyn 2024; 42:9731-9752. [PMID: 37655736 DOI: 10.1080/07391102.2023.2252901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 08/22/2023] [Indexed: 09/02/2023]
Abstract
Visceral leishmaniasis (VL) is a vector-borne neglected tropical protozoan disease with high fatality and no certified vaccine. Conventional vaccine preparation is challenging and tedious. Here in this work, we created a global multiepitope subunit vaccination against VL utilizing innovative immunoinformatics technique based on the extensively conserved epitopic regions of the PrimPol protein of Leishmania donovani consisting of four subunits which were analyzed and studied, out of which DNA primase large subunit and DNA polymerase α subunit B were evaluated as antigens by Vaxijen 2.0. The multiepitope vaccine design includes a single adjuvant β-defensins, eight CTL epitopes, eight HTL epitopes, seven linear BCL epitopes and one discontinuous BCL epitope to induce innate, cellular and humoral immune responses against VL. The Expasy ProtParam tool characterized the physiochemical parameters of the vaccine. At the same time, SOLpro evaluated our vaccine constructs to be soluble upon expression. We also modeled the stable tertiary structure of our vaccine construct through Robetta modeling for molecular docking studies with toll-like receptor proteins through HADDOCK 2.4. Simulations based on molecular dynamics revealed an intact vaccine and TLR8 complex, supporting our vaccine design's immunogenicity. Also, the immune simulation of our vaccine by the C-ImmSim server demonstrated the potency of the multiepitope vaccine construct to induce proper immune response for host defense. Codon optimization and in silico cloning of our vaccine further assured high expression. The outcomes of our study on multiepitope vaccine design significantly produced a potential candidate against VL and can potentially eradicate the disease in the future after clinical investigations.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Deep Bhowmik
- Deparment of Microbiology, Assam University, Silchar, Assam, India
| | - Achyut Bhuyan
- Deparment of Microbiology, Assam University, Silchar, Assam, India
| | - Seshan Gunalan
- Biopolymer Modelling Laboratory, Centre of Advanced Study in Crystallography and Biophysics, Guindy Campus, University of Madras, Chennai, India
| | - Gugan Kothandan
- Biopolymer Modelling Laboratory, Centre of Advanced Study in Crystallography and Biophysics, Guindy Campus, University of Madras, Chennai, India
| | - Diwakar Kumar
- Deparment of Microbiology, Assam University, Silchar, Assam, India
| |
Collapse
|
2
|
Moura DMD, Carvalho AMRS, Brito RCFD, Roatt BM, Lage DP, Martins VT, Cruz LDR, Medeiros FAC, Batista SD, Pinheiro GRG, da Costa Rocha MO, Coelho EAF, Duarte MC, Mendes TADO, Menezes-Souza D. CD4 + and CD8 + T-cell multi-epitope chimeric protein associated with an MPLA adjuvant induce protective efficacy and long-term immunological memory for the immunoprophylaxis of American Tegumentary Leishmaniasis. Vaccine 2024; 42:126178. [PMID: 39096765 DOI: 10.1016/j.vaccine.2024.126178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/05/2024]
Abstract
American Tegumentary Leishmaniasis (ATL) is a disease of high severity and incidence in Brazil, in addition to being a worldwide concern in public health. Leishmania amazonensis is one of the etiological agents of ATL, and the inefficiency of control measures, associated with the high toxicity of the treatment and the lack of effective immunoprophylactic strategies, makes the development of vaccines indispensable and imminent. In this light, the present study proposes to elaborate a chimeric protein (rChiP), based on the fusion of multiple epitopes of CD4+/CD8+ T cells, identified in the immunoproteome of the parasites L. amazonensis and L. braziliensis. The designed chimeric protein was tested in the L. amazonensis murine model of infection using the following formulations: 25 μg of the rChiP in saline (rChiP group) and 25 μg of the rChiP plus 25 μg of MPLA-PHAD® (rChiP+MPLA group). After completing immunization, CD4+ and CD8+ T cells, stimulated with SLa-Antigen or rChiP, showed an increased production of nitric oxide and intracytoplasmic pro-inflammatory cytokines, in addition to the generation of central and effector memory T cells. rChiP and rChiP+MPLA formulations were able to promote an effective protection against L. amazonensis infection determined by a reduction in the development of skin lesions and lower parasitic burden. Reduction in the development of skin lesions and lower parasitic burden in the vaccinated groups were associated with an increase of nitrite, CD4+/CD8+IFN-γ+TNF-α+ and CD4+/CD8+CD44highCD62Lhigh/low T cells, IgGTotal, IgG2a, and lower rates of IgG1 and CD4+/CD8+IL-10+. This data suggests that proposed formulations could be considered potential tools to prevent ATL.
Collapse
Affiliation(s)
- Dênia Monteiro de Moura
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, Minas Gerais, Brazil
| | - Ana Maria Ravena Severino Carvalho
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, Minas Gerais, Brazil
| | - Rory Cristiane Fortes de Brito
- Núcleo de Pesquisas em Ciências Biológicas/NUPEB, Universidade Federal de Ouro Preto, Ouro Preto 35400-000, Minas Gerais, Brazil
| | - Bruno Mendes Roatt
- Núcleo de Pesquisas em Ciências Biológicas/NUPEB, Universidade Federal de Ouro Preto, Ouro Preto 35400-000, Minas Gerais, Brazil
| | - Daniela Pagliara Lage
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, Minas Gerais, Brazil
| | - Vivian Tamietti Martins
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, Minas Gerais, Brazil
| | - Luiza Dos Reis Cruz
- Laboratório de Química Orgânica Sintética, Instituto de Química, Universidade Estadual de Campinas, Campinas, 13083-970 São Paulo, Brazil
| | - Fernanda Alvarenga Cardoso Medeiros
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, Minas Gerais, Brazil
| | - Sarah Dutra Batista
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, Minas Gerais, Brazil
| | - Guilherme Rafael Gomide Pinheiro
- Departamento de Medicina Veterinária Preventiva, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil
| | - Manoel Otávio da Costa Rocha
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, Minas Gerais, Brazil
| | - Eduardo Antonio Ferraz Coelho
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, Minas Gerais, Brazil; Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil
| | - Mariana Costa Duarte
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, Minas Gerais, Brazil; Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil
| | | | - Daniel Menezes-Souza
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, Minas Gerais, Brazil; Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil; Programa de Pós-Graduação em Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil.
| |
Collapse
|
3
|
Saini I, Joshi J, Kaur S. Leishmania vaccine development: A comprehensive review. Cell Immunol 2024; 399-400:104826. [PMID: 38669897 DOI: 10.1016/j.cellimm.2024.104826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/18/2024] [Accepted: 04/21/2024] [Indexed: 04/28/2024]
Abstract
Infectious diseases like leishmaniasis, malaria, HIV, tuberculosis, leprosy and filariasis are responsible for an immense burden on public health systems. Among these, leishmaniasis is under the category I diseases as it is selected by WHO (World Health Organization) on the ground of diversity and complexity. High cost, resistance and toxic effects of Leishmania traditional drugs entail identification and development of therapeutic alternative. Since the natural infection elicits robust immunity, consistence efforts are going on to develop a successful vaccine. Clinical trials have been conducted on vaccines like Leish-F1, F2, and F3 formulated using specific Leishmania antigen epitopes. Current strategies utilize individual or combined antigens from the parasite or its insect vector's salivary gland extract, with or without adjuvant formulation for enhanced efficacy. Promising animal data supports multiple vaccine candidates (Lmcen-/-, LmexCen-/-), with some already in or heading for clinical trials. The crucial challenge in Leishmania vaccine development is to translate the research knowledge into affordable and accessible control tools that refines the outcome for those who are susceptible to infection. This review focuses on recent findings in Leishmania vaccines and highlights difficulties facing vaccine development and implementation.
Collapse
Affiliation(s)
- Isha Saini
- Parasitology Laboratory, Department of Zoology, Panjab University, Chandigarh, India
| | - Jyoti Joshi
- Goswami Ganesh Dutta Sanatan Dharma College, Sector-32C, Chandigarh, India
| | - Sukhbir Kaur
- Parasitology Laboratory, Department of Zoology, Panjab University, Chandigarh, India.
| |
Collapse
|
4
|
Mahor H, Mukherjee A, Sarkar A, Saha B. Anti-leishmanial therapy: Caught between drugs and immune targets. Exp Parasitol 2023; 245:108441. [PMID: 36572088 DOI: 10.1016/j.exppara.2022.108441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/12/2022] [Accepted: 12/01/2022] [Indexed: 12/24/2022]
Abstract
Leishmaniasis is an enigmatic disease that has very restricted options for chemotherapy and none for prophylaxis. As a result, deriving therapeutic principles for curing the disease has been a major objective in Leishmania research for a long time. Leishmania is a protozoan parasite that lives within macrophages by subverting or switching cell signaling to the pathways that ensure its intracellular survival. Therefore, three groups of molecules aimed at blocking or eliminating the parasite, at least, in principle, include blockers of macrophage receptor- Leishmania ligand interaction, macrophage-activating small molecules, peptides and cytokines, and signaling inhibitors or activators. Macrophages also act as an antigen-presenting cell, presenting antigen to the antigen-specific T cells to induce activation and differentiation of the effector T cell subsets that either execute or suppress anti-leishmanial functions. Three groups of therapeutic principles targeting this sphere of Leishmania-macrophage interaction include antibodies that block pro-leishmanial response of T cells, ligands that activate anti-leishmanial T cells and the antigens for therapeutic vaccines. Besides these, prophylactic vaccines have been in clinical trials but none has succeeded so far. Herein, we have attempted to encompass all these principles and compose a comprehensive review to analyze the feasibility and adoptability of different therapeutics for leishmaniasis.
Collapse
Affiliation(s)
- Hima Mahor
- National Centre for Cell Science, Ganeshkhind, Pune, 411007, India
| | - Arka Mukherjee
- Trident Academy of Creative Technology, Bhubaneswar, 751024, Odisha, India
| | - Arup Sarkar
- Trident Academy of Creative Technology, Bhubaneswar, 751024, Odisha, India
| | - Bhaskar Saha
- National Centre for Cell Science, Ganeshkhind, Pune, 411007, India; Trident Academy of Creative Technology, Bhubaneswar, 751024, Odisha, India.
| |
Collapse
|
5
|
Immunoinformatics Approach to Design a Novel Subunit Vaccine Against Visceral Leishmaniasis. Int J Pept Res Ther 2021; 28:34. [PMID: 34931120 PMCID: PMC8675112 DOI: 10.1007/s10989-021-10344-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2021] [Indexed: 11/25/2022]
Abstract
Visceral leishmaniasis (VL) infection is mostly caused by Leishmania donovani and affects countries worldwide. Despite the need for a safe and effective vaccine against leishmaniasis due to the increased drug resistance, however, no vaccine has yet been licensed for clinical use. This study revolves around the immunoinformatics approach to design a multi-epitope vaccine against VL infection. In this case, the proteome of L. donovani has been investigated, and three host non-homologous and antigenic extracellular secretory proteins have been identified as potential vaccine candidates with low transmembrane helices (≤ 1). The multi-epitope subunit vaccine construct consists of T-cell (cytotoxic T-lymphocyte (CTL) and helper T-lymphocyte (HTL)) epitopes accompanied by appropriate adjuvant and linkers. A 372-amino acid vaccine construct has been established with specific characteristics, such as soluble, stable, antigenic, non-allergenic, non-toxic, and non-host homologous. Besides, the tertiary structure of the designed vaccine was modeled and validated. Also, the stability and affinity of the vaccine- TLR4 complex were confirmed by using molecular docking and molecular dynamics (MD) simulation. In addition, in silico immunization assay showed the efficiency of this candidate vaccine to stimulate an effective immune response. Furthermore, the refined vaccine was optimized and cloned in the pET28a (+) vector, and its successful expression was confirmed virtually. However, the experimental validation is required to verify the multi-epitope vaccine efficacy against VL infection.
Collapse
|
6
|
Yadav S, Prakash J, Singh OP, Gedda MR, Chauhan SB, Sundar S, Dubey VK. IFN-γ + CD4 +T cell-driven prophylactic potential of recombinant LDBPK_252400 hypothetical protein of Leishmania donovani against visceral leishmaniasis. Cell Immunol 2020; 361:104272. [PMID: 33445051 DOI: 10.1016/j.cellimm.2020.104272] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/30/2020] [Accepted: 12/17/2020] [Indexed: 01/08/2023]
Abstract
Visceral leishmaniasis (VL) is a potentially fatal parasitic disease causing high morbidity and mortality in developing countries. Vaccination is considered the most effective and powerful tool for blocking transmission and control of diseases. However, no vaccine is available so far in the market for humans. In the present study, we characterized the hypothetical protein LDBPK_252400 of Leishmania donovani (LdHyP) and explored its prophylactic behavior as a potential vaccine candidate against VL. We found reduced hepato-splenomegaly along with more than 50% parasite reduction in spleen and liver after vaccination in mice. Protection in vaccinated mice after the antigen challenge correlated with the stimulation of antigen specific IFN-γ expressing CD4+T cell (~4.6 fold) and CD8+T cells (~2.1 fold) in vaccinated mice in compared to infected mice, even after 2-3 months of immunization. Importantly, antigen-mediated humoral immunity correlated with high antigen specific IgG2/IgG1 responses in vaccinated mice. In vitro re-stimulation of splenocytes with LdHyP enhances the expression of TNF-α, IFN-γ, IL-12 and IL-10 cytokines along with lower IL-4 cytokine and IL-10/IFN-γ ratio in vaccinated mice. Importantly, we observed ~3.5 fold high NO production through activated macrophages validates antigen mediated cellular immunity induction, which is critical in controlling infection progression. These findings suggest that immunization with LdHyP mount a very robust immunity (from IL-10 towards TFN-γ mediated responses) against L. donovani infection and could be explored further as a putative vaccine candidate against VL.
Collapse
Affiliation(s)
- Sunita Yadav
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Jay Prakash
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Om Prakash Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | | | | | - Shyam Sundar
- Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Vikash Kumar Dubey
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India.
| |
Collapse
|
7
|
Yadav S, Prakash J, Shukla H, Das KC, Tripathi T, Dubey VK. Design of a multi-epitope subunit vaccine for immune-protection against Leishmania parasite. Pathog Glob Health 2020; 114:471-481. [PMID: 33161887 DOI: 10.1080/20477724.2020.1842976] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Visceral Leishmaniasis (VL) is an insect-borne neglected disease caused by the protozoan parasite Leishmania donovani. In the absence of a commercial vaccine against VL, chemotherapy is currently the only option used for the treatment of VL. Vaccination has been considered as the most effective and powerful tool for complete eradication and control of infectious diseases. In this study, we aimed to design a peptide-based vaccine against L. donovani using immuno-bioinformatic tools. We identified 6 HTL, 18 CTL, and 25 B-cell epitopes from three hypothetical membrane proteins of L. donovani. All these epitopes were used to make a vaccine construct along with linkers. An adjuvant was also added at the N-terminal to enhance its immunogenicity. After that, we checked the quality of this vaccine construct and found that it is nontoxic, nonallergic, and thermally stable. A 3D structure of the vaccine construct was also generated by homology modeling to evaluate its interaction with innate immune receptors (TLR). Molecular docking was performed, which confirmed its binding with a toll-like receptor-2 (TLR-2). The stability of vaccine-TLR-2 complex and underlying interactions were evaluated using molecular dynamic simulation. Lastly, we carried out in silico cloning to check the expression of the final designed vaccine. The designed vaccine construct needs further experimental and clinical investigations to develop it as a safe and effective vaccine against VL infection.
Collapse
Affiliation(s)
- Sunita Yadav
- School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi , Varanasi, India
| | - Jay Prakash
- School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi , Varanasi, India
| | - Harish Shukla
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-EasternHill University , Shillong, India
| | - Kanhu Charan Das
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-EasternHill University , Shillong, India
| | - Timir Tripathi
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-EasternHill University , Shillong, India
| | - Vikash Kumar Dubey
- School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi , Varanasi, India
| |
Collapse
|
8
|
Machado JM, Costa LE, Dias DS, Ribeiro PAF, Martins VT, Lage DP, Carvalho GB, Franklin ML, Tavares GSV, Oliveira-da-Silva JA, Machado AS, Ramos LS, Nogueira LM, Mariano RMS, Moura HB, Silva ES, Teixeira-Neto RG, Campos-da-Paz M, Galdino AS, Coelho EAF. Diagnostic markers selected by immunoproteomics and phage display applied for the serodiagnosis of canine leishmaniosis. Res Vet Sci 2019; 126:4-8. [PMID: 31415928 DOI: 10.1016/j.rvsc.2019.08.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 07/30/2019] [Accepted: 08/04/2019] [Indexed: 11/24/2022]
Abstract
Canine leishmaniosis (CanL) is one of the most important parasitic diseases found in several countries worldwide. Dogs are considered important domestic reservoirs of the parasites, being relevant in the maintenance of transmission cycle of the disease between sandflies and humans. However, the prevalence of asymptomatic infection is considerably higher than that of apparent clinical illness in the infected animals; thus making promptly necessary to diagnose the infection in these animals, which could help to allow to the adoption of more efficient control measures against disease. Parasitological tests, which are considered as gold standard to demonstrate the infection and diagnose the disease, present problems related with their sensitivity. Also, the sample´s collect is considered invasive. As consequence, serological tests could be applied as an additional tool to detect the asymptomatic and symptomatic CanL. For this purpose, distinct recombinant antigens have been studied; however, problems in their sensitivity and/or specificity have been still registered. The present review focus in advances in the identification of new diagnostic targets applied for the CanL diagnose, represented here by recombinant single, combined or chimeric proteins, as well as by peptides that mimic epitopes (mimotopes); which were selected by means of immunoproteomics and phage display.
Collapse
Affiliation(s)
- Juliana M Machado
- Microbial Biotechnology Laboratory, Universidade Federal de São João Del-Rei, 35501-296 Divinópolis, Minas Gerais, Brazil
| | - Lourena E Costa
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, 30130-100 Belo Horizonte, Minas Gerais, Brazil
| | - Daniel S Dias
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, 30130-100 Belo Horizonte, Minas Gerais, Brazil
| | - Patricia A F Ribeiro
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, 30130-100 Belo Horizonte, Minas Gerais, Brazil
| | - Vívian T Martins
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, 30130-100 Belo Horizonte, Minas Gerais, Brazil
| | - Daniela P Lage
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, 30130-100 Belo Horizonte, Minas Gerais, Brazil
| | - Gerusa B Carvalho
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, 30130-100 Belo Horizonte, Minas Gerais, Brazil
| | - Michelle L Franklin
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, 30130-100 Belo Horizonte, Minas Gerais, Brazil
| | - Grasiele S V Tavares
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, 30130-100 Belo Horizonte, Minas Gerais, Brazil
| | - João A Oliveira-da-Silva
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, 30130-100 Belo Horizonte, Minas Gerais, Brazil
| | - Amanda S Machado
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, 30130-100 Belo Horizonte, Minas Gerais, Brazil
| | - Luana S Ramos
- Microbial Biotechnology Laboratory, Universidade Federal de São João Del-Rei, 35501-296 Divinópolis, Minas Gerais, Brazil
| | - Lais M Nogueira
- Microbial Biotechnology Laboratory, Universidade Federal de São João Del-Rei, 35501-296 Divinópolis, Minas Gerais, Brazil
| | - Reysla M S Mariano
- Microbial Biotechnology Laboratory, Universidade Federal de São João Del-Rei, 35501-296 Divinópolis, Minas Gerais, Brazil
| | - Henrique B Moura
- Infectious Parasitic Diseases Laboratory, Universidade Federal de São João Del-Rei, 35501-296 Divinópolis, Minas Gerais, Brazil
| | - Eduardo S Silva
- Infectious Parasitic Diseases Laboratory, Universidade Federal de São João Del-Rei, 35501-296 Divinópolis, Minas Gerais, Brazil
| | - Rafael G Teixeira-Neto
- Infectious Parasitic Diseases Laboratory, Universidade Federal de São João Del-Rei, 35501-296 Divinópolis, Minas Gerais, Brazil
| | - Mariana Campos-da-Paz
- Nanobiotechnology Laboratory, Universidade Federal de São João Del-Rei, 35501-296 Divinópolis, Minas Gerais, Brazil
| | - Alexsandro S Galdino
- Microbial Biotechnology Laboratory, Universidade Federal de São João Del-Rei, 35501-296 Divinópolis, Minas Gerais, Brazil
| | - Eduardo A F Coelho
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, 30130-100 Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|