1
|
Wang Y, Nan X, Duan Y, Wang Q, Liang Z, Yin H. FDA-approved small molecule kinase inhibitors for cancer treatment (2001-2015): Medical indication, structural optimization, and binding mode Part I. Bioorg Med Chem 2024; 111:117870. [PMID: 39128361 DOI: 10.1016/j.bmc.2024.117870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 08/13/2024]
Abstract
The dysregulation of kinases has emerged as a major class of targets for anticancer drug discovery given its node roles in the etiology of tumorigenesis, progression, invasion, and metastasis of malignancies, which is validated by the FDA approval of 28 small molecule kinase inhibitor (SMKI) drugs for cancer treatment at the end of 2015. While the preclinical and clinical data of these drugs are widely presented, it is highly essential to give an updated review on the medical indications, design principles and binding modes of these anti-tumor SMKIs approved by the FDA to offer insights for the future development of SMKIs with specific efficacy and safety.
Collapse
Affiliation(s)
- Ying Wang
- Department of Electrophysiological Diagnosis, 3201 Hospital of Xi'an Jiaotong University Health Science Center, Hanzhong 723000, China
| | - Xiang Nan
- College of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong 723001, China; Department of Stomatology, Shenzhen Second People's Hospital, Shenzhen 518035, China
| | - Yanping Duan
- College of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong 723001, China
| | - Qiuxu Wang
- Department of Stomatology, Shenzhen Second People's Hospital, Shenzhen 518035, China.
| | - Zhigang Liang
- Department of Stomatology, Shenzhen Second People's Hospital, Shenzhen 518035, China
| | - Hanrong Yin
- Department of Electrophysiological Diagnosis, 3201 Hospital of Xi'an Jiaotong University Health Science Center, Hanzhong 723000, China.
| |
Collapse
|
2
|
Mugiya T, Mothibe M, Khathi A, Ngubane P, Sibiya N. Glycaemic abnormalities induced by small molecule tryosine kinase inhibitors: a review. Front Pharmacol 2024; 15:1355171. [PMID: 38362147 PMCID: PMC10867135 DOI: 10.3389/fphar.2024.1355171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/12/2024] [Indexed: 02/17/2024] Open
Abstract
In light of the expected increase in the prevalence of diabetes mellitus due to an aging population, sedentary lifestyles, an increase in obesity, and unhealthy diets, there is a need to identify potential pharmacological agents that can heighten the risk of developing diabetes. Similarly, it is equally important to also identify those agents that show blood glucose-lowering properties. Amongst these agents are tyrosine kinase inhibitors used to treat certain types of cancers. Over the last two decades, there has been an increase in the use of targeted chemotherapy for cancers such as renal cell carcinoma, chronic leukaemia, and gastrointestinal stromal tumours. Small molecule tyrosine kinase inhibitors have been at the forefront of targeted chemotherapy. Studies have shown that small molecule tyrosine kinase inhibitors can alter glycaemic control and glucose metabolism, with some demonstrating hypoglycaemic activities whilst others showing hyperglycaemic properties. The mechanism by which small molecule tyrosine kinase inhibitors cause glycaemic dysregulation is not well understood, therefore, the clinical significance of these chemotherapeutic agents on glucose handling is also poorly documented. In this review, the effort is directed at mapping mechanistic insights into the effect of various small molecule tyrosine kinase inhibitors on glycaemic dysregulation envisaged to provide a deeper understanding of these chemotherapeutic agents on glucose metabolism. Small molecule tyrosine kinase inhibitors may elicit these observed glycaemic effects through preservation of β-cell function, improving insulin sensitivity and insulin secretion. These compounds bind to a spectrum of receptors and proteins implicated in glucose regulation for example, non-receptor tyrosine kinase SRC and ABL. Then receptor tyrosine kinase EGFR, PDGFR, and FGFR.
Collapse
Affiliation(s)
- Takudzwa Mugiya
- Pharmacology Division, Faculty of Pharmacy, Rhodes University, Makhanda, South Africa
| | - Mamosheledi Mothibe
- Pharmacology Division, Faculty of Pharmacy, Rhodes University, Makhanda, South Africa
| | - Andile Khathi
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Phikelelani Ngubane
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Ntethelelo Sibiya
- Pharmacology Division, Faculty of Pharmacy, Rhodes University, Makhanda, South Africa
| |
Collapse
|
3
|
Ozel B, Kipcak S, Biray Avci C, Sabour Takanlou M, Sabour Takanlou L, Tezcanli Kaymaz B, Karatekin I, Gunduz C, Selvi Gunel N. Targeting UPR signaling pathway by dasatinib as a promising therapeutic approach in chronic myeloid leukemia. Med Oncol 2022; 39:126. [PMID: 35716222 DOI: 10.1007/s12032-022-01714-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 03/21/2022] [Indexed: 11/24/2022]
Abstract
Chronic myeloid leukemia (CML) is a myeloproliferative disease that mediated by BCR/ABL oncogenic signaling. CML can be targeted with the imatinib, dasatinib, and nilotinib TKI inhibitors, the latter two of them have been approved for imatinib-resistant or -intolerant CML patients. The TKIs resistance occurs by different molecular mechanisms, including overexpression of BCR-ABL, mutations in the TKI binding site of BCR/ABL, and ER-stress. Unfolded protein responses (UPR) is a cytoprotective mechanism which is activated by ER-stress. The IRE1, PERK, and ATF6 are three main arms of the UPR mechanism and are activated by a common mechanism involving the dissociation of the ER-chaperone BiP/GP78. There is a correlation between ER-stress, CML progression, and response to TKI treatment. In the present study, we aimed to determine alterations of the expression levels of genes related to UPR pathway signaling after treatment with dasatinib in K562 chronic myeloid leukemia cell line by quantitative RT-PCR relatively. The array-data revealed that treatment with dasatinib significantly decreased the UPR mechanism-related genes (including HSPA1B, HSPA2, HSPA4L, ATF6, ATF6B, CEBPB, PERK, TRIB3, DNAJB, ERN1, and UHRF1) in K562 cells. In conclusion, the results showed that dasatinib regulates the UPR mechanism that plays a significant role in cancer progression and therapy resistance in CML. Thus, dasatinib-induced dysfunction of the UPR mechanism may promise encouraging therapy for CML.
Collapse
Affiliation(s)
- Buket Ozel
- Department of Medical Biology, Faculty of Medicine, Ege University, Bornova, 35100, Izmir, Turkey
| | - Sezgi Kipcak
- Department of Medical Biology, Faculty of Medicine, Ege University, Bornova, 35100, Izmir, Turkey
| | - Cigir Biray Avci
- Department of Medical Biology, Faculty of Medicine, Ege University, Bornova, 35100, Izmir, Turkey.
| | - Maryam Sabour Takanlou
- Department of Medical Biology, Faculty of Medicine, Ege University, Bornova, 35100, Izmir, Turkey
| | - Leila Sabour Takanlou
- Department of Medical Biology, Faculty of Medicine, Ege University, Bornova, 35100, Izmir, Turkey
| | - Burcin Tezcanli Kaymaz
- Department of Medical Biology, Faculty of Medicine, Ege University, Bornova, 35100, Izmir, Turkey
| | - Ilknur Karatekin
- Department of Medical Biology, Faculty of Medicine, Ege University, Bornova, 35100, Izmir, Turkey
| | - Cumhur Gunduz
- Department of Medical Biology, Faculty of Medicine, Ege University, Bornova, 35100, Izmir, Turkey
| | - Nur Selvi Gunel
- Department of Medical Biology, Faculty of Medicine, Ege University, Bornova, 35100, Izmir, Turkey
| |
Collapse
|
4
|
Impact of the treatment of chronic myeloid leukaemia by tyrosine-kinase inhibitors on sick leaves refund: a nationwide cohort study. Support Care Cancer 2022; 30:5431-5440. [PMID: 35304631 DOI: 10.1007/s00520-022-06968-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 03/10/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND The advent of chronic myeloid leukaemia (CML) tyrosine-kinase inhibitors (TKI) has led to new paradigms including occupational rehabilitation. OBJECTIVES This study aimed to characterize the impact of CML treatment on sick leaves within the 2 years following diagnosis in working-age patients. METHODS A cohort of all 18-60-year-old newly diagnosed CML patients initiating a TKI between January 1st 2011 and December 31st 2014 in France was identified in the French National Healthcare database (Système National des Données de Santé [SNDS]). Patients with a sick leave identified in the 24 months after TKI initiation were compared with sex and initiation date matched controls in a nested case-control design. Factors associated with sick leaves were identified through a conditional logistic regression model, providing adjusted odds-ratio (OR) with their 95% confidence interval (CI). RESULTS Among 646 18-60-year-old patients, 268 were prescribed at least one sick leave in the study period, with 176 (27.2%) having their first sick leave prescribed after TKI initiation. The median number of sick days over the 2-years period was 115 per patient (interquartile range 25.5-384.5). In the nested case-control study (176 cases and 176 matched controls), sick leaves were more likely observed with second generation TKI (OR 4.11 [1.80-9.38]), whereas they were less likely observed in case if social deprivation (OR 0.07 [0.02-0.28]. CONCLUSION More than 25% of working-age CML patients had at least one sick leave within 2 years of TKI initiation, with a higher impact of second generation TKI, and with a median duration of 115 days.
Collapse
|
5
|
Ayala-Aguilera CC, Valero T, Lorente-Macías Á, Baillache DJ, Croke S, Unciti-Broceta A. Small Molecule Kinase Inhibitor Drugs (1995-2021): Medical Indication, Pharmacology, and Synthesis. J Med Chem 2021; 65:1047-1131. [PMID: 34624192 DOI: 10.1021/acs.jmedchem.1c00963] [Citation(s) in RCA: 150] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The central role of dysregulated kinase activity in the etiology of progressive disorders, including cancer, has fostered incremental efforts on drug discovery programs over the past 40 years. As a result, kinase inhibitors are today one of the most important classes of drugs. The FDA approved 73 small molecule kinase inhibitor drugs until September 2021, and additional inhibitors were approved by other regulatory agencies during that time. To complement the published literature on clinical kinase inhibitors, we have prepared a review that recaps this large data set into an accessible format for the medicinal chemistry community. Along with the therapeutic and pharmacological properties of each kinase inhibitor approved across the world until 2020, we provide the synthesis routes originally used during the discovery phase, many of which were only available in patent applications. In the last section, we also provide an update on kinase inhibitor drugs approved in 2021.
Collapse
Affiliation(s)
- Cecilia C Ayala-Aguilera
- Cancer Research UK Edinburgh Centre, Institute of Genetics & Cancer, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, United Kingdom
| | - Teresa Valero
- Cancer Research UK Edinburgh Centre, Institute of Genetics & Cancer, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, United Kingdom
| | - Álvaro Lorente-Macías
- Cancer Research UK Edinburgh Centre, Institute of Genetics & Cancer, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, United Kingdom
| | - Daniel J Baillache
- Cancer Research UK Edinburgh Centre, Institute of Genetics & Cancer, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, United Kingdom
| | - Stephen Croke
- Cancer Research UK Edinburgh Centre, Institute of Genetics & Cancer, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, United Kingdom
| | - Asier Unciti-Broceta
- Cancer Research UK Edinburgh Centre, Institute of Genetics & Cancer, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, United Kingdom
| |
Collapse
|
6
|
Colom-Fernández B, Kreutzman A, Marcos-Jiménez A, García-Gutiérrez V, Cuesta-Mateos C, Portero-Sainz I, Pérez-García Y, Casado LF, Sánchez-Guijo F, Martínez-López J, Ayala RM, Boqué C, Xicoy B, Montero I, Soto C, Paz R, Silva G, Vega-Piris L, Steegmann JL, Muñoz-Calleja C. Immediate Effects of Dasatinib on the Migration and Redistribution of Naïve and Memory Lymphocytes Associated With Lymphocytosis in Chronic Myeloid Leukemia Patients. Front Pharmacol 2019; 10:1340. [PMID: 31824308 PMCID: PMC6886582 DOI: 10.3389/fphar.2019.01340] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 10/22/2019] [Indexed: 12/17/2022] Open
Abstract
Introduction: Dasatinib is a dual SRC/ABL tyrosine kinase inhibitor used to treat chronic myeloid leukemia (CML) that is known to have unique immunomodulatory effects. In particular, dasatinib intake typically causes lymphocytosis, which has been linked to better clinical response. Since the underlying mechanisms are unknown and SRC family kinases are involved in many cell motility processes, we hypothesized that the movement and migration of lymphocytes is modulated by dasatinib. Patients, Materials and Methods: Peripheral blood samples from CML patients treated with second-line dasatinib were collected before and 2 h after the first dasatinib intake, and follow-up samples from the same patients 3 and 6 months after the start of therapy. The migratory capacity and phenotype of lymphocytes and differential blood counts before and after drug intake were compared for all study time-points. Results: We report here for the first time that dasatinib intake is associated with inhibition of peripheral blood T-cell migration toward the homeostatic chemokines CCL19 and CCL21, which control the trafficking toward secondary lymphoid organs, mainly the lymph nodes. Accordingly, the proportion of lymphocytes in blood expressing CCR7, the chemokine receptor for both CCL19 and CCL21, decreased after the intake including both naïve CD45RA+ and central memory CD45RO+ T-cells. Similarly, naïve B-cells diminished with dasatinib. Finally, such changes in the migratory patterns did not occur in those patients whose lymphocyte counts remained unchanged after taking the drug. Discussion: We, therefore, conclude that lymphocytosis induced by dasatinib reflects a pronounced redistribution of naïve and memory populations of all lymphocyte subsets including CD4+ and CD8+ T-cells and B-cells.
Collapse
Affiliation(s)
- Beatriz Colom-Fernández
- Servicio de Inmunología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria Princesa (IP), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Anna Kreutzman
- Servicio de Inmunología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria Princesa (IP), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Ana Marcos-Jiménez
- Servicio de Inmunología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria Princesa (IP), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | | | - Carlos Cuesta-Mateos
- Servicio de Inmunología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria Princesa (IP), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Itxaso Portero-Sainz
- Servicio de Inmunología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria Princesa (IP), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Yaiza Pérez-García
- Servicio de Inmunología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria Princesa (IP), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Luis Felipe Casado
- Servicio de Hematología y Hemoterapia, Hospital Virgen de la Salud, Toledo, Spain
| | - Fermín Sánchez-Guijo
- Servicio de Hematología y Hemoterapia, IBSAL-Hospital Universitario de Salamanca, Salamanca, Spain
| | - Joaquín Martínez-López
- Servicio de Hematología y Hemoterapia, Hospital Universitario 12 de Octubre, Universidad Complutense de Madrid (UCM), CIBERONC, Madrid, Spain
| | - Rosa M Ayala
- Servicio de Hematología y Hemoterapia, Hospital Universitario 12 de Octubre, Universidad Complutense de Madrid (UCM), CIBERONC, Madrid, Spain
| | - Concha Boqué
- Servicio de Hematología Clínica, Hospital Duran i Reynals, Institut Català d'Oncologia, Barcelona, Spain
| | - Blanca Xicoy
- Servicio de Hematología, Servicio de Hematología Clínica, Institut Català d'Oncologia, Hospital Germans Trias i Pujol, Barcelona, José Carreras Leukemia Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Isabel Montero
- Servicio de Hematología, Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | - César Soto
- Servicio de Hematología, Hospital Povisa, Vigo, Spain
| | - Raquel Paz
- Servicio de Hematología, Hospital Universitario de la Paz, Madrid, Spain
| | - Gabriela Silva
- Servicio de Hematología, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IP), Madrid, Spain
| | - Lorena Vega-Piris
- Unidad de Metodología, Instituto de Investigación Sanitaria Princesa (IP), Madrid, Spain
| | - Juan Luis Steegmann
- Servicio de Hematología, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IP), Madrid, Spain
| | - Cecilia Muñoz-Calleja
- Servicio de Inmunología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria Princesa (IP), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| |
Collapse
|
7
|
A simple screening method for the diagnosis of chronic myeloid leukemia using the parameters of a complete blood count and differentials. Clin Chim Acta 2019; 489:249-253. [DOI: 10.1016/j.cca.2018.08.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 08/18/2018] [Accepted: 08/24/2018] [Indexed: 11/21/2022]
|
8
|
Won AM, Boddu P, Otun AO, Aponte-Wesson R, Chambers M. Chronic myelogenous leukemia presenting with osteonecrosis of the jaw as a rare but debilitating toxicity of dasatinib: a case report and literature review. Oral Surg Oral Med Oral Pathol Oral Radiol 2018; 126:e208-e211. [PMID: 29941400 DOI: 10.1016/j.oooo.2018.05.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 05/07/2018] [Accepted: 05/18/2018] [Indexed: 12/22/2022]
Abstract
This report describes a case of osteonecrosis of the jaw developing after a routine dental extraction in a patient being treated with dasatinib, a tyrosine kinase inhibitor, for chronic myelogenous leukemia. As the role of tyrosine kinase inhibitors in cancer treatment expands, patterns of debilitating complications involving the osseous structures of the oral cavity have begun to emerge, and many long-term side effects of this promising therapy remain unknown. To limit the occurrence of known complications, health care providers and patients must be aware of the potential for serious complications of dasatinib, and appropriate protocols should be in place before administration of this medication.
Collapse
Affiliation(s)
- Alexander M Won
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Prajwal Boddu
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Adegbenga O Otun
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ruth Aponte-Wesson
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mark Chambers
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
9
|
Overexpression of miR-202 resensitizes imatinib resistant chronic myeloid leukemia cells through targetting Hexokinase 2. Biosci Rep 2018; 38:BSR20171383. [PMID: 29559564 PMCID: PMC5938424 DOI: 10.1042/bsr20171383] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 03/06/2018] [Accepted: 03/19/2018] [Indexed: 02/07/2023] Open
Abstract
Chronic myeloid leukemia (CML) is a myeloproliferative disease which uniquely expresses a constitutively active tyrosine kinase, BCR/ABL. As a specific inhibitor of the BCR-ABL tyrosine kinase, imatinib becomes the first choice for the treatment of CML due to its high efficacy and low toxicity. However, the development of imatinib resistance limits the long-term treatment benefits of it in CML patients. In the present study, we aimed to investigate the roles of miR-202 in the regulation of imatinib sensitivity in CML cell lines and the possible mechanisms involved in this process. We found miR-202 was down-regulated in seven CML cell lines by quantitative reverse-transcription PCR (qRT-PCR) analysis. Overexpression of miR-202 significantly suppressed proliferation rates of CML cells. By establishing imatinib resistant cell lines originating from K562 and KU812 cells, we observed expressions of miR-202 were down-regulated by imatinib treatments and imatinib resistant CML cell lines exhibited lower level of miR-202. On the contrary, imatinib resistant CML cell lines displayed up-regulated glycolysis rate than sensitive cells with the evidence that glucose uptake, lactate production, and key glycolysis enzymes were elevated in imatinib resistant cells. Importantly, the imatinib resistant CML cell lines were more sensitive to glucose starvation and glycolysis inhibitors. In addition, we identified Hexokinase 2 (HK2) as a direct target of miR-202 in CML cell lines. Overexpression of miR-202 sensitized imatinib resistant CML through the miR-202-mediated glycolysis inhibition by targetting HK2. Finally, we provided the clinical relevance that miR-202 was down-regulated in CML patients and patients with lower miR-202 expression displayed higher HK2 expression. The present study will provide new aspects on the miRNA-modulated tyrosine kinase inhibitor (TKI) sensitivity in CML, contributing to the development of new therapeutic anticancer drugs.
Collapse
|
10
|
García-Tuñón I, Hernández-Sánchez M, Ordoñez JL, Alonso-Pérez V, Álamo-Quijada M, Benito R, Guerrero C, Hernández-Rivas JM, Sánchez-Martín M. The CRISPR/Cas9 system efficiently reverts the tumorigenic ability of BCR/ABL in vitro and in a xenograft model of chronic myeloid leukemia. Oncotarget 2018; 8:26027-26040. [PMID: 28212528 PMCID: PMC5432235 DOI: 10.18632/oncotarget.15215] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 01/27/2017] [Indexed: 11/25/2022] Open
Abstract
CRISPR/Cas9 technology was used to abrogate p210 oncoprotein expression in the Boff-p210 cell line, a pro-B line derived from interlukin-3-dependent Baf/3, that shows IL-3-independence arising from the constitutive expression of BCR-ABL p210. Using this approach, pools of Boff-p210-edited cells and single edited cell-derived clones were obtained and functionally studied in vitro. The loss of p210 expression in Boff-p210 cells resulted in the loss of ability to grow in the absence of IL-3, as the Baf/3 parental line, showing significantly increased apoptosis levels. Notably, in a single edited cell-derived clone carrying a frame-shift mutation that prevents p210 oncoprotein expression, the effects were even more drastic, resulting in cell death. These edited cells were injected subcutaneously in immunosuppressed mice and tumor growth was followed for three weeks. BCR/ABL-edited cells developed smaller tumors than those originating from unedited Boff-p210 parental cells. Interestingly, the single edited cell-derived clone was unable to develop tumors, similar to what is observed with the parental Baf/3 cell line. CRISPR/Cas9 genomic editing technology allows the ablation of the BCR/ABL fusion gene, causing an absence of oncoprotein expression, and blocking its tumorigenic effects in vitro and in the in vivo xenograft model of CML. The future application of this approach in in vivo models of CML will allow us to more accurately assess the value of CRISPR/Cas9 technology as a new therapeutic tool that overcomes resistance to the usual treatments for CML patients.
Collapse
Affiliation(s)
- Ignacio García-Tuñón
- Unidad de Diagnóstico Molecular y Celular del Cáncer, Centro de Investigación del Cáncer-IBMCC (USAL-CSIC), Salamanca, Spain
| | - María Hernández-Sánchez
- Unidad de Diagnóstico Molecular y Celular del Cáncer, Centro de Investigación del Cáncer-IBMCC (USAL-CSIC), Salamanca, Spain
| | - José Luis Ordoñez
- Unidad de Diagnóstico Molecular y Celular del Cáncer, Centro de Investigación del Cáncer-IBMCC (USAL-CSIC), Salamanca, Spain
| | - Veronica Alonso-Pérez
- Unidad de Diagnóstico Molecular y Celular del Cáncer, Centro de Investigación del Cáncer-IBMCC (USAL-CSIC), Salamanca, Spain
| | - Miguel Álamo-Quijada
- Unidad de Diagnóstico Molecular y Celular del Cáncer, Centro de Investigación del Cáncer-IBMCC (USAL-CSIC), Salamanca, Spain
| | - Rocio Benito
- Unidad de Diagnóstico Molecular y Celular del Cáncer, Centro de Investigación del Cáncer-IBMCC (USAL-CSIC), Salamanca, Spain
| | - Carmen Guerrero
- IBSAL, Instituto de Investigación Biomédica de Salamanca, Salamanca, Spain.,Instituto Biología Molecular y Celular del Cáncer (USAL/CSIC), Salamanca, Spain.,Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain
| | - Jesús María Hernández-Rivas
- Unidad de Diagnóstico Molecular y Celular del Cáncer, Centro de Investigación del Cáncer-IBMCC (USAL-CSIC), Salamanca, Spain.,IBSAL, Instituto de Investigación Biomédica de Salamanca, Salamanca, Spain.,Servicio de Hematología, Hospital Universitario de Salamanca, Salamanca, Spain
| | - Manuel Sánchez-Martín
- IBSAL, Instituto de Investigación Biomédica de Salamanca, Salamanca, Spain.,Servicio de Transgénesis, Nucleus, Universidad de Salamanca, Salamanca, Spain.,Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain
| |
Collapse
|
11
|
Sánchez NS, Mills GB, Mills Shaw KR. Precision oncology: neither a silver bullet nor a dream. Pharmacogenomics 2017; 18:1525-1539. [PMID: 29061079 DOI: 10.2217/pgs-2017-0094] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Precision oncology is not an illusion, nor is it the magic bullet that will eradicate all cancers. Precision oncology is simply another weapon in our growing armament against cancer. Rather than honing in on the failures of a relatively young field, one should advocate for integrating its successes into widespread clinical practice, especially for indications, such as: ABL, ALK, BRAF, BRCA1, BRCA2, EGFR, KIT, KRAS, PDGFRA, PDGFRB, ROS1, BCR-ABL, FLT3 and ROS1, where aberrations have been shown to alter responses to US FDA approved drugs - that is, level 1 data. Moreover, to truly assess the promise of precision oncology, we must first begin by defining our expectations for this field. Importantly, we must recognize that the conception of precision oncology arose as an antithesis of the 'one-size fits all' cancer therapeutics approach. Consequently, tools used for evaluating these conventional, large-scale trials, are not directly transferable for assessing nonconventional, smaller-scale trials needed for evaluating precision oncology. Hence, a thorough vetting of precision oncology as another tool of the trade, must first begin by reassessing our expectations for this field, as well as current clinical trial designs and end point measurements. Importantly, we must recognize that most targeted therapy approaches are in their infancy, with only monotherapy approaches being assessed and combination therapies likely being necessary to fulfill the promise of precision oncology.
Collapse
Affiliation(s)
- Nora S Sánchez
- Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Gordon B Mills
- Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.,Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kenna R Mills Shaw
- Sheikh Khalifa Bin Zayed Al Nahyan Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
12
|
Gomez-de-León A, Gómez-Almaguer D, Ruiz-Delgado GJ, Ruiz-Arguelles GJ. Insights into the management of chronic myeloid leukemia in resource-poor settings: a Mexican perspective. Expert Rev Hematol 2017; 10:809-819. [PMID: 28742419 DOI: 10.1080/17474086.2017.1360180] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION The arrival of targeted therapy for chronic myeloid leukemia (CML) was revolutionary. However, due to the high cost of tyrosine kinase inhibitors, access to this highly effective therapy with strict monitoring strategies is limited in low to middle-income countries. In this context, following standard recommendations proposed by experts in developed countries is difficult. Areas covered: This review aims to provide an insight into the management of patients with CML living in a resource-limited setting. It addresses several issues: diagnosis, initial treatment, disease monitoring, and additional treatment alternatives including allogeneic hematopoietic stem cell transplantation. Expert commentary: Imatinib is probably the most cost-effective TKI for initial treatment in developing and underdeveloped countries. Generic imatinib preparations should be evaluated before considering their widespread use. Adherence to treatment should be emphasized. Adequate monitoring can be performed through several methods successfully and is important for predicting outcomes, particularly early in the first year, and if treatment suspension is being considered. Access to further therapeutic alternatives should define our actions after failure or intolerance to imatinib, preferring additional TKIs if possible. Allogeneic transplantation in chronic phase is a viable option in this context.
Collapse
Affiliation(s)
- Andrés Gomez-de-León
- a Universidad Autónoma de Nuevo León , Facultad de Medicina y Hospital Universitario "Dr.José Eleuterio González". Hematology Service, Monterrey , Nuevo León , México
| | - David Gómez-Almaguer
- a Universidad Autónoma de Nuevo León , Facultad de Medicina y Hospital Universitario "Dr.José Eleuterio González". Hematology Service, Monterrey , Nuevo León , México
| | | | | |
Collapse
|
13
|
Current approach to the treatment of chronic myeloid leukaemia. Leuk Res 2017; 55:65-78. [PMID: 28135648 DOI: 10.1016/j.leukres.2017.01.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 01/02/2017] [Accepted: 01/04/2017] [Indexed: 01/20/2023]
Abstract
Of all the cancers, chronic myeloid leukaemia (CML) has witnessed the most rapid evolution of the therapeutic milieu in recent decades. The introduction of tyrosine kinase inhibitors (TKIs) as a therapeutic option has profoundly changed patient experience and outcome. The availability of multiple new highly effective therapies has increasingly underscored the importance of a good understanding of the underlying pathophysiological basis in CML, as well as patient-specific factors in choosing the right treatment for every individual. The treatment of CML has migrated in many jurisdictions from the office of a highly specialized malignant hematologist to the general hematologist or even a general practitioner. The goal of this review is to offer an overview of the modern approach to the treatment of CML, with an emphasis on chronic phase (CP) CML, including both TKI-based therapies such as imatinib, dasatinib, nilotinib, bosutinib and ponatinib, and non-TKI medications, such as omacetaxine. We discuss evidence behind each drug, most common and material adverse reactions and outline how this information can be used in selecting the right drug for the right patient. We also discuss evidence as it relates to other therapies, including stem cell transplant (SCT), and patients in accelerated (AP) and blastic phase (BP).
Collapse
|
14
|
Dempsey PW. CTCs and ctDNA: Two Tales of a Complex Biology. LIQUID BIOPSIES IN SOLID TUMORS 2017. [DOI: 10.1007/978-3-319-50956-3_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
15
|
Savasoglu K, Payzin KB, Ozdemirkiran F, Subasioglu A, Yilmaz AF. The effect of the additional cytogenetic abnormalities on major molecular response and BCR-ABL kinase domain mutations in long-term follow-up chronic myeloid leukemia patients, a cross sectional study. Leuk Lymphoma 2016; 58:1958-1962. [DOI: 10.1080/10428194.2016.1265112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Kaan Savasoglu
- Department of Genetic, Izmir Ataturk Education and Research Hospital, Izmir, Turkey
| | | | - Fusun Ozdemirkiran
- Department of Hematology, Izmir Ataturk Education and Research Hospital, Izmir, Turkey
| | - Asli Subasioglu
- Department of Genetic, Izmir Ataturk Education and Research Hospital, Izmir, Turkey
| | - Asu Fergun Yilmaz
- Department of Hematology, Izmir Ataturk Education and Research Hospital, Izmir, Turkey
| |
Collapse
|
16
|
Poch Martell M, Sibai H, Deotare U, Lipton JH. Ponatinib in the therapy of chronic myeloid leukemia. Expert Rev Hematol 2016; 9:923-32. [DOI: 10.1080/17474086.2016.1232163] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
17
|
Firwana B, Sonbol MB, Diab M, Raza S, Hasan R, Yousef I, Zarzour A, Garipalli A, Doll D, Murad MH, Al-Kali A. Tyrosine kinase inhibitors as a first-line treatment in patients with newly diagnosed chronic myeloid leukemia in chronic phase: A mixed-treatment comparison. Int J Cancer 2015; 138:1545-53. [DOI: 10.1002/ijc.29889] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 09/22/2015] [Accepted: 09/25/2015] [Indexed: 01/18/2023]
Affiliation(s)
- Belal Firwana
- University of Arkansas for Medical Sciences/Winthrop Rockefeller Cancer Institute; Little Rock AR
- Ellis Fischel Cancer Center, University of Missouri; Columbia MO
| | | | - Maria Diab
- Department of Medicine; Wayne State University; Detroit MI
| | - Shahzad Raza
- Ellis Fischel Cancer Center, University of Missouri; Columbia MO
- Columbia University Medical Center/Herbert Irving Comprehensive Cancer Center; New York NY
| | - Rim Hasan
- Division of Endocrinology and Metabolism, University of Arkansas for Medical Sciences; Little Rock AR
| | - Ibrahim Yousef
- Department of Medicine; Indiana University; Indianapolis IN
| | | | | | - Donald Doll
- Ellis Fischel Cancer Center, University of Missouri; Columbia MO
| | | | - Aref Al-Kali
- Division of Hematology; Mayo Clinic; Rochester MN
| |
Collapse
|
18
|
Chen R, Wang F, Zhang X, Gao C, Chen B. Severe thrombocytopenia after dasatinib treatment in a patient with Philadelphia chromosome-positive chronic myeloid leukemia. Onco Targets Ther 2015; 8:955-7. [PMID: 25960668 PMCID: PMC4423504 DOI: 10.2147/ott.s83961] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Dasatinib, a second-generation tyrosine kinase inhibitor, is used for treating patients with Philadelphia chromosome (Ph) positive leukemia, especially for those who are resistant or intolerant to imatinib. The common adverse effects associated to its use include myelosuppression, nausea, diarrhea, and peripheral edema. This study reports a very rare case of a 60-year-old male who suffered from severe thrombocytopenia after dasatinib administration. The platelet count did not increase even after dasatinib had been discontinued for more than 6 months. Various means had been tried, but the count of platelet did not increase, and the result was not optimistic. This is the first report of so severe thrombocytopenia after dasatinib treatment, and the pathophysiology underlying this reaction remains unknown. We hope that this case will help remind clinicians to pay more attention to the side effect of thrombocytopenia caused by dasatinib in the future.
Collapse
Affiliation(s)
- Runzhe Chen
- Department of Hematology and Oncology (Key Department of Jiangsu Medicine), Zhongda Hospital, Medical School, Southeast University, Nanjing, Jiangsu Province, People's Republic of China
| | - Fei Wang
- Department of Hematology and Oncology (Key Department of Jiangsu Medicine), Zhongda Hospital, Medical School, Southeast University, Nanjing, Jiangsu Province, People's Republic of China
| | - Xiaoping Zhang
- Department of Hematology and Oncology (Key Department of Jiangsu Medicine), Zhongda Hospital, Medical School, Southeast University, Nanjing, Jiangsu Province, People's Republic of China
| | - Chong Gao
- Department of Hematology and Oncology (Key Department of Jiangsu Medicine), Zhongda Hospital, Medical School, Southeast University, Nanjing, Jiangsu Province, People's Republic of China
| | - Baoan Chen
- Department of Hematology and Oncology (Key Department of Jiangsu Medicine), Zhongda Hospital, Medical School, Southeast University, Nanjing, Jiangsu Province, People's Republic of China
| |
Collapse
|
19
|
Chen R, Chen B. The role of dasatinib in the management of chronic myeloid leukemia. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:773-9. [PMID: 25709401 PMCID: PMC4330036 DOI: 10.2147/dddt.s80207] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Dasatinib is a second-generation tyrosine kinase inhibitor (TKI) for chronic, blastic, or accelerated phase chronic myeloid leukemia (CML) patients who are resistant or intolerant to previous treatment. It potently inhibits BCR/ABL and SRC-family kinases (SRC, LCK, HCK, YES, FYN, FGR, BLK, LYN, FRK), as well as c-KIT, PDGFR-a and -b, and ephrin receptor kinase. Various clinical trials have provided evidence that it has more durable complete hematologic and cytogenetic responses, as well as more potency in imatinib-resistant or -intolerant CML, and it has also shown its advantages in newly diagnosed CML compared to imatinib. In this review, we mainly focus on the structure, mechanisms, pharmacokinetics, and pharmacogenetics of dasatinib. We also summarize clinical trials with dasatinib on CML and provide our recommendations for dasatinib in the treatment of CML.
Collapse
Affiliation(s)
- Runzhe Chen
- Department of Hematology and Oncology (Key Department of Jiangsu Medicine), Zhongda Hospital, Medical School, Southeast University, Nanjing, Jiangsu Province, People's Republic of China
| | - Baoan Chen
- Department of Hematology and Oncology (Key Department of Jiangsu Medicine), Zhongda Hospital, Medical School, Southeast University, Nanjing, Jiangsu Province, People's Republic of China
| |
Collapse
|
20
|
Abstract
The BCR-ABL1 oncoprotein is the cause of chronic myeloid leukemia and occurs as a consequence of the translocation t(9;22), a well-defined genetic event that results in the formation of the Philadelphia chromosome. While this genomic aberration is recognized to be the main culprit of the chronic phase of chronic myeloid leukemia, the natural clonal evolution of this myeloproliferative neoplasm involves the accumulation of secondary alterations through genomic instability. Thus, efforts to dissect the frequency and nature of the genomic events at diagnosis and at later stages are producing valuable insights into understanding the mechanisms of blastic transformation and development of resistance in chronic myeloid leukemia. The identification of alternative BCR-ABL1-dependent and BCR-ABL1-independent targets that sustain the survival of leukemic blasts and/or leukemia-initiating cells will facilitate the development of novel viable therapeutic options for patients who become resistant or intolerant to the currently available therapeutic options based on tyrosine kinase inhibitors.
Collapse
|
21
|
Yin Y, Sun H, Xu J, Xiao F, Wang H, Yang Y, Ren H, Wu CT, Gao C, Wang L. Kinesin spindle protein inhibitor SB743921 induces mitotic arrest and apoptosis and overcomes imatinib resistance of chronic myeloid leukemia cells. Leuk Lymphoma 2014; 56:1813-20. [PMID: 25146433 DOI: 10.3109/10428194.2014.956319] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Inhibition of the cell mitotic pathway may provide a novel means for therapeutic intervention in chronic myeloid leukemia (CML). Kinesin spindle protein (KSP), a microtubule-associated motor protein which is essential for cell cycle progression, is overexpressed in bcr-abl+ CML cells. Retrovirus mediated bcr-abl transduction increases KSP expression in cord blood CD34 + cells. SB743921 is a selective KSP inhibitor which is being investigated in ongoing clinical trials for treatment of myeloma, leukemia and solid tumors. Treatment of CML cells with SB743921 resulted in reduced proliferation and colony forming cell (CFC) formation ability. SB743921 also actively blocked cell cycle progression, leading to apoptosis in both primary CML cells and cell lines. KSP inhibition sensitized CML cells to imatinib-induced apoptosis. Importantly, SB743921 inhibited the proliferation of various CML cells including T315I mutation-harboring cells. Furthermore, we demonstrated that SB743921 treatment suppressed ERK and AKT activity in CML cells. These data indicate that SB743921 may become a novel treatment agent for patients with CML.
Collapse
Affiliation(s)
- Yue Yin
- Department of Hematology, PLA General Hospital , Beijing , P. R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Functional deregulation of KIT: link to mast cell proliferative diseases and other neoplasms. Immunol Allergy Clin North Am 2014; 34:219-37. [PMID: 24745671 DOI: 10.1016/j.iac.2014.01.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In this review, the authors discuss common gain-of-function mutations in the stem cell factor receptor KIT found in mast cell proliferation disorders and summarize the current understanding of the molecular mechanisms by which these transforming mutations may affect KIT structure and function leading to altered downstream signaling and cellular transformation. Drugs targeting KIT have shown mixed success in the treatment of mastocytosis and other hyperproliferative diseases. A brief overview of the most common KIT inhibitors currently used, the reasons for the varied clinical results of such inhibitors and a discussion of potential new strategies are provided.
Collapse
|