1
|
Karaliota S, Moussa M, Rosati M, Devasundaram S, Sengupta S, Goldfarbmuren KC, Burns R, Bear J, Stellas D, Urban EA, Deleage C, Khandhar AP, Erasmus J, Berglund P, Reed SG, Pavlakis GN, Felber BK. Highly immunogenic DNA/LION nanocarrier vaccine potently activates lymph nodes inducing long-lasting immunity in macaques. iScience 2025; 28:112232. [PMID: 40230522 PMCID: PMC11994941 DOI: 10.1016/j.isci.2025.112232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 02/15/2025] [Accepted: 03/13/2025] [Indexed: 04/16/2025] Open
Abstract
A SARS-CoV-2 spike DNA vaccine formulated with a cationic nanoparticle emulsion (LION) was tested in Rhesus macaques. It induced robust, long-lasting (>2 years) cellular and humoral immunity, including increased neutralization breadth. T cell responses were predominantly CD8+, in contrast to other DNA vaccines. A rapid transient cytokine/chemokine response was associated with expansion and trafficking of myeloid cells and lymphocytes. Increased proliferation and dynamic changes between blood and lymph node (LN) were found for monocyte-derived cells, dendritic cells, and B and T cells, resulting in activation of LN and expansion of germinal centers (GCs), likely critical in shaping long-lasting adaptive immunity. Significant GC expansion of B, CD4-, and CD8- cells, including the Tfc3 subset, reflects a balanced immune response, including antibody (Ab) development. DNA/LION vaccination activates myeloid and lymphoid cells in blood and LN and promotes effective antigen presentation, resulting in sustained antigen-specific cellular and humoral responses, emerging as an effective DNA vaccine delivery platform.
Collapse
Affiliation(s)
- Sevasti Karaliota
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
- Basic Science Program, Leidos Biomedical Research, Inc., Frederick, MD, USA
| | - Maha Moussa
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Margherita Rosati
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Santhi Devasundaram
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Soumya Sengupta
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Katherine C. Goldfarbmuren
- Advanced Biomedical Computational Science, Leidos Biomedical Research, Inc., Frederick, MD, USA
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Robert Burns
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Jenifer Bear
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Dimitris Stellas
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Elizabeth A. Urban
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Claire Deleage
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | | | | | | | | | - George N. Pavlakis
- Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Barbara K. Felber
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| |
Collapse
|
2
|
Tursi NJ, Tiwari S, Bedanova N, Kannan T, Parzych E, Okba N, Liaw K, Sárközy A, Livingston C, Trullen MI, Gary EN, Vadovics M, Laenger N, Londregan J, Khan MS, Omo-Lamai S, Muramatsu H, Blatney K, Hojecki C, Machado V, Maricic I, Smith TRF, Humeau LM, Patel A, Kossenkov A, Brenner JS, Allman D, Krammer F, Pardi N, Weiner DB. Modulation of lipid nanoparticle-formulated plasmid DNA drives innate immune activation promoting adaptive immunity. Cell Rep Med 2025; 6:102035. [PMID: 40120578 PMCID: PMC12047470 DOI: 10.1016/j.xcrm.2025.102035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/20/2024] [Accepted: 02/25/2025] [Indexed: 03/25/2025]
Abstract
Nucleic acid vaccines have grown in importance over the past several years, with the development of new approaches remaining a focus. We describe a lipid nanoparticle-formulated DNA (DNA-LNP) formulation which induces robust innate and adaptive immunity with similar serological potency to mRNA-LNPs and adjuvanted protein. Using an influenza hemagglutinin (HA)-encoding construct, we show that priming with our HA DNA-LNP demonstrated stimulator of interferon genes (STING)-dependent upregulation and activation of migratory dendritic cell (DC) subpopulations. HA DNA-LNP induced superior antigen-specific CD8+ T cell responses relative to mRNA-LNPs or adjuvanted protein, with memory responses persisting beyond one year. In rabbits immunized with HA DNA-LNP, we observed immune responses comparable or superior to mRNA-LNPs at the same dose. In an additional model, a SARS-CoV-2 spike-encoding DNA-LNP elicited protective efficacy comparable to spike mRNA-LNPs. Our study identifies a platform-specific priming mechanism for DNA-LNPs divergent from mRNA-LNPs or adjuvanted protein, suggesting avenues for this approach in prophylactic and therapeutic vaccine development.
Collapse
Affiliation(s)
- Nicholas J Tursi
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA 19104, USA; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sachchidanand Tiwari
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nicole Bedanova
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Toshitha Kannan
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Elizabeth Parzych
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Nisreen Okba
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kevin Liaw
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA 19104, USA
| | - András Sárközy
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Cory Livingston
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Maria Ibanez Trullen
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ebony N Gary
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Máté Vadovics
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Niklas Laenger
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA 19104, USA; Biology Department, Saint Joseph's University, Philadelphia, PA 19131, USA
| | - Jennifer Londregan
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mohammad Suhail Khan
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Serena Omo-Lamai
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hiromi Muramatsu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kerry Blatney
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Casey Hojecki
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA 19104, USA
| | | | - Igor Maricic
- Inovio Pharmaceuticals, Plymouth Meeting, PA 19462, USA
| | | | | | - Ami Patel
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Andrew Kossenkov
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Jacob S Brenner
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David Allman
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Ignaz Semmelweis Institute, Interuniversity Institute for Infection Research, Medical University of Vienna, Vienna, Austria
| | - Norbert Pardi
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - David B Weiner
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA 19104, USA.
| |
Collapse
|
3
|
Bhojnagarwala PS, Jose J, Zhao S, Weiner DB. DNA-based immunotherapy for cancer: In vivo approaches for recalcitrant targets. Mol Ther 2025:S1525-0016(25)00282-5. [PMID: 40211538 DOI: 10.1016/j.ymthe.2025.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 04/01/2025] [Accepted: 04/07/2025] [Indexed: 05/10/2025] Open
Abstract
Immunotherapy has revolutionized cancer treatment and complements traditional therapies, including surgery, chemotherapy, radiation therapy, and targeted therapies. Immunotherapy redirects the patient's immune system against tumors via several immune-mediated approaches. Over the past few years, therapeutic immunization, which enable the patient's T cells to better recognize and kill tumors, have been increasingly tested in the clinic, with several approaches demonstrating treatment improvements. There has been a renewed interest in cancer vaccines due to advances in tumor antigen identification, immune response optimization, novel adjuvants, next-generation vaccine delivery platforms, and antigen designs. The COVID-19 pandemic accelerated progress in nucleic acid-based vaccine manufacturing, which spurred broader interest in mRNA or plasmid platforms. Enhanced DNA vaccine designs, including optimized leader sequences and RNA and codon optimizations, improved formulations, and delivery via adaptive electroporation using stereotactic intramuscular/intradermal methods have improved T cell responses to plasmid-delivered tumor antigens. Additionally, advancements for direct in vivo delivery of DNA-encoded monospecific/bispecific antibodies offer novel tumor-targeting strategies. This review summarizes the recent clinical data for therapeutic cancer vaccines utilizing the DNA platform, including vaccines targeting common tumor-associated and viral antigens and neoantigen vaccines using nucleic acid technologies. We also summarize preclinical data using DNA-launched monoclonal/bispecific antibodies, underscoring their potential as a novel cancer therapy tool.
Collapse
Affiliation(s)
- Pratik S Bhojnagarwala
- Vaccine and Immunotherapy Center, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA, USA
| | - Joshua Jose
- Vaccine and Immunotherapy Center, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA, USA
| | - Shushu Zhao
- Vaccine and Immunotherapy Center, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA, USA
| | - David B Weiner
- Vaccine and Immunotherapy Center, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA, USA.
| |
Collapse
|
4
|
Hildt E. [Platform technologies in vaccine development]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2025; 68:368-377. [PMID: 40035793 PMCID: PMC11950034 DOI: 10.1007/s00103-025-04024-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 02/03/2025] [Indexed: 03/06/2025]
Abstract
Platform technologies in the narrower sense refer to approaches to vaccine development in which the vaccine is always based on a consistently identical framework and differs only in terms of the antigen. One advantage of platform technologies is their rapid adaptability for the development of a vaccine against novel pathogens or variants. Currently approved vaccines in the EU use viral vectors and mRNA as platforms. Recombinant adenoviruses (Ad), vesicular stomatitis virus (VSV), and modified vaccinia virus Ankara (MVA) serve as viral vectors. The application of mRNA-based vaccines is carried out in the form of lipid nanoparticles (LNPs). The function of the LNPs is to protect the mRNA from degradation, promote the uptake of the mRNA into the cells, and provide an adjuvant effect.
Collapse
Affiliation(s)
- Eberhard Hildt
- Paul-Ehrlich-Institut, Paul-Ehrlich-Str. 51-59, 63225, Langen (Hessen), Deutschland.
| |
Collapse
|
5
|
De Robertis M, Bozic T, Santek I, Marzano F, Markelc B, Silvestris DA, Tullo A, Pesole G, Cemazar M, Signori E. Transcriptomic analysis of the immune response to in vivo gene electrotransfer in colorectal cancer. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102448. [PMID: 39967849 PMCID: PMC11834060 DOI: 10.1016/j.omtn.2025.102448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 01/10/2025] [Indexed: 02/20/2025]
Abstract
Gene electrotransfer (GET) has recently emerged as an effective nonviral approach for plasmid DNA (pDNA) delivery in gene therapy for several pathologies, including cancer. Multiple mechanisms have been identified that influence cell biology after GET, as electroporation significantly increases pDNA uptake and immunogenicity, which may directly influence target cell death. However, the molecular effects of in vivo electroporation-mediated DNA delivery have yet to be fully elucidated. In this study, we evaluated the transcriptomes of murine colorectal tumors treated with two protocols, short- and high-voltage (SHV) electric pulses or an adapted high-voltage-low-voltage (HV-LV) pulse protocol, both of which are used for reversible electroporation. Although no significant differences in clinical outcomes were observed, variations in intratumoral macrophage infiltration were reported between the two treatment methods. Transcriptomic analysis revealed that apoptosis is a predominant mode of cell death after GET by SHV pulses, whereas GET by HV-LV pulses is associated with immunogenic necrotic pathways as well as the activation of both the innate and adaptive immune response. We demonstrated that specific pulse parameters can induce distinct immunomodulatory profiles in the tumor microenvironment; therefore, these aspects should be considered carefully when selecting the most suitable GET-based approach for antitumor immunization.
Collapse
Affiliation(s)
- Mariangela De Robertis
- Department of Biosciences, Biotechnology, and Environment, University of Bari “Aldo Moro”, 70126 Bari, Italy
- Institute of Biomembranes, Bioenergetics, and Molecular Biotechnologies, Consiglio Nazionale delle Ricerche, 70126 Bari, Italy
| | - Tim Bozic
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska cesta 2, 1000 Ljubljana, Slovenia
| | - Iva Santek
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska cesta 2, 1000 Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Flaviana Marzano
- Institute of Biomembranes, Bioenergetics, and Molecular Biotechnologies, Consiglio Nazionale delle Ricerche, 70126 Bari, Italy
| | - Bostjan Markelc
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska cesta 2, 1000 Ljubljana, Slovenia
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva ulica 101, 1000 Ljubljana, Slovenia
| | | | - Apollonia Tullo
- Institute of Biomembranes, Bioenergetics, and Molecular Biotechnologies, Consiglio Nazionale delle Ricerche, 70126 Bari, Italy
| | - Graziano Pesole
- Department of Biosciences, Biotechnology, and Environment, University of Bari “Aldo Moro”, 70126 Bari, Italy
- Institute of Biomembranes, Bioenergetics, and Molecular Biotechnologies, Consiglio Nazionale delle Ricerche, 70126 Bari, Italy
| | - Maja Cemazar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska cesta 2, 1000 Ljubljana, Slovenia
- Faculty of Health Sciences, University of Primorska, Polje 42, 6310 Izola, Slovenia
| | - Emanuela Signori
- Laboratory of Molecular Pathology and Experimental Oncology, Institute of Translational Pharmacology, Consiglio Nazionale delle Ricerche, 0133 Rome, Italy
| |
Collapse
|
6
|
Helble M, Zhu X, Bhojnagarwala PS, Liaw K, Gao Y, Kim A, Bayruns K, McCanna ME, Park J, Konrath KM, Garfinkle S, Brysgel T, Weiner DB, Kulp DW. Structural engineering of stabilized, expanded epitope nanoparticle vaccines for HPV. Front Immunol 2025; 16:1535261. [PMID: 39958352 PMCID: PMC11826081 DOI: 10.3389/fimmu.2025.1535261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 01/07/2025] [Indexed: 02/18/2025] Open
Abstract
Oncogenic forms of HPV account for 4.5% of the global cancer burden worldwide. This includes cervical, vaginal, vulvar, penile, and anal cancers, as well as head and neck cancers. As such, there is an urgent need to develop effective therapeutic vaccines to drive the immune system's cellular response against cancer cells. One of the primary goals of cancer vaccination is to increase the potency and diversity of anti-tumor T-cell responses; one strategy to do so involves the delivery of full-length cancer antigens scaffolded onto DNA-launched nanoparticles to improve T-cell priming. We developed a platform, making use of structural prediction algorithms such as AlphaFold2, to design stabilized, more full-length antigens of relevant HPV proteins and then display them on nanoparticles. We demonstrated that many such designs for both the HPV16 E6 and E7 antigens assembled and drove strong CD8+ T-cell responses in mice. We further tested nanoparticles in a genetically diverse, more translationally relevant CD-1 mouse model and demonstrated that both E6 and E7 nanoparticle designs drove a CD8+ biased T-cell response. These findings serve as a proof-of-concept study for nanoparticle antigen design as well as identify new vaccine candidates for HPV-associated cancers.
Collapse
Affiliation(s)
- Michaela Helble
- The Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, United States
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Xizhou Zhu
- The Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, United States
| | | | - Kevin Liaw
- The Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, United States
| | - Yangcheng Gao
- The Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, United States
| | - Amber Kim
- The Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, United States
| | - Kelly Bayruns
- The Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, United States
| | - Madison E. McCanna
- The Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, United States
| | - Joyce Park
- The Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, United States
| | - Kylie M. Konrath
- The Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, United States
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Sam Garfinkle
- The Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, United States
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Taylor Brysgel
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - David B. Weiner
- The Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, United States
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Daniel W. Kulp
- The Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA, United States
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
7
|
Jiang S, Zu C, Wang B, Zhong Y. Enhancing DNA Vaccine Delivery Through Stearyl-Modified Cell-Penetrating Peptides: Improved Antigen Expression and Immune Response In Vitro and In Vivo. Vaccines (Basel) 2025; 13:94. [PMID: 39852873 PMCID: PMC11768954 DOI: 10.3390/vaccines13010094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/05/2025] [Accepted: 01/10/2025] [Indexed: 01/26/2025] Open
Abstract
BACKGROUND Inefficient cellular uptake is a significant limitation to the efficacy of DNA vaccines. In this study, we introduce S-Cr9T, a stearyl-modified cell-penetrating peptide (CPP) designed to enhance DNA vaccine delivery by forming stable complexes with plasmid DNA, thereby protecting it from degradation and promoting efficient intracellular uptake. METHODS AND RESULTS In vitro studies showed that S-Cr9T significantly improved plasmid stability and transfection efficiency, with optimal performance at an N/P ratio of 0.25. High-content imaging revealed that the S-Cr9T-plasmid complex stably adhered to the cell membrane, leading to enhanced plasmid uptake and transfection. In vivo, S-Cr9T significantly increased antigen expression and triggered a robust immune response, including a threefold increase in IFN-γ secretion and several hundred-fold increases in antibody levels compared to control groups. CONCLUSIONS These findings underscore the potential of S-Cr9T to enhance DNA vaccine efficacy, offering a promising platform for advanced gene therapy and vaccination strategies.
Collapse
Affiliation(s)
- Sheng Jiang
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China; (S.J.); (C.Z.)
| | - Cheng Zu
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China; (S.J.); (C.Z.)
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Bin Wang
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China; (S.J.); (C.Z.)
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yiwei Zhong
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200032, China; (S.J.); (C.Z.)
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
8
|
Lei W, Zhou K, Lei Y, Li Q, Zhu H. Cancer vaccines: platforms and current progress. MOLECULAR BIOMEDICINE 2025; 6:3. [PMID: 39789208 PMCID: PMC11717780 DOI: 10.1186/s43556-024-00241-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 12/03/2024] [Accepted: 12/05/2024] [Indexed: 01/12/2025] Open
Abstract
Cancer vaccines, crucial in the immunotherapeutic landscape, are bifurcated into preventive and therapeutic types, both integral to combating oncogenesis. Preventive cancer vaccines, like those against HPV and HBV, reduce the incidence of virus-associated cancers, while therapeutic cancer vaccines aim to activate dendritic cells and cytotoxic T lymphocytes for durable anti-tumor immunity. Recent advancements in vaccine platforms, such as synthetic peptides, mRNA, DNA, cellular, and nano-vaccines, have enhanced antigen presentation and immune activation. Despite the US Food and Drug Administration approval for several vaccines, the full therapeutic potential remains unrealized due to challenges such as antigen selection, tumor-mediated immunosuppression, and optimization of delivery systems. This review provides a comprehensive analysis of the aims and implications of preventive and therapeutic cancer vaccine, the innovative discovery of neoantigens enhancing vaccine specificity, and the latest strides in vaccine delivery platforms. It also critically evaluates the role of adjuvants in enhancing immunogenicity and mitigating the immunosuppressive tumor microenvironment. The review further examines the synergistic potential of combining cancer vaccines with other therapies, such as chemotherapy, radiotherapy, and immune checkpoint inhibitors, to improve therapeutic outcomes. Overcoming barriers such as effective antigen identification, immunosuppressive microenvironments, and adverse effects is critical for advancing vaccine development. By addressing these challenges, cancer vaccines can offer significant improvements in patient outcomes and broaden the scope of personalized cancer immunotherapy.
Collapse
Affiliation(s)
- Wanting Lei
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Kexun Zhou
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ye Lei
- College of Liberal Arts, Neijiang Normal University, Neijiang, 641100, Sichuan, China
| | - Qiu Li
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Hong Zhu
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
9
|
Almansour I, Jermy BR. Nucleic acid vaccine candidates encapsulated with mesoporous silica nanoparticles against MERS-CoV. Hum Vaccin Immunother 2024; 20:2346390. [PMID: 38691025 PMCID: PMC11067998 DOI: 10.1080/21645515.2024.2346390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 04/19/2024] [Indexed: 05/03/2024] Open
Abstract
Middle East respiratory coronavirus (MERS-CoV) is a newly emergent, highly pathogenic coronavirus that is associated with 34% mortality rate. MERS-CoV remains listed as priority pathogen by the WHO. Since its discovery in 2012 and despite the efforts to develop coronaviruses vaccines to fight against SARS-CoV-2, there are currently no MERS-CoV vaccine that has been approved. Therefore, there is high demand to continue on the development of prophylactic vaccines against MERS-CoV. Current advancements in vaccine developments can be adapted for the development of improved MERS-CoV vaccines candidates. Nucleic acid-based vaccines, including pDNA and mRNA, are relatively new class of vaccine platforms. In this work, we developed pDNA and mRNA vaccine candidates expressing S.FL gene of MERS-CoV. Further, we synthesized a silane functionalized hierarchical aluminosilicate to encapsulate each vaccine candidates. We tested the nucleic acid vaccine candidates in mice and evaluated humoral antibodies response. Interestingly, we determined that the non-encapsulated, codon optimized S.FL pDNA vaccine candidate elicited the highest level of antibody responses against S.FL and S1 of MERS-CoV. Encapsulation of mRNA with nanoporous aluminosilicate increased the humoral antibody responses, whereas encapsulation of pDNA did not. These findings suggests that MERS-CoV S.FL pDNA vaccine candidate induced the highest level of humoral responses. This study will enhance further optimization of nanosilica as potential carrier for mRNA vaccines. In conclusion, this study suggests MERS-CoV pDNA vaccine candidate as a suitable vaccine platform for further pivotal preclinical testings.
Collapse
Affiliation(s)
- Iman Almansour
- Nucleic Acid Vaccine Laboratory, Department of Epidemic Diseases Research, Institute for Research and Medical Consultations IRMC, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - B. Rabindran Jermy
- Department of Nanomedicine Research, Institute for Research and Medical Consultations IRMC, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
10
|
Clark TW, Tregoning JS, Lister H, Poletti T, Amin F, Nguyen-Van-Tam JS. Recent advances in the influenza virus vaccine landscape: a comprehensive overview of technologies and trials. Clin Microbiol Rev 2024; 37:e0002524. [PMID: 39360831 PMCID: PMC11629632 DOI: 10.1128/cmr.00025-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024] Open
Abstract
SUMMARYIn the United Kingdom (UK) in 2022/23, influenza virus infections returned to the levels recorded before the COVID-19 pandemic, exerting a substantial burden on an already stretched National Health Service (NHS) through increased primary and emergency care visits and subsequent hospitalizations. Population groups ≤4 years and ≥65 years of age, and those with underlying health conditions, are at the greatest risk of influenza-related hospitalization. Recent advances in influenza virus vaccine technologies may help to mitigate this burden. This review aims to summarize advances in the influenza virus vaccine landscape by describing the different technologies that are currently in use in the UK and more widely. The review also describes vaccine technologies that are under development, including mRNA, and universal influenza virus vaccines which aim to provide broader or increased protection. This is an exciting and important era for influenza virus vaccinations, and advances are critical to protect against a disease that still exerts a substantial burden across all populations and disproportionately impacts the most vulnerable, despite it being over 80 years since the first influenza virus vaccines were deployed.
Collapse
Affiliation(s)
- Tristan W. Clark
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - John S. Tregoning
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | | | | | | | | |
Collapse
|
11
|
Cao S, Jia W, Zhao Y, Liu H, Cao J, Li Z. A recent perspective on designing tumor vaccines for tumor immunology. Int Immunopharmacol 2024; 142:113090. [PMID: 39244900 DOI: 10.1016/j.intimp.2024.113090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/06/2024] [Accepted: 09/02/2024] [Indexed: 09/10/2024]
Abstract
With the rapid development of immunotherapy, therapeutic tumor vaccines, which aim to enhance the immunogenicity of tumor cells and activate the patient's immune system to kill tumor cells, as well as eliminate or inhibit tumor growth, have drawn increasing attention in the field of tumor therapy. However, due to the lack of immune cell infiltration, low immunogenicity, immune escape and other problems, the efficacy of tumor vaccine is often limited. Researchers have developed a variety of strategies to enhance tumor immune recognition, such as improving the immunogenicity of tumor antigens, selecting a suitable vaccine platform, or combining tumor vaccines with other anticancer treatments. In this review, we will deliberate on how to overcome the problem of therapeutic tumor vaccines, and discuss the up-to-date progress and achievements in the tumor vaccine development, as well as their future in cancer treatment.
Collapse
Affiliation(s)
- Shougen Cao
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, China
| | - Wenyu Jia
- Department of Endocrinology, Qingdao Municipal Hospital, Qingdao 266071, Shandong, China
| | - Yifan Zhao
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266071 China
| | - Heng Liu
- School of Nursing, Qingdao University, Qingdao 266071 China
| | - Jie Cao
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao 266071 China.
| | - Zequn Li
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, China.
| |
Collapse
|
12
|
Ren D, Xiong S, Ren Y, Yang X, Zhao X, Jin J, Xu M, Liang T, Guo L, Weng L. Advances in therapeutic cancer vaccines: Harnessing immune adjuvants for enhanced efficacy and future perspectives. Comput Struct Biotechnol J 2024; 23:1833-1843. [PMID: 38707540 PMCID: PMC11066472 DOI: 10.1016/j.csbj.2024.04.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/19/2024] [Accepted: 04/20/2024] [Indexed: 05/07/2024] Open
Abstract
Preventive cancer vaccines are highly effective in preventing viral infection-induced cancer, but advances in therapeutic cancer vaccines with a focus on eliminating cancer cells through immunotherapy are limited. To develop therapeutic cancer vaccines, the integration of optimal adjuvants is a potential strategy to enhance or complement existing therapeutic approaches. However, conventional adjuvants do not satisfy the criteria of clinical trials for therapeutic cancer vaccines. To improve the effects of adjuvants in therapeutic cancer vaccines, effective vaccination strategies must be formulated and novel adjuvants must be identified. This review offers an overview of the current advancements in therapeutic cancer vaccines and highlights in situ vaccination approaches that can be synergistically combined with other immunotherapies by harnessing the adjuvant effects. Additionally, the refinement of adjuvant systems using cutting-edge technologies and the elucidation of molecular mechanisms underlying immunogenic cell death to facilitate the development of innovative adjuvants have been discussed.
Collapse
Affiliation(s)
- Dekang Ren
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Shizheng Xiong
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Yujie Ren
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Xueni Yang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Xinmiao Zhao
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Jiaming Jin
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Miaomiao Xu
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Tingming Liang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Li Guo
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Lixing Weng
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| |
Collapse
|
13
|
Andrews EA, Walter N, Ophir Y, Walter D, Robbins CL. Vaccine Hesitancy and Its Epistemic Antecedents: A Meta-Analysis. HEALTH COMMUNICATION 2024:1-12. [PMID: 39582463 DOI: 10.1080/10410236.2024.2431165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Although much attention has been given to vaccine hesitancy, there is still considerable ambiguity regarding its epistemological antecedents. The current meta-analysis addresses this theoretical and practical gap by focusing on the interplay between trust, belief in conspiracy theories, and COVID-19 vaccine hesitancy (k = 32), as well as key moderators such as the availability of the vaccine and the state and progress of the pandemic. Overall, results indicate that while both trust and beliefs in conspiracy theories are important correlates of vaccine hesitancy, considerable difference emerges when adopting a more granular approach that distinguishes between types of trust (government, public health organizations, science, and healthcare professionals/providers) and conspiracies (specific versus general). These findings cement the importance of health communication, not only as a useful framework to study and understand vaccine hesitancy but also as a potential way to intervene in order to prepare for future infectious disease outbreaks.
Collapse
Affiliation(s)
- Emily A Andrews
- Department of Communication Studies, Northwestern University
| | - Nathan Walter
- Department of Communication Studies, Northwestern University
| | - Yotam Ophir
- Department of Communication, University at Buffalo
| | - Dror Walter
- Department of Communication, Georgia State University
| | | |
Collapse
|
14
|
Berger S, Zeyn Y, Wagner E, Bros M. New insights for the development of efficient DNA vaccines. Microb Biotechnol 2024; 17:e70053. [PMID: 39545748 PMCID: PMC11565620 DOI: 10.1111/1751-7915.70053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 10/29/2024] [Indexed: 11/17/2024] Open
Abstract
Despite the great potential of DNA vaccines for a broad range of applications, ranging from prevention of infections, over treatment of autoimmune and allergic diseases to cancer immunotherapies, the implementation of such therapies for clinical treatment is far behind the expectations up to now. The main reason is the poor immunogenicity of DNA vaccines in humans. Consequently, the improvement of the performance of DNA vaccines in vivo is required. This mini-review provides an overview of the current state of DNA vaccines and the various strategies to enhance the immunogenic potential of DNA vaccines, including (i) the optimization of the DNA construct itself regarding size, nuclear transfer and transcriptional regulation; (ii) the use of appropriate adjuvants; and (iii) improved delivery, for example, by careful choice of the administration route, physical methods such as electroporation and nanomaterials that may allow cell type-specific targeting. Moreover, combining nanoformulated DNA vaccines with other immunotherapies and prime-boost strategies may help to enhance success of treatment.
Collapse
Affiliation(s)
- Simone Berger
- Pharmaceutical Biotechnology, Department of Pharmacy, Center for NanoScienceLudwig‐Maximilians‐Universität (LMU) MunichMunichGermany
| | - Yanira Zeyn
- Department of DermatologyUniversity Medical Center of the Johannes Gutenberg University (JGU) MainzMainzGermany
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Department of Pharmacy, Center for NanoScienceLudwig‐Maximilians‐Universität (LMU) MunichMunichGermany
| | - Matthias Bros
- Department of DermatologyUniversity Medical Center of the Johannes Gutenberg University (JGU) MainzMainzGermany
| |
Collapse
|
15
|
Gül C, Gül A, Karakavuk T, Erkunt Alak S, Karakavuk M, Can H, Değirmenci Döşkaya A, Yavuz İ, Kaplan S, Erel Akbaba G, Şen Karaman D, Akbaba H, Efe Köseoğlu A, Ovayurt T, Yüksel Gürüz A, Ün C, Kantarcı AG, Döşkaya M. A novel DNA vaccine encoding the SRS13 protein administered by electroporation confers protection against chronic toxoplasmosis. Vaccine 2024; 42:126065. [PMID: 38880692 DOI: 10.1016/j.vaccine.2024.06.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/30/2024] [Accepted: 06/11/2024] [Indexed: 06/18/2024]
Abstract
Toxoplasma gondii is an obligate intracellular parasite that can infect a variety of mammals including humans and causes toxoplasmosis. Unfortunately, a protective and safe vaccine against toxoplasmosis hasn't been developed yet. In this study, we developed a DNA vaccine encoding the SRS13 protein and immunized BALB/c mice thrice with pVAX1-SRS13 through the intramuscular route (IM) or intradermally using an electroporation device (ID + EP). The immunogenicity of pVAX1-SRS13 was analyzed by ELISA, Western blot, cytokine ELISA, and flow cytometry. The protective efficacy of the pVAX1-SRS13 was investigated by challenging mice orally with T. gondii PRU strain tissue cysts. The results revealed that pVAX1-SRS13 administered through IM or ID + EP routes induced high level of anti-SRS13 IgG antibody responses (P = 0.0037 and P < 0.0001). The IFN-γ level elicited by the pVAX1-SRS13 (ID + EP) was significantly higher compared to the control group (P = 0.00159). In mice administered with pVAX1-SRS13 (ID + EP), CD8+ cells secreting IFN-γ was significantly higher compared to pVAX1-SRS13 (IM) (P = 0.0035) and the control group (P = 0.0068). Mice vaccinated with the SRS13 DNA vaccine did not induce significant IL-4 level. Moreover, a significant reduction in the number of tissue cysts and the load of T. gondii DNA was detected in brains of mice administered with pVAX1-SRS13 through ID + EP and IM routes compared to controls. In conclusion, the SRS13 DNA vaccine was found to be highly immunogenic and confers strong protection against chronic toxoplasmosis.
Collapse
Affiliation(s)
- Ceren Gül
- Ege University, Graduate School of Natural and Applied Sciences, Department of Biotechnology, İzmir, Türkiye; Ege University, Vaccine Development Application and Research Center, İzmir, Türkiye
| | - Aytül Gül
- Ege University, Vaccine Development Application and Research Center, İzmir, Türkiye; Ege University, Faculty of Engineering, Department of Bioengineering, İzmir, Türkiye
| | - Tuğba Karakavuk
- Ege University, Graduate School of Natural and Applied Sciences, Department of Biotechnology, İzmir, Türkiye; Ege University, Vaccine Development Application and Research Center, İzmir, Türkiye
| | - Sedef Erkunt Alak
- Ege University, Vaccine Development Application and Research Center, İzmir, Türkiye; Ege University, Faculty of Science, Department of Biology Molecular Biology Section, İzmir, Türkiye
| | - Muhammet Karakavuk
- Ege University, Vaccine Development Application and Research Center, İzmir, Türkiye; Ege University, Ödemiş Vocational School, İzmir, Türkiye; Ege University, Institute of Health Sciences, Department of Vaccine Studies, İzmir, Türkiye
| | - Hüseyin Can
- Ege University, Vaccine Development Application and Research Center, İzmir, Türkiye; Ege University, Faculty of Science, Department of Biology Molecular Biology Section, İzmir, Türkiye; Ege University, Institute of Health Sciences, Department of Vaccine Studies, İzmir, Türkiye
| | - Aysu Değirmenci Döşkaya
- Ege University, Vaccine Development Application and Research Center, İzmir, Türkiye; Ege University, Institute of Health Sciences, Department of Vaccine Studies, İzmir, Türkiye; Ege University, Faculty of Medicine, Department of Parasitology, İzmir, Türkiye
| | - İrem Yavuz
- Ege University, Vaccine Development Application and Research Center, İzmir, Türkiye; Ege University, Institute of Health Sciences, Department of Vaccine Studies, İzmir, Türkiye
| | - Seren Kaplan
- Ege University, Vaccine Development Application and Research Center, İzmir, Türkiye; Ege University, Institute of Health Sciences, Department of Vaccine Studies, İzmir, Türkiye
| | - Gülşah Erel Akbaba
- İzmir Katip Çelebi University, Faculty of Pharmacy, Department of Pharmaceutical Biotechnology, İzmir, Türkiye
| | - Didem Şen Karaman
- İzmir Katip Çelebi University, Faculty of Engineering and Architecture, Department of Biomedical Engineering, İzmir, Türkiye
| | - Hasan Akbaba
- Ege University, Institute of Health Sciences, Department of Vaccine Studies, İzmir, Türkiye; Ege University, Faculty of Pharmacy, Department of Pharmaceutical Biotechnology, İzmir, Türkiye
| | - Ahmet Efe Köseoğlu
- Ege University, Faculty of Science, Department of Biology Molecular Biology Section, İzmir, Türkiye; Duisburg-Essen University, Faculty of Chemistry, Department of Environmental Microbiology and Biotechnology, Essen, Germany
| | - Tolga Ovayurt
- İzmir Katip Çelebi University, Graduate School of Natural and Applied Sciences, Department of Biomedical Technology, İzmir, Türkiye
| | - Adnan Yüksel Gürüz
- Ege University, Vaccine Development Application and Research Center, İzmir, Türkiye; Ege University, Institute of Health Sciences, Department of Vaccine Studies, İzmir, Türkiye; Ege University, Faculty of Medicine, Department of Parasitology, İzmir, Türkiye
| | - Cemal Ün
- Ege University, Vaccine Development Application and Research Center, İzmir, Türkiye; Ege University, Faculty of Science, Department of Biology Molecular Biology Section, İzmir, Türkiye; Ege University, Institute of Health Sciences, Department of Vaccine Studies, İzmir, Türkiye
| | - Ayşe Gülten Kantarcı
- Ege University, Vaccine Development Application and Research Center, İzmir, Türkiye; Ege University, Institute of Health Sciences, Department of Vaccine Studies, İzmir, Türkiye; Ege University, Faculty of Pharmacy, Department of Pharmaceutical Biotechnology, İzmir, Türkiye
| | - Mert Döşkaya
- Ege University, Vaccine Development Application and Research Center, İzmir, Türkiye; Ege University, Institute of Health Sciences, Department of Vaccine Studies, İzmir, Türkiye; Ege University, Faculty of Medicine, Department of Parasitology, İzmir, Türkiye
| |
Collapse
|
16
|
Song Y, Li J, Wu Y. Evolving understanding of autoimmune mechanisms and new therapeutic strategies of autoimmune disorders. Signal Transduct Target Ther 2024; 9:263. [PMID: 39362875 PMCID: PMC11452214 DOI: 10.1038/s41392-024-01952-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/09/2024] [Accepted: 08/07/2024] [Indexed: 10/05/2024] Open
Abstract
Autoimmune disorders are characterized by aberrant T cell and B cell reactivity to the body's own components, resulting in tissue destruction and organ dysfunction. Autoimmune diseases affect a wide range of people in many parts of the world and have become one of the major concerns in public health. In recent years, there have been substantial progress in our understanding of the epidemiology, risk factors, pathogenesis and mechanisms of autoimmune diseases. Current approved therapeutic interventions for autoimmune diseases are mainly non-specific immunomodulators and may cause broad immunosuppression that leads to serious adverse effects. To overcome the limitations of immunosuppressive drugs in treating autoimmune diseases, precise and target-specific strategies are urgently needed. To date, significant advances have been made in our understanding of the mechanisms of immune tolerance, offering a new avenue for developing antigen-specific immunotherapies for autoimmune diseases. These antigen-specific approaches have shown great potential in various preclinical animal models and recently been evaluated in clinical trials. This review describes the common epidemiology, clinical manifestation and mechanisms of autoimmune diseases, with a focus on typical autoimmune diseases including multiple sclerosis, type 1 diabetes, rheumatoid arthritis, systemic lupus erythematosus, and sjögren's syndrome. We discuss the current therapeutics developed in this field, highlight the recent advances in the use of nanomaterials and mRNA vaccine techniques to induce antigen-specific immune tolerance.
Collapse
Affiliation(s)
- Yi Song
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jian Li
- Chongqing International Institute for Immunology, Chongqing, China.
| | - Yuzhang Wu
- Institute of Immunology, PLA, Third Military Medical University (Army Medical University), Chongqing, China.
- Chongqing International Institute for Immunology, Chongqing, China.
| |
Collapse
|
17
|
He J, Wu J, Li Z, Zhao Z, Qiu L, Zhu X, Liu Z, Xia H, Hong P, Yang J, Ni L, Lu J. Immunotherapy Vaccines for Prostate Cancer Treatment. Cancer Med 2024; 13:e70294. [PMID: 39463159 PMCID: PMC11513549 DOI: 10.1002/cam4.70294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/09/2024] [Accepted: 09/21/2024] [Indexed: 10/29/2024] Open
Abstract
BACKGROUND Therapeutic tumor vaccines have emerged as a compelling avenue for treating patients afflicted with advanced prostate cancer (PCa), particularly those experiencing biochemical relapse or ineligible for surgical intervention. This study serves to consolidate recent research findings on therapeutic vaccines targeting prostate tumors while delineating prevalent challenges within vaccine research and development. METHODS We searched electronic databases, including PubMed, Web of Science, Embase, and Scopus, up to August 31, 2024, using keywords such as 'vaccine', 'prostate cancer', 'immunotherapy', and others. We reviewed studies on various therapeutic vaccines, including dendritic cell-based, antigen, nucleic acid, and tumor cell vaccines. RESULTS Studies consistently showed that therapeutic vaccines, notably DC vaccines, had favorable safety profiles with few adverse effects. These vaccines, with varied antigenic formulations, demonstrated strong clinical outcomes, as indicated by metrics such as PSA response rates (9.5%-58%), extended PSA doubling times (52.9%-89.7%), overall survival durations (17.7-33.8 months), two-year mortality rates (0%-12.5%), biochemical relapse rates (42%-73%), and antigen-specific immune responses (33.3%-71.4% in responsive groups). CONCLUSION While clinical data for tumor vaccines have illuminated robust evidence of tumoricidal activity, the processes of their formulation and deployment are riddled with complexities. Combining vaccines with other therapies may enhance outcomes, and future research should focus on early interventions and deciphering the immune system's role in oncogenesis.
Collapse
Affiliation(s)
- Jide He
- Department of UrologyPeking University Third HospitalBeijingChina
| | - Jialong Wu
- Department of UrologyPeking University Third HospitalBeijingChina
| | - Ziang Li
- Department of UrologyPeking University Third HospitalBeijingChina
| | - Zhenkun Zhao
- Department of UrologyPeking University Third HospitalBeijingChina
| | - Lei Qiu
- Department of UrologyPeking University Third HospitalBeijingChina
| | - Xuehua Zhu
- Department of UrologyPeking University Third HospitalBeijingChina
| | - Zenan Liu
- Department of UrologyPeking University Third HospitalBeijingChina
| | - Haizhui Xia
- Department of UrologyPeking University Third HospitalBeijingChina
| | - Peng Hong
- Department of UrologyPeking University Third HospitalBeijingChina
| | - Jianling Yang
- Institute of Medical Innovation and ResearchPeking University Third HospitalBeijingChina
| | - Ling Ni
- Institute for Immunology and School of MedicineTsinghua University, Medical Research BuildingBeijingChina
| | - Jian Lu
- Department of UrologyPeking University Third HospitalBeijingChina
- State Key Laboratory of Natural and Biomimetic DrugsPeking University
| |
Collapse
|
18
|
Wu J, Wang H, Gao P, Ouyang S. Pyroptosis: Induction and inhibition strategies for immunotherapy of diseases. Acta Pharm Sin B 2024; 14:4195-4227. [PMID: 39525577 PMCID: PMC11544194 DOI: 10.1016/j.apsb.2024.06.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/15/2024] [Accepted: 06/20/2024] [Indexed: 11/16/2024] Open
Abstract
Cell death is a central process for organismal health. Pyroptosis, namely pyroptotic cell death, is recognized as a critical type that disrupts membrane and triggers pro-inflammatory cytokine secretion via gasdermins, providing a robust form of cytolysis. Meanwhile, along with the thorough research, a great deal of evidence has demonstrated the dual effects of pyroptosis in host defense and inflammatory diseases. More importantly, the recent identification of abundant gasdermin-like proteins in bacteria and fungi suggests an ancient origin of pyroptosis-based regulated cell death in the life evolution. In this review, we bring a general overview of pyroptosis pathways focusing on gasdermin structural biology, regulatory mechanisms, and recent progress in induction and inhibition strategies for disease treatment. We look forward to providing an insightful perspective for readers to comprehend the frame and challenges of the pyroptosis field, and to accelerating its clinical application.
Collapse
Affiliation(s)
- Junjun Wu
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Hong Wang
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Pu Gao
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Songying Ouyang
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| |
Collapse
|
19
|
McGraw E, Laurent GM, Avila LA. Nanoparticle-mediated photoporation - an emerging versatile physical drug delivery method. NANOSCALE ADVANCES 2024:d4na00122b. [PMID: 39280791 PMCID: PMC11391416 DOI: 10.1039/d4na00122b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 08/17/2024] [Indexed: 09/18/2024]
Abstract
Facilitating the delivery of impermeable molecules into cells stands as a pivotal step for both basic research and therapeutic delivery. While current methods predominantly use nanoparticles or viral vectors, the exploration of physical phenomena, particularly light-based techniques, remains relatively under-explored. Photoporation, a physical method, employs either pulsed or continuous wave lasers to create transient pores in cell membranes. These openings enable the entry of exogenous, membrane-impermeable molecules into the cytosol while preserving cell viability. Poration can either be achieved directly through focusing a laser beam onto a cell membrane, or indirectly through the addition of sensitizing nanoparticles that interact with the laser pulses. Nanoparticle-mediated photoporation specifically has recently been receiving increasing attention for the high-throughput ability to transfect cells, which also has exciting potential for clinical translation. Here, we begin with a snapshot of the current state of direct and indirect photoporation and the mechanisms that contribute to cell pore formation and molecule delivery. Following this, we present an outline of the evolution of photoporation methodologies for mammalian and non-mammalian cells, accompanied by a description of variations in experimental setups among photoporation systems. Finally, we discuss the potential clinical translation of photoporation and offer our perspective on recent key findings in the field, addressing unmet needs, gaps, and inconsistencies.
Collapse
Affiliation(s)
- Erin McGraw
- Department of Biological Sciences, Auburn University Auburn AL 36849 USA +1-334-844-1639
| | | | - L Adriana Avila
- Department of Biological Sciences, Auburn University Auburn AL 36849 USA +1-334-844-1639
| |
Collapse
|
20
|
Bouazzaoui A, Abdellatif AA. Vaccine delivery systems and administration routes: Advanced biotechnological techniques to improve the immunization efficacy. Vaccine X 2024; 19:100500. [PMID: 38873639 PMCID: PMC11170481 DOI: 10.1016/j.jvacx.2024.100500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/21/2024] [Accepted: 05/14/2024] [Indexed: 06/15/2024] Open
Abstract
Since the first use of vaccine tell the last COVID-19 pandemic caused by spread of SARS-CoV-2 worldwide, the use of advanced biotechnological techniques has accelerated the development of different types and methods for immunization. The last pandemic showed that the nucleic acid-based vaccine, especially mRNA, has an advantage in terms of development time; however, it showed a very critical drawback namely, the higher costs when compared to other strategies, and its inability to protect against new variants. This showed the need of more improvement to reach a better delivery and efficacy. In this review we will describe different vaccine delivery systems including, the most used viral vector, and also variable strategies for delivering of nucleic acid-based vaccines especially lipid-based nanoparticles formulation, polymersomes, electroporation and also the new powerful tools for the delivery of mRNA, which is based on the use of cell-penetrating peptides (CPPs). Additionally, we will also discuss the main challenges associated with each system. Finlay, the efficacy and safety of the vaccines depends not only on the formulations and delivery systems, but also the dosage and route of administration are also important players, therefore we will see the different routes for the vaccine administration including traditionally routes (intramuscular, Transdermal, subcutaneous), oral inhalation or via nasal mucosa, and will describe the advantages and disadvantage of each administration route.
Collapse
Affiliation(s)
- Abdellatif Bouazzaoui
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, P.O. Box 715, Makkah 21955, Saudi Arabia
- Science and Technology Unit, Umm Al Qura University, P.O. Box 715, Makkah 21955, Saudi Arabia
| | - Ahmed A.H. Abdellatif
- Department of Pharmaceutics, College of Pharmacy, Qassim University, 51452 Qassim, Saudi Arabia
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al-Azhar University, 71524 Assiut, Egypt
| |
Collapse
|
21
|
Zhang W, Jiao Y, Zhang Z, Zhang Y, Yu J, Gu Z. Transdermal gene delivery. J Control Release 2024; 371:516-529. [PMID: 38849095 DOI: 10.1016/j.jconrel.2024.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/27/2024] [Accepted: 06/03/2024] [Indexed: 06/09/2024]
Abstract
Gene delivery has revolutionized conventional medical approaches to vaccination, cancer, and autoimmune diseases. However, current gene delivery methods are limited to either intravenous administration or direct local injections, failing to achieve well biosafety, tissue targeting, drug retention, and transfection efficiency for desired therapeutic outcomes. Transdermal drug delivery based on various delivery strategies can offer improved therapeutic potential and superior patient experiences. Recently, there has been increased foundational and clinical research focusing on the role of the transdermal route in gene delivery and exploring its impact on the efficiency of gene delivery. This review introduces the recent advances in transdermal gene delivery approaches facilitated by drug formulations and medical devices, as well as discusses their prospects.
Collapse
Affiliation(s)
- Wentao Zhang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yunlong Jiao
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ziru Zhang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yuqi Zhang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Department of Burns and Wound Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Jicheng Yu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China; Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; Jinhua Institute of Zhejiang University, Jinhua 321299, China.
| | - Zhen Gu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China; Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; Jinhua Institute of Zhejiang University, Jinhua 321299, China; MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
22
|
Harnett J, Weir S, Michieletto D. Effects of monovalent and divalent cations on the rheology of entangled DNA. SOFT MATTER 2024; 20:3980-3986. [PMID: 38686506 PMCID: PMC11095498 DOI: 10.1039/d3sm00957b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 04/19/2024] [Indexed: 05/02/2024]
Abstract
In this paper we investigate the effects of varying cation valency and concentration on the rheology of entangled λDNA solutions. We show that monovalent cations moderately increase the viscoelasticty of the solutions mainly by stabilising linear concatenation of λDNA "monomers" via hybridisation of their sticky ends. On the contrary, divalent cations have a far more complex and dramatic effect on the rheology of the solution and we observe evidence of inter-molecular DNA-DNA bridging by Mg2+. We argue that these results may be interesting in the context of dense solutions of single and double stranded DNA, e.g. in vivo or in biotechnology applications such as DNA origami and DNA hydrogels.
Collapse
Affiliation(s)
- Jennifer Harnett
- School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, UK.
| | - Simon Weir
- School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, UK.
| | - Davide Michieletto
- School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, UK.
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| |
Collapse
|
23
|
Seyed N, Taheri T, Rafati S. Live attenuated-nonpathogenic Leishmania and DNA structures as promising vaccine platforms against leishmaniasis: innovations can make waves. Front Microbiol 2024; 15:1326369. [PMID: 38633699 PMCID: PMC11021776 DOI: 10.3389/fmicb.2024.1326369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 03/12/2024] [Indexed: 04/19/2024] Open
Abstract
Leishmaniasis is a vector-borne disease caused by the protozoan parasite of Leishmania genus and is a complex disease affecting mostly tropical regions of the world. Unfortunately, despite the extensive effort made, there is no vaccine available for human use. Undoubtedly, a comprehensive understanding of the host-vector-parasite interaction is substantial for developing an effective prophylactic vaccine. Recently the role of sandfly saliva on disease progression has been uncovered which can make a substantial contribution in vaccine design. In this review we try to focus on the strategies that most probably meet the prerequisites of vaccine development (based on the current understandings) including live attenuated/non-pathogenic and subunit DNA vaccines. Innovative approaches such as reverse genetics, CRISP/R-Cas9 and antibiotic-free selection are now available to promisingly compensate for intrinsic drawbacks associated with these platforms. Our main goal is to call more attention toward the prerequisites of effective vaccine development while controlling the disease outspread is a substantial need.
Collapse
Affiliation(s)
- Negar Seyed
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | | | | |
Collapse
|
24
|
Patel A. Shaping immunity against infectious diseases with multivalent DNA vaccines. VACCINE INSIGHTS 2024; 3:29-33. [PMID: 38694840 PMCID: PMC11062630 DOI: 10.18609/vac.2024.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
Immunization has dramatically transformed human and animal health. Since its earliest days, vaccination has served as a fundamental strategy for infectious disease prevention, providing population-level coverage for childhood diseases and seasonal infections, and serving as a rapid response to pandemic pathogens. Yet, there is continued circulation of endemic, emerging, and reemerging pathogens for which there are no licensed prophylactic measures. The successes of nucleic acid technologies during the COVID-19 pandemic, exemplified in the first two licensed mRNA vaccines [1] and the first DNA vaccine receiving emergency use authorization for human use [2], are reinvigorating vaccine development to tackle this urgent unmet need. The inherent stability of DNA offers advantageous features such as thermostability and extended shelf life. These characteristics are pivotal for transport and storage in resource-constrained environments, like low and middle-income countries. Furthermore, the ability to encode large transgenes and well-established modular assembly pipelines are key attributes of DNA-based platforms. This versatility extends to combination strategies of individual DNA vaccines as a multivalent drug product. Multivalent synthetic DNA vaccines are therefore emerging as part of the exciting nucleic acid-based vaccine landscape as a strategy to induce robust and durable immunity in diverse global populations.
Collapse
Affiliation(s)
- Ami Patel
- Vaccine and Immunotherapy Center, The Wistar Institute of Anatomy and Biology, Philadelphia, PA, USA, 19104
| |
Collapse
|
25
|
Kim NE, Kim MJ, Park BJ, Kwon JW, Lee JM, Park JH, Song YJ. A DNA vaccine against GII.4 human norovirus VP1 induces blocking antibody production and T cell responses. Vaccine 2024; 42:1392-1400. [PMID: 38320930 DOI: 10.1016/j.vaccine.2024.01.090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/15/2024] [Accepted: 01/25/2024] [Indexed: 02/08/2024]
Abstract
Human noroviruses (HuNoVs) are highly contagious and a leading cause of epidemics of acute gastroenteritis worldwide. Among the various HuNoV genotypes, GII.4 is the most prevalent cause of outbreaks. However, no vaccines have been approved for HuNoVs to date. DNA vaccines are proposed to serve as an ideal platform against HuNoV since they can be easily produced and customized to express target proteins. In this study, we constructed a CMV/R vector expressing a major structural protein, VP1, of GII.4 HuNoV (CMV/R-GII.4 HuNoV VP1). Transfection of CMV/R-GII.4 HuNoV VP1 into human embryonic kidney 293T (HEK293T) cells resulted in successful expression of VP1 proteins in vitro. Intramuscular or intradermal immunization of mice with the CMV/R-GII.4 HuNoV VP1 construct elicited the production of blocking antibodies and activation of T cell responses against GII.4 HuNoV VP1. Our collective data support the utility of CMV/R-GII.4 HuNoV VP1 as a promising DNA vaccine candidate against GII.4 HuNoV.
Collapse
Affiliation(s)
- Na-Eun Kim
- Department of Life Science, Gachon University, Seongnam-Si, South Korea
| | - Mun-Jin Kim
- Department of BioNano Technology, Gachon University, Seongnam-Si, South Korea
| | - Bum Ju Park
- Department of Life Science, Gachon University, Seongnam-Si, South Korea
| | - Jung Won Kwon
- Department of Life Science, Gachon University, Seongnam-Si, South Korea
| | - Jae Myun Lee
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, South Korea
| | - Jung-Hwan Park
- Department of BioNano Technology, Gachon University, Seongnam-Si, South Korea
| | - Yoon-Jae Song
- Department of Life Science, Gachon University, Seongnam-Si, South Korea.
| |
Collapse
|
26
|
Imhof D, Hänggeli KPA, De Sousa MCF, Vigneswaran A, Hofmann L, Amdouni Y, Boubaker G, Müller J, Hemphill A. Working towards the development of vaccines and chemotherapeutics against neosporosis-With all of its ups and downs-Looking ahead. ADVANCES IN PARASITOLOGY 2024; 124:91-154. [PMID: 38754928 DOI: 10.1016/bs.apar.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Neospora caninum is an apicomplexan and obligatory intracellular parasite, which is the leading cause of reproductive failure in cattle and affects other farm and domestic animals, but also induces neuromuscular disease in dogs of all ages. In cattle, neosporosis is an important health problem, and has a considerable economic impact. To date there is no protective vaccine or chemotherapeutic treatment on the market. Immuno-prophylaxis has long been considered as the best control measure. Proteins involved in host cell interaction and invasion, as well as antigens mediating inflammatory responses have been the most frequently assessed vaccine targets. However, despite considerable efforts no effective vaccine has been introduced to the market to date. The development of effective compounds to limit the effects of vertical transmission of N. caninum tachyzoites has emerged as an alternative or addition to vaccination, provided suitable targets and safe and efficacious drugs can be identified. Additionally, the combination of both treatment strategies might be interesting to further increase protectivity against N. caninum infections and to decrease the duration of treatment and the risk of potential drug resistance. Well-established and standardized animal infection models are key factors for the evaluation of promising vaccine and compound candidates. The vast majority of experimental animal experiments concerning neosporosis have been performed in mice, although in recent years the numbers of experimental studies in cattle and sheep have increased. In this review, we discuss the recent findings concerning the progress in drug and vaccine development against N. caninum infections in mice and ruminants.
Collapse
Affiliation(s)
- Dennis Imhof
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland.
| | - Kai Pascal Alexander Hänggeli
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Maria Cristina Ferreira De Sousa
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Anitha Vigneswaran
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Larissa Hofmann
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Yosra Amdouni
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Ghalia Boubaker
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Joachim Müller
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Andrew Hemphill
- Institute of Parasitology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland.
| |
Collapse
|
27
|
Moussion C, Delamarre L. Antigen cross-presentation by dendritic cells: A critical axis in cancer immunotherapy. Semin Immunol 2024; 71:101848. [PMID: 38035643 DOI: 10.1016/j.smim.2023.101848] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023]
Abstract
Dendritic cells (DCs) are professional antigen-presenting cells that play a key role in shaping adaptive immunity. DCs have a unique ability to sample their environment, capture and process exogenous antigens into peptides that are then loaded onto major histocompatibility complex class I molecules for presentation to CD8+ T cells. This process, called cross-presentation, is essential for initiating and regulating CD8+ T cell responses against tumors and intracellular pathogens. In this review, we will discuss the role of DCs in cancer immunity, the molecular mechanisms underlying antigen cross-presentation by DCs, the immunosuppressive factors that limit the efficiency of this process in cancer, and approaches to overcome DC dysfunction and therapeutically promote antitumoral immunity.
Collapse
Affiliation(s)
| | - Lélia Delamarre
- Cancer Immunology, Genentech, South San Francisco, CA 94080, USA.
| |
Collapse
|
28
|
Francis JE, Skakic I, Majumdar D, Taki AC, Shukla R, Walduck A, Smooker PM. Solid Lipid Nanoparticles Delivering a DNA Vaccine Encoding Helicobacter pylori Urease A Subunit: Immune Analyses before and after a Mouse Model of Infection. Int J Mol Sci 2024; 25:1076. [PMID: 38256149 PMCID: PMC10816323 DOI: 10.3390/ijms25021076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/08/2024] [Accepted: 01/13/2024] [Indexed: 01/24/2024] Open
Abstract
In this study, novel solid lipid particles containing the adjuvant lipid monophosphoryl lipid A (termed 'SLN-A') were synthesised. The SLN-A particles were able to efficiently bind and form complexes with a DNA vaccine encoding the urease alpha subunit of Helicobacter pylori. The resultant nanoparticles were termed lipoplex-A. In a mouse model of H. pylori infection, the lipoplex-A nanoparticles were used to immunise mice, and the resultant immune responses were analysed. It was found that the lipoplex-A vaccine was able to induce high levels of antigen-specific antibodies and an influx of gastric CD4+ T cells in vaccinated mice. In particular, a prime with lipoplex-A and a boost with soluble UreA protein induced significantly high levels of the IgG1 antibody, whereas two doses of lipoplex-A induced high levels of the IgG2c antibody. In this study, lipoplex-A vaccination did not lead to a significant reduction in H. pylori colonisation in a challenge model; however, these results point to the utility of the system for delivering DNA vaccine-encoded antigens to induce immune responses and suggest the ability to tailor those responses.
Collapse
Affiliation(s)
- Jasmine E. Francis
- School of Science, RMIT University, 264 Plenty Road, Bundoora, VIC 3083, Australia; (J.E.F.); (I.S.); (D.M.); (R.S.); (A.W.)
| | - Ivana Skakic
- School of Science, RMIT University, 264 Plenty Road, Bundoora, VIC 3083, Australia; (J.E.F.); (I.S.); (D.M.); (R.S.); (A.W.)
| | - Debolina Majumdar
- School of Science, RMIT University, 264 Plenty Road, Bundoora, VIC 3083, Australia; (J.E.F.); (I.S.); (D.M.); (R.S.); (A.W.)
| | - Aya C. Taki
- Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia;
| | - Ravi Shukla
- School of Science, RMIT University, 264 Plenty Road, Bundoora, VIC 3083, Australia; (J.E.F.); (I.S.); (D.M.); (R.S.); (A.W.)
| | - Anna Walduck
- School of Science, RMIT University, 264 Plenty Road, Bundoora, VIC 3083, Australia; (J.E.F.); (I.S.); (D.M.); (R.S.); (A.W.)
| | - Peter M. Smooker
- School of Science, RMIT University, 264 Plenty Road, Bundoora, VIC 3083, Australia; (J.E.F.); (I.S.); (D.M.); (R.S.); (A.W.)
| |
Collapse
|
29
|
Kozak M, Hu J. DNA Vaccines: Their Formulations, Engineering and Delivery. Vaccines (Basel) 2024; 12:71. [PMID: 38250884 PMCID: PMC10820593 DOI: 10.3390/vaccines12010071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/02/2024] [Accepted: 01/08/2024] [Indexed: 01/23/2024] Open
Abstract
The concept of DNA vaccination was introduced in the early 1990s. Since then, advancements in the augmentation of the immunogenicity of DNA vaccines have brought this technology to the market, especially in veterinary medicine, to prevent many diseases. Along with the successful COVID mRNA vaccines, the first DNA vaccine for human use, the Indian ZyCovD vaccine against SARS-CoV-2, was approved in 2021. In the current review, we first give an overview of the DNA vaccine focusing on the science, including adjuvants and delivery methods. We then cover some of the emerging science in the field of DNA vaccines, notably efforts to optimize delivery systems, better engineer delivery apparatuses, identify optimal delivery sites, personalize cancer immunotherapy through DNA vaccination, enhance adjuvant science through gene adjuvants, enhance off-target and heritable immunity through epigenetic modification, and predict epitopes with bioinformatic approaches. We also discuss the major limitations of DNA vaccines and we aim to address many theoretical concerns.
Collapse
Affiliation(s)
- Michael Kozak
- The Jake Gittlen Laboratories for Cancer Research, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA
- The Department of Pathology and Laboratory Medicine, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA
| | - Jiafen Hu
- The Jake Gittlen Laboratories for Cancer Research, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA
- The Department of Pathology and Laboratory Medicine, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA
| |
Collapse
|
30
|
Kisakov DN, Belyakov IM, Kisakova LA, Yakovlev VA, Tigeeva EV, Karpenko LI. The use of electroporation to deliver DNA-based vaccines. Expert Rev Vaccines 2024; 23:102-123. [PMID: 38063059 DOI: 10.1080/14760584.2023.2292772] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 12/05/2023] [Indexed: 12/19/2023]
Abstract
INTRODUCTION Nucleic acids represent a promising platform for creating vaccines. One disadvantage of this approach is its relatively low immunogenicity. Electroporation (EP) is an effective way to increase the DNA vaccines immunogenicity. However, due to the different configurations of devices used for EP, EP protocols optimization is required not only to enhance immunogenicity, but also to ensure greater safety and tolerability of the EP procedure. AREA COVERED An data analysis for recent years on the DNA vaccines delivery against viral and parasitic infections using EP was carried out. The study of various EP physical characteristics, such as frequency, pulse duration, pulse interval, should be considered along with the immunogenic construct design and the site of delivery of the vaccine, through the study of the immunogenic and protective characteristics of the latter. EXPERT OPINION Future research should focus on regulating the humoral and cellular response required for protection against infectious agents by modifying the EP protocol. Significant efforts will be directed to establishing the possibility of redirecting the immune response toward the Th1 or Th2 response by changing the EP physical parameters. It will allow for an individual selective approach during EP, depending on the pathogen type of an infectious disease.
Collapse
Affiliation(s)
- Denis N Kisakov
- Department of bioengineering, State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, Novosibirsk region, Russia
| | - Igor M Belyakov
- Department of medico-biological disciplines, Moscow University for Industry and Finance "Synergy", Moscow, Russia
| | - Lubov A Kisakova
- Department of bioengineering, State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, Novosibirsk region, Russia
| | - Vladimir A Yakovlev
- Department of bioengineering, State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, Novosibirsk region, Russia
| | - Elena V Tigeeva
- Department of bioengineering, State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, Novosibirsk region, Russia
| | - Larisa I Karpenko
- Department of bioengineering, State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, Novosibirsk region, Russia
| |
Collapse
|
31
|
Demidova A, Douguet L, Fert I, Wei Y, Charneau P, Majlessi L. Comparison of preclinical efficacy of immunotherapies against HPV-induced cancers. Expert Rev Vaccines 2024; 23:674-687. [PMID: 38978164 DOI: 10.1080/14760584.2024.2374287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/26/2024] [Indexed: 07/10/2024]
Abstract
INTRODUCTION Persistent infections with the human papilloma viruses, HPV16 and HPV18, are associated with multiple cancers. Although prophylactic vaccines that induce HPV-neutralizing antibodies are effective against primary infections, they have no effect on HPV-mediated malignancies against which there is no approved immuno-therapy. Active research is ongoing in the immunotherapy of these cancers. AREAS COVERED In this review, we compared the preclinical efficacy of vaccine platforms used to treat HPV-induced tumors in the standard model of mice grafted with TC-1 cells, which express the HPV16 E6 and E7 oncoproteins. We searched for the key words, 'HPV,' 'vaccine,' 'therapy,' 'E7,' 'tumor,' 'T cells', and 'mice' for the period from 2005 to 2023 in PubMed and found 330 publications. Among them, we selected the most relevant to extract preclinical antitumor results to enable cross-sectional comparison of their efficacy. EXPERT OPINION SECTION We compared these studies for HPV antigen design, immunization regimen, immunogenicity, and antitumor effect, considering their drawbacks and advantages. Among all strategies used in murine models, certain adjuvanted proteins and viral vectors showed the strongest antitumor effects, with the use of lentiviral vectors being the only approach to result in complete tumor eradication in 100% of experimental individuals while providing the longest-lasting memory.
Collapse
Affiliation(s)
- Anastasia Demidova
- Pasteur-TheraVectys Joint Lab, Institut Pasteur, Université de Paris, Virology Department, Paris, France
| | - Laëtitia Douguet
- Pasteur-TheraVectys Joint Lab, Institut Pasteur, Université de Paris, Virology Department, Paris, France
| | - Ingrid Fert
- Pasteur-TheraVectys Joint Lab, Institut Pasteur, Université de Paris, Virology Department, Paris, France
| | - Yu Wei
- Pasteur-TheraVectys Joint Lab, Institut Pasteur, Université de Paris, Virology Department, Paris, France
| | - Pierre Charneau
- Pasteur-TheraVectys Joint Lab, Institut Pasteur, Université de Paris, Virology Department, Paris, France
| | | |
Collapse
|
32
|
Kim SE, Park SH, Park WJ, Kim G, Kim SY, Won H, Hwang YH, Lim H, Kim HG, Kim YJ, Kim D, Lee JA. Evaluation of immunogenicity-induced DNA vaccines against different SARS-CoV-2 variants. PLoS One 2023; 18:e0295594. [PMID: 38060612 PMCID: PMC10703263 DOI: 10.1371/journal.pone.0295594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in 2019 and caused the coronavirus disease 2019 (COVID-19) pandemic worldwide. As of September 2023, the number of confirmed coronavirus cases has reached over 770 million and caused nearly 7 million deaths. The World Health Organization assigned and informed the characterization of variants of concern (VOCs) to help control the COVID-19 pandemic through global monitoring of circulating viruses. Although many vaccines have been proposed, developing an effective vaccine against variants is still essential to reach the endemic stage of COVID-19. We designed five DNA vaccine candidates composed of the first isolated genotype and major SARS-CoV-2 strains from isolated Korean patients classified as VOCs, such as Alpha, Beta, Gamma, and Delta. To evaluate the immunogenicity of each genotype via homologous and heterologous vaccination, mice were immunized twice within a 3-week interval, and the blood and spleen were collected 1 week after the final vaccination to analyze the immune responses. The group vaccinated with DNA vaccine candidates based on the S genotype and the Alpha and Beta variants elicited both humoral and cellular immune responses, with higher total IgG levels and neutralizing antibody responses than the other groups. In particular, the vaccine candidate based on the Alpha variant induced a highly diverse cytokine response. Additionally, we found that the group subjected to homologous vaccination with the S genotype and heterologous vaccination with S/Alpha induced high total IgG levels and a neutralization antibody response. Homologous vaccination with the S genotype and heterologous vaccination with S/Alpha and S/Beta significantly induced IFN-γ immune responses. The immunogenicity after homologous vaccination with S and Alpha and heterologous vaccination with the S/Alpha candidate was better than that of the other groups, indicating the potential for developing novel DNA vaccines against different SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Se Eun Kim
- National Institute of Infectious Disease, National Institute of Health, Korea Disease Control and Prevention Agency, CheongJu, Chungcheongbuk-do, Republic of Korea
| | - So Hee Park
- National Institute of Infectious Disease, National Institute of Health, Korea Disease Control and Prevention Agency, CheongJu, Chungcheongbuk-do, Republic of Korea
| | - Woo-Jung Park
- National Institute of Infectious Disease, National Institute of Health, Korea Disease Control and Prevention Agency, CheongJu, Chungcheongbuk-do, Republic of Korea
| | - Gayeong Kim
- National Institute of Infectious Disease, National Institute of Health, Korea Disease Control and Prevention Agency, CheongJu, Chungcheongbuk-do, Republic of Korea
| | - Seo Yeon Kim
- National Institute of Infectious Disease, National Institute of Health, Korea Disease Control and Prevention Agency, CheongJu, Chungcheongbuk-do, Republic of Korea
| | - Hyeran Won
- National Institute of Infectious Disease, National Institute of Health, Korea Disease Control and Prevention Agency, CheongJu, Chungcheongbuk-do, Republic of Korea
| | - Yun-Ho Hwang
- National Institute of Infectious Disease, National Institute of Health, Korea Disease Control and Prevention Agency, CheongJu, Chungcheongbuk-do, Republic of Korea
| | - Heeji Lim
- National Institute of Infectious Disease, National Institute of Health, Korea Disease Control and Prevention Agency, CheongJu, Chungcheongbuk-do, Republic of Korea
| | - Hyeon Guk Kim
- National Institute of Infectious Disease, National Institute of Health, Korea Disease Control and Prevention Agency, CheongJu, Chungcheongbuk-do, Republic of Korea
| | - You-Jin Kim
- National Institute of Infectious Disease, National Institute of Health, Korea Disease Control and Prevention Agency, CheongJu, Chungcheongbuk-do, Republic of Korea
| | - Dokeun Kim
- National Institute of Infectious Disease, National Institute of Health, Korea Disease Control and Prevention Agency, CheongJu, Chungcheongbuk-do, Republic of Korea
| | - Jung-Ah Lee
- National Institute of Infectious Disease, National Institute of Health, Korea Disease Control and Prevention Agency, CheongJu, Chungcheongbuk-do, Republic of Korea
| |
Collapse
|
33
|
Pagliari S, Dema B, Sanchez-Martinez A, Montalvo Zurbia-Flores G, Rollier CS. DNA Vaccines: History, Molecular Mechanisms and Future Perspectives. J Mol Biol 2023; 435:168297. [PMID: 37797831 DOI: 10.1016/j.jmb.2023.168297] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/22/2023] [Accepted: 09/28/2023] [Indexed: 10/07/2023]
Abstract
The history of DNA vaccine began as early as the 1960s with the discovery that naked DNA can transfect mammalian cells in vivo. In 1992, the evidence that such transfection could lead to the generation of antigen-specific antibody responses was obtained and supported the development of this technology as a novel vaccine platform. The technology then attracted immense interest and high hopes in vaccinology, as evidence of high immunogenicity and protection against virulent challenges accumulated from several animal models for several diseases. In particular, the capacity to induce T-cell responses was unprecedented in non-live vaccines. However, the technology suffered its major knock when the success in animals failed to translate to humans, where DNA vaccine candidates were shown to be safe but remained poorly immunogenic, or not associated with clinical benefit. Thanks to a thorough exploration of the molecular mechanisms of action of these vaccines, an impressive range of approaches have been and are currently being explored to overcome this major challenge. Despite limited success so far in humans as compared with later genetic vaccine technologies such as viral vectors and mRNA, DNA vaccines are not yet optimised for human use and may still realise their potential.
Collapse
Affiliation(s)
- Sthefany Pagliari
- School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK; Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Barbara Dema
- Pandemic Science Institute, Institute of Developmental and Regenerative Medicine (IDRM), University of Oxford, Oxford, UK
| | | | | | - Christine S Rollier
- School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK.
| |
Collapse
|
34
|
Signori E. Electroporation as a cutting edge technique shaping the future of food processing: Comment on: "Advances in pulsed electric stimuli as a physical method for treating liquid foods" by Farzan Zare, Negareh Ghasemi, Nidhi Bansal, Hamid Hosano. Phys Life Rev 2023; 47:3-5. [PMID: 37651759 DOI: 10.1016/j.plrev.2023.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 08/14/2023] [Indexed: 09/02/2023]
Affiliation(s)
- E Signori
- CNR Institute of Translational Pharmacology, Via del Fosso del Cavaliere 100, 00133 Roma, Italy.
| |
Collapse
|
35
|
Johnson AMF, Hager K, Alameh MG, Van P, Potchen N, Mayer-Blackwell K, Fiore-Gartland A, Minot S, Lin PJC, Tam YK, Weissman D, Kublin JG. The Regulation of Nucleic Acid Vaccine Responses by the Microbiome. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1680-1692. [PMID: 37850965 PMCID: PMC10656434 DOI: 10.4049/jimmunol.2300196] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 09/19/2023] [Indexed: 10/19/2023]
Abstract
Nucleic acid vaccines, including both RNA and DNA platforms, are key technologies that have considerable promise in combating both infectious disease and cancer. However, little is known about the extrinsic factors that regulate nucleic acid vaccine responses and which may determine their effectiveness. The microbiome is recognized as a significant regulator of immune development and response, whose role in regulating some traditional vaccine platforms has recently been discovered. Using germ-free and specific pathogen-free mouse models in combination with different protein, DNA, and mRNA vaccine regimens, we demonstrate that the microbiome is a significant regulator of nucleic acid vaccine immunogenicity. Although the presence of the microbiome enhances CD8+ T cell responses to mRNA lipid nanoparticle immunization, the microbiome suppresses Ig and CD4+ T cell responses to DNA-prime, DNA-protein-boost immunization, indicating contrasting roles for the microbiome in the regulation of these different nucleic acid vaccine platforms. In the case of mRNA lipid nanoparticle vaccination, germ-free mice display reduced dendritic cell/macrophage activation that may underlie the deficient vaccine response. Our study identifies the microbiome as a relevant determinant of nucleic acid vaccine response with implications for continued therapeutic development and deployment of these vaccines.
Collapse
Affiliation(s)
- Andrew M. F. Johnson
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Kevin Hager
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
| | | | - Phuong Van
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
| | - Nicole Potchen
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
| | | | | | - Samuel Minot
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
| | | | | | - Drew Weissman
- Penn Institute for RNA Innovation, University of Pennsylvania, Philadelphia, PA
| | - James G. Kublin
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA
| |
Collapse
|
36
|
Zeyn Y, Hobernik D, Wilk U, Pöhmerer J, Hieber C, Medina-Montano C, Röhrig N, Strähle CF, Thoma-Kress AK, Wagner E, Bros M, Berger S. Transcriptional Targeting of Dendritic Cells Using an Optimized Human Fascin1 Gene Promoter. Int J Mol Sci 2023; 24:16938. [PMID: 38069260 PMCID: PMC10706967 DOI: 10.3390/ijms242316938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Deeper knowledge about the role of the tumor microenvironment (TME) in cancer development and progression has resulted in new strategies such as gene-based cancer immunotherapy. Whereas some approaches focus on the expression of tumoricidal genes within the TME, DNA-based vaccines are intended to be expressed in antigen-presenting cells (e.g., dendritic cells, DCs) in secondary lymphoid organs, which in turn induce anti-tumor T cell responses. Besides effective delivery systems and the requirement of appropriate adjuvants, DNA vaccines themselves need to be optimized regarding efficacy and selectivity. In this work, the concept of DC-focused transcriptional targeting was tested by applying a plasmid encoding for the luciferase reporter gene under the control of a derivative of the human fascin1 gene promoter (pFscnLuc), comprising the proximal core promoter fused to the normally more distantly located DC enhancer region. DC-focused activity of this reporter construct was confirmed in cell culture in comparison to a standard reporter vector encoding for luciferase under the control of the strong ubiquitously active cytomegalovirus promoter and enhancer (pCMVLuc). Both plasmids were also compared upon intravenous administration in mice. The organ- and cell type-specific expression profile of pFscnLuc versus pCMVLuc demonstrated favorable activity especially in the spleen as a central immune organ and within the spleen in DCs.
Collapse
Affiliation(s)
- Yanira Zeyn
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University (JGU) Mainz, 55131 Mainz, Germany; (Y.Z.); (D.H.); (C.H.); (C.M.-M.); (N.R.)
| | - Dominika Hobernik
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University (JGU) Mainz, 55131 Mainz, Germany; (Y.Z.); (D.H.); (C.H.); (C.M.-M.); (N.R.)
| | - Ulrich Wilk
- Pharmaceutical Biotechnology, Department of Pharmacy, Center for NanoScience, Ludwig-Maximilians-Universität (LMU) Munich, 81377 Munich, Germany; (U.W.); (J.P.); (E.W.)
| | - Jana Pöhmerer
- Pharmaceutical Biotechnology, Department of Pharmacy, Center for NanoScience, Ludwig-Maximilians-Universität (LMU) Munich, 81377 Munich, Germany; (U.W.); (J.P.); (E.W.)
| | - Christoph Hieber
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University (JGU) Mainz, 55131 Mainz, Germany; (Y.Z.); (D.H.); (C.H.); (C.M.-M.); (N.R.)
| | - Carolina Medina-Montano
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University (JGU) Mainz, 55131 Mainz, Germany; (Y.Z.); (D.H.); (C.H.); (C.M.-M.); (N.R.)
| | - Nadine Röhrig
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University (JGU) Mainz, 55131 Mainz, Germany; (Y.Z.); (D.H.); (C.H.); (C.M.-M.); (N.R.)
| | - Caroline F. Strähle
- Institute of Clinical and Molecular Virology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany; (C.F.S.); (A.K.T.-K.)
| | - Andrea K. Thoma-Kress
- Institute of Clinical and Molecular Virology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany; (C.F.S.); (A.K.T.-K.)
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Department of Pharmacy, Center for NanoScience, Ludwig-Maximilians-Universität (LMU) Munich, 81377 Munich, Germany; (U.W.); (J.P.); (E.W.)
| | - Matthias Bros
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University (JGU) Mainz, 55131 Mainz, Germany; (Y.Z.); (D.H.); (C.H.); (C.M.-M.); (N.R.)
| | - Simone Berger
- Pharmaceutical Biotechnology, Department of Pharmacy, Center for NanoScience, Ludwig-Maximilians-Universität (LMU) Munich, 81377 Munich, Germany; (U.W.); (J.P.); (E.W.)
| |
Collapse
|
37
|
Kim EH, Park SJ. Emerging Tick-Borne Dabie bandavirus: Virology, Epidemiology, and Prevention. Microorganisms 2023; 11:2309. [PMID: 37764153 PMCID: PMC10536723 DOI: 10.3390/microorganisms11092309] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/09/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Severe Fever with Thrombocytopenia Syndrome (SFTS), caused by Dabie bandavirus (SFTSV), is an emerging infectious disease first identified in China. Since its discovery, infections have spread throughout East Asian countries primarily through tick bites but also via transmission between animals and humans. The expanding range of ticks, the primary vectors for SFTSV, combined with migration patterns of tick-carrying birds, sets the stage for the global spread of this virus. SFTSV rapidly evolves due to continuous mutation and reassortment; currently, no approved vaccines or antiviral drugs are available. Thus, the threat this virus poses to global health is unmistakable. This review consolidates the most recent research on SFTSV, including its molecular characteristics, transmission pathways through ticks and other animals, as well as the progress in antiviral drug and vaccine development, encompassing animal models and clinical trials.
Collapse
Affiliation(s)
- Eun-Ha Kim
- Center for Study of Emerging and Re-Emerging Viruses, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon 34126, Republic of Korea;
| | - Su-Jin Park
- Division of Life Science, Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
38
|
Yang Y, Kong WP, Liu C, Ruckwardt TJ, Tsybovsky Y, Wang L, Wang S, Biner DW, Chen M, Liu T, Merriam J, Olia AS, Ou L, Qiu Q, Shi W, Stephens T, Yang ES, Zhang B, Zhang Y, Zhou Q, Rawi R, Koup RA, Mascola JR, Kwong PD. Enhancing Anti-SARS-CoV-2 Neutralizing Immunity by Genetic Delivery of Enveloped Virus-like Particles Displaying SARS-CoV-2 Spikes. Vaccines (Basel) 2023; 11:1438. [PMID: 37766115 PMCID: PMC10537688 DOI: 10.3390/vaccines11091438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/19/2023] [Accepted: 08/27/2023] [Indexed: 09/29/2023] Open
Abstract
New vaccine delivery technologies, such as mRNA, have played a critical role in the rapid and efficient control of SARS-CoV-2, helping to end the COVID-19 pandemic. Enveloped virus-like particles (eVLPs) are often more immunogenic than protein subunit immunogens and could be an effective vaccine platform. Here, we investigated whether the genetic delivery of eVLPs could achieve strong immune responses in mice as previously reported with the immunization of in vitro purified eVLPs. We utilized Newcastle disease virus-like particles (NDVLPs) to display SARS-CoV-2 prefusion-stabilized spikes from the WA-1 or Beta variant (S-2P or S-2Pᵦ, respectively) and evaluated neutralizing murine immune responses achieved by a single-gene-transcript DNA construct for the WA-1 or Beta variant (which we named S-2P-NDVLP-1T and S-2Pᵦ-NDVLP-1T, respectively), by multiple-gene-transcript DNA constructs for the Beta variant (S-2Pᵦ-NDVLP-3T), and by a protein subunit-DNA construct for the WA-1 or Beta variant (S-2P-TM or S-2Pᵦ-TM, respectively). The genetic delivery of S-2P-NDVLP-1T or S-2Pᵦ-NDVLP-1T yielded modest neutralizing responses after a single immunization and high neutralizing responses after a second immunization, comparable to previously reported results in mice immunized with in vitro purified S-2P-NDVLPs. Notably, genetic delivery of S-2Pᵦ-NDVLP-3T yielded significantly higher neutralizing responses in mice after a second immunization than S-2Pᵦ-NDVLP-1T or S-2Pᵦ-TM. Genetic delivery also elicited high spike-specific T-cell responses. Collectively, these results indicate that genetic delivery can provide an effective means to immunize eVLPs and that a multiple-gene transcript eVLP platform may be especially efficacious and inform the design of improved vaccines.
Collapse
Affiliation(s)
- Yongping Yang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Y.Y.)
| | - Wing-Pui Kong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Y.Y.)
| | - Cuiping Liu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Y.Y.)
| | - Tracy J. Ruckwardt
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Y.Y.)
| | - Yaroslav Tsybovsky
- Vaccine Research Center Electron Microscopy Unit, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 20701, USA
| | - Lingshu Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Y.Y.)
| | - Shuishu Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Y.Y.)
| | - Daniel W. Biner
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Y.Y.)
| | - Man Chen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Y.Y.)
| | - Tracy Liu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Y.Y.)
| | - Jonah Merriam
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Y.Y.)
| | - Adam S. Olia
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Y.Y.)
| | - Li Ou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Y.Y.)
| | - Qi Qiu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Y.Y.)
| | - Wei Shi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Y.Y.)
| | - Tyler Stephens
- Vaccine Research Center Electron Microscopy Unit, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 20701, USA
| | - Eun Sung Yang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Y.Y.)
| | - Baoshan Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Y.Y.)
| | - Yi Zhang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Y.Y.)
| | - Qiong Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Y.Y.)
| | - Reda Rawi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Y.Y.)
| | - Richard A. Koup
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Y.Y.)
| | - John R. Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Y.Y.)
| | - Peter D. Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; (Y.Y.)
| |
Collapse
|
39
|
Hayashi H, Sun J, Yanagida Y, Otera T, Tai JA, Nishikawa T, Yamashita K, Sakaguchi N, Yoshida S, Baba S, Chang CY, Shimamura M, Okamoto S, Amaishi Y, Chono H, Mineno J, Rakugi H, Morishita R, Nakagami H. Intradermal administration of DNA vaccine targeting Omicron SARS-CoV-2 via pyro-drive jet injector provides the prolonged neutralizing antibody production via germinal center reaction. Sci Rep 2023; 13:13033. [PMID: 37563266 PMCID: PMC10415318 DOI: 10.1038/s41598-023-40172-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 08/06/2023] [Indexed: 08/12/2023] Open
Abstract
Emerging SARS-CoV-2 Omicron variants are highly contagious with enhanced immune escape mechanisms against the initially approved COVID-19 vaccines. Therefore, we require stable alternative-platform vaccines that confer protection against newer variants of SARS-CoV-2. We designed an Omicron B.1.1.529 specific DNA vaccine using our DNA vaccine platform and evaluated the humoral and cellular immune responses. SD rats intradermally administered with Omicron-specific DNA vaccine via pyro-drive jet injector (PJI) thrice at 2-week intervals elicited high antibody titers against the Omicron subvariants as well as the ancestral strain. Indeed, the Omicron B.1.1.529-specific antibody titer and neutralizing antibody were higher than that of other strains. Longitudinal monitoring indicated that anti-spike (ancestral and Omicron) antibody titers decreased toward 30 weeks after the first vaccination dose. However, neutralization activity remained unaltered. Germinal center formation was histologically detected in lymph nodes in rats immunized with Omicron DNA vaccine. Ancestral spike-specific immune cell response was slightly weaker than Omicron spike-specific response in splenocytes with Omicron-adapted DNA vaccine, evaluated by ELISpot assay. Collectively, our findings suggest that Omicron targeting DNA vaccines via PJI can elicit robust durable antibody production mediated by germinal center reaction against this new variant as well as partially against the spike protein of other SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Hiroki Hayashi
- Department of Health Development and Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.
| | - Jiao Sun
- Department of Health Development and Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yuka Yanagida
- Department of Health Development and Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Takako Otera
- Department of Health Development and Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Anges Inc., Tokyo, Japan
| | - Jiayu A Tai
- Department of Device Application for Molecular Therapeutics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Tomoyuki Nishikawa
- Department of Device Application for Molecular Therapeutics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Kunihiko Yamashita
- Department of Device Application for Molecular Therapeutics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Daicel Co, Osaka, Japan
| | | | - Shota Yoshida
- Department of Health Development and Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Department of Geriatric Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Satoshi Baba
- Department of Health Development and Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Department of Geriatric Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Chin Yang Chang
- Department of Gene and Stem Cell Regenerative Therapy, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Munehisa Shimamura
- Department of Gene and Stem Cell Regenerative Therapy, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Department of Neurology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | | | | | | | | | - Hiromi Rakugi
- Department of Geriatric Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Ryuichi Morishita
- Department of Clinical Gene Therapy, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Hironori Nakagami
- Department of Health Development and Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Division of Microbiology and Immunology, Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
40
|
Kamensek U, Cemazar M, Kranjc Brezar S, Jesenko T, Kos S, Znidar K, Markelc B, Modic Z, Komel T, Gorse T, Rebersek E, Jakopic H, Sersa G. What We Learned about the Feasibility of Gene Electrotransfer for Vaccination on a Model of COVID-19 Vaccine. Pharmaceutics 2023; 15:1981. [PMID: 37514166 PMCID: PMC10385748 DOI: 10.3390/pharmaceutics15071981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
DNA vaccination is one of the emerging approaches for a wide range of applications, including prophylactic vaccination against infectious diseases and therapeutic vaccination against cancer. The aim of this study was to evaluate the feasibility of our previously optimized protocols for gene electrotransfer (GET)-mediated delivery of plasmid DNA into skin and muscle tissues on a model of COVID-19 vaccine. Plasmids encoding the SARS-CoV-2 proteins spike (S) and nucleocapsid (N) were used as the antigen source, and a plasmid encoding interleukin 12 (IL-12) was used as an adjuvant. Vaccination was performed in the skin or muscle tissue of C57BL/6J mice on days 0 and 14 (boost). Two weeks after the boost, blood, spleen, and transfected tissues were collected to determine the expression of S, N, IL-12, serum interferon-γ, the induction of antigen-specific IgG antibodies, and cytotoxic T-cells. In accordance with prior in vitro experiments that indicated problems with proper expression of the S protein, vaccination with S did not induce S-specific antibodies, whereas significant induction of N-specific antibodies was detected after vaccination with N. Intramuscular vaccination outperformed skin vaccination and resulted in significant induction of humoral and cell-mediated immunity. Moreover, both boost and adjuvant were found to be redundant for the induction of an immune response. Overall, the study confirmed the feasibility of the GET for DNA vaccination and provided valuable insights into this approach.
Collapse
Affiliation(s)
- Urska Kamensek
- Institute of Oncology Ljubljana, Zaloska Cesta 2, SI-1000 Ljubljana, Slovenia
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva Ulica 101, SI-1000 Ljubljana, Slovenia
| | - Maja Cemazar
- Institute of Oncology Ljubljana, Zaloska Cesta 2, SI-1000 Ljubljana, Slovenia
- Faculty of Health Sciences, University of Primorska, Polje 42, SI-6310 Izola, Slovenia
| | | | - Tanja Jesenko
- Institute of Oncology Ljubljana, Zaloska Cesta 2, SI-1000 Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Vrazov Trg 2, SI-1000 Ljubljana, Slovenia
| | - Spela Kos
- Institute of Oncology Ljubljana, Zaloska Cesta 2, SI-1000 Ljubljana, Slovenia
| | - Katarina Znidar
- Institute of Oncology Ljubljana, Zaloska Cesta 2, SI-1000 Ljubljana, Slovenia
| | - Bostjan Markelc
- Institute of Oncology Ljubljana, Zaloska Cesta 2, SI-1000 Ljubljana, Slovenia
- Faculty of Health Sciences, University of Ljubljana, Zdravstvena Pot 5, SI-1000 Ljubljana, Slovenia
| | - Ziva Modic
- Institute of Oncology Ljubljana, Zaloska Cesta 2, SI-1000 Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Vrazov Trg 2, SI-1000 Ljubljana, Slovenia
| | - Tilen Komel
- Institute of Oncology Ljubljana, Zaloska Cesta 2, SI-1000 Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Vrazov Trg 2, SI-1000 Ljubljana, Slovenia
| | - Tim Gorse
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva Ulica 101, SI-1000 Ljubljana, Slovenia
| | - Eva Rebersek
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva Ulica 101, SI-1000 Ljubljana, Slovenia
| | - Helena Jakopic
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva Ulica 101, SI-1000 Ljubljana, Slovenia
| | - Gregor Sersa
- Institute of Oncology Ljubljana, Zaloska Cesta 2, SI-1000 Ljubljana, Slovenia
- Faculty of Health Sciences, University of Ljubljana, Zdravstvena Pot 5, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
41
|
Macri C, Jenika D, Ouslinis C, Mintern JD. Targeting dendritic cells to advance cross-presentation and vaccination outcomes. Semin Immunol 2023; 68:101762. [PMID: 37167898 DOI: 10.1016/j.smim.2023.101762] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 04/06/2023] [Accepted: 04/06/2023] [Indexed: 05/13/2023]
Abstract
Dendritic cells (DCs) are a complex network of specialised antigen-presenting cells that are critical initiators of adaptive immunity. Targeting antigen directly to DCs in situ is a vaccination strategy that selectively delivers antigen to receptors expressed by DC subtypes. This approach exploits specific DC subset functions of antigen uptake and presentation. Here, we review DC-targeted vaccination strategies that are designed to elicit effective cross-presentation for CD8+ T cell immunity. In particular, we focus on approaches that exploit receptors highly expressed by mouse and human cDCs equipped with superior cross-presentation capacity. These receptors include DEC205, Clec9A and XCR1. Targeting DC receptors Clec12A, Clec4A4 and mannose receptor is also reviewed. Outcomes of DC-targeted vaccination in mouse models through to human clinical trials is discussed. This is a promising new vaccination approach capable of directly targeting the cross-presentation pathway for prevention and treatment of tumours and infectious diseases.
Collapse
Affiliation(s)
- Christophe Macri
- Department of Biochemistry and Pharmacology, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Rd, Parkville, Victoria 3010, Australia
| | - Devi Jenika
- Department of Biochemistry and Pharmacology, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Rd, Parkville, Victoria 3010, Australia
| | - Cassandra Ouslinis
- Department of Biochemistry and Pharmacology, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Rd, Parkville, Victoria 3010, Australia
| | - Justine D Mintern
- Department of Biochemistry and Pharmacology, The University of Melbourne, Bio21 Molecular Science and Biotechnology Institute, 30 Flemington Rd, Parkville, Victoria 3010, Australia.
| |
Collapse
|
42
|
Joshi LR, Gálvez NM, Ghosh S, Weiner DB, Balazs AB. Delivery platforms for broadly neutralizing antibodies. Curr Opin HIV AIDS 2023; 18:191-208. [PMID: 37265268 PMCID: PMC10247185 DOI: 10.1097/coh.0000000000000803] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
PURPOSE OF REVIEW Passive administration of broadly neutralizing antibodies (bNAbs) is being evaluated as a therapeutic approach to prevent or treat HIV infections. However, a number of challenges face the widespread implementation of passive transfer for HIV. To reduce the need of recurrent administrations of bNAbs, gene-based delivery approaches have been developed which overcome the limitations of passive transfer. RECENT FINDINGS The use of DNA and mRNA for the delivery of bNAbs has made significant progress. DNA-encoded monoclonal antibodies (DMAbs) have shown great promise in animal models of disease and the underlying DNA-based technology is now being tested in vaccine trials for a variety of indications. The COVID-19 pandemic greatly accelerated the development of mRNA-based technology to induce protective immunity. These advances are now being successfully applied to the delivery of monoclonal antibodies using mRNA in animal models. Delivery of bNAbs using viral vectors, primarily adeno-associated virus (AAV), has shown great promise in preclinical animal models and more recently in human studies. Most recently, advances in genome editing techniques have led to engineering of monoclonal antibody expression from B cells. These efforts aim to turn B cells into a source of evolving antibodies that can improve through repeated exposure to the respective antigen. SUMMARY The use of these different platforms for antibody delivery has been demonstrated across a wide range of animal models and disease indications, including HIV. Although each approach has unique strengths and weaknesses, additional advances in efficiency of gene delivery and reduced immunogenicity will be necessary to drive widespread implementation of these technologies. Considering the mounting clinical evidence of the potential of bNAbs for HIV treatment and prevention, overcoming the remaining technical challenges for gene-based bNAb delivery represents a relatively straightforward path towards practical interventions against HIV infection.
Collapse
Affiliation(s)
- Lok R. Joshi
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA
| | - Nicolás M.S. Gálvez
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA
| | - Sukanya Ghosh
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, Pennsylvania, PA 19104, USA
| | - David B. Weiner
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, Pennsylvania, PA 19104, USA
| | - Alejandro B. Balazs
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA
| |
Collapse
|
43
|
Dain L, Zhu G. Nucleic acid immunotherapeutics and vaccines: A promising approach to glioblastoma multiforme treatment. Int J Pharm 2023; 638:122924. [PMID: 37037396 PMCID: PMC10194422 DOI: 10.1016/j.ijpharm.2023.122924] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 04/12/2023]
Abstract
Glioblastoma multiforme (GBM) is a deadly and difficult to treat primary brain tumor for which satisfactory therapeutics have yet to be discovered. While cancer immunotherapeutics, such as immune checkpoint inhibitors, have successfully improved the treatment of some other types of cancer, the poorly immunogenic GBM tumor cells and the immunosuppressive GBM tumor microenvironment have made it difficult to develop GBM immunotherapeutics. Nucleic acids therapeutics and vaccines, particularly those of mRNA, have become a popular field of research in recent years. This review presents the progress of nucleic acid therapeutics and vaccines for GBM and briefly covers some representative delivery methods of nucleic acids to the central nervous system (CNS) for GBM therapy.
Collapse
Affiliation(s)
- Lauren Dain
- Department of Pharmaceutics and Center for Pharmaceutical Engineering and Sciences, Institute for Structural Biology and Drug Discovery, School of Pharmacy; The Developmental Therapeutics Program, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Guizhi Zhu
- Department of Pharmaceutics and Center for Pharmaceutical Engineering and Sciences, Institute for Structural Biology and Drug Discovery, School of Pharmacy; The Developmental Therapeutics Program, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA; Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
44
|
Feola S, Chiaro J, Cerullo V. Integrating immunopeptidome analysis for the design and development of cancer vaccines. Semin Immunol 2023; 67:101750. [PMID: 37003057 DOI: 10.1016/j.smim.2023.101750] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/17/2023] [Accepted: 03/17/2023] [Indexed: 04/03/2023]
Abstract
The repertoire of naturally presented peptides within the MHC (major histocompatibility complex) or HLA (human leukocyte antigens) system on the cellular surface of every mammalian cell is referred to as ligandome or immunopeptidome. This later gained momentum upon the discovery of CD8 + T cells able to recognize and kill cancer cells in an MHC-I antigen-restricted manner. Indeed, cancer immune surveillance relies on T cell recognition of MHC-I-restricted peptides, making the identification of those peptides the core for designing T cell-based cancer vaccines. Moreover, the breakthrough of antibodies targeting immune checkpoint molecules has led to a new and strong interest in discovering suitable targets for CD8 +T cells. Therapeutic cancer vaccines are designed for the artificial generation and/or stimulation of CD8 +T cells; thus, their combination with ICIs to unleash the breaks of the immune system comes as a natural consequence to enhance anti-tumor efficacy. In this context, the identification and knowledge of peptide candidates take advantage of the fast technology updates in immunopeptidome and mass spectrometric methodologies, paying the way to the rational design of vaccines for immunotherapeutic approaches. In this review, we discuss mainly the role of immunopeptidome analysis and its application for the generation of therapeutic cancer vaccines with main focus on HLA-I peptides. Here, we review cancer vaccine platforms based on two different preparation methods: pathogens (viruses and bacteria) and not (VLPs, nanoparticles, subunits vaccines) that exploit discoveries in the ligandome field to generate and/or enhance anti-tumor specific response. Finally, we discuss possible drawbacks and future challenges in the field that remain still to be addressed.
Collapse
Affiliation(s)
- Sara Feola
- Drug Research Program (DRP) ImmunoViroTherapy Lab (IVT), Faculty of Pharmacy Helsinki University, Viikinkaari 5E, Finland; Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Fabianinkatu 33, Finland; Translational Immunology Program (TRIMM), Faculty of Medicine Helsinki University, Haartmaninkatu 8, Finland
| | - Jacopo Chiaro
- Drug Research Program (DRP) ImmunoViroTherapy Lab (IVT), Faculty of Pharmacy Helsinki University, Viikinkaari 5E, Finland; Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Fabianinkatu 33, Finland; Translational Immunology Program (TRIMM), Faculty of Medicine Helsinki University, Haartmaninkatu 8, Finland
| | - Vincenzo Cerullo
- Drug Research Program (DRP) ImmunoViroTherapy Lab (IVT), Faculty of Pharmacy Helsinki University, Viikinkaari 5E, Finland; Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Fabianinkatu 33, Finland; Translational Immunology Program (TRIMM), Faculty of Medicine Helsinki University, Haartmaninkatu 8, Finland; Department of Molecular Medicine and Medical Biotechnology, Naples University "Federico II", S. Pansini 5, Italy.
| |
Collapse
|
45
|
You H, Jones MK, Gordon CA, Arganda AE, Cai P, Al-Wassiti H, Pouton CW, McManus DP. The mRNA Vaccine Technology Era and the Future Control of Parasitic Infections. Clin Microbiol Rev 2023; 36:e0024121. [PMID: 36625671 PMCID: PMC10035331 DOI: 10.1128/cmr.00241-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Despite intensive long-term efforts, with very few exceptions, the development of effective vaccines against parasitic infections has presented considerable challenges, given the complexity of parasite life cycles, the interplay between parasites and their hosts, and their capacity to escape the host immune system and to regulate host immune responses. For many parasitic diseases, conventional vaccine platforms have generally proven ill suited, considering the complex manufacturing processes involved and the costs they incur, the inability to posttranslationally modify cloned target antigens, and the absence of long-lasting protective immunity induced by these antigens. An effective antiparasite vaccine platform is required to assess the effectiveness of novel vaccine candidates at high throughput. By exploiting the approach that has recently been used successfully to produce highly protective COVID mRNA vaccines, we anticipate a new wave of research to advance the use of mRNA vaccines to prevent parasitic infections in the near future. This article considers the characteristics that are required to develop a potent antiparasite vaccine and provides a conceptual foundation to promote the development of parasite mRNA-based vaccines. We review the recent advances and challenges encountered in developing antiparasite vaccines and evaluate the potential of developing mRNA vaccines against parasites, including those causing diseases such as malaria and schistosomiasis, against which vaccines are currently suboptimal or not yet available.
Collapse
Affiliation(s)
- Hong You
- Department of Infection and Inflammation, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Malcolm K. Jones
- School of Veterinary Science, The University of Queensland, Brisbane, Australia
| | - Catherine A. Gordon
- Department of Infection and Inflammation, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Alexa E. Arganda
- Department of Infection and Inflammation, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Pengfei Cai
- Department of Infection and Inflammation, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Harry Al-Wassiti
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Colin W. Pouton
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Donald P. McManus
- Department of Infection and Inflammation, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| |
Collapse
|
46
|
Pfeifle A, Thulasi Raman SN, Lansdell C, Zhang W, Tamming L, Cecillon J, Laryea E, Patel D, Wu J, Gravel C, Frahm G, Gao J, Chen W, Chaconas G, Sauve S, Rosu-Myles M, Wang L, Johnston MJW, Li X. DNA lipid nanoparticle vaccine targeting outer surface protein C affords protection against homologous Borrelia burgdorferi needle challenge in mice. Front Immunol 2023; 14:1020134. [PMID: 37006299 PMCID: PMC10060826 DOI: 10.3389/fimmu.2023.1020134] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 03/03/2023] [Indexed: 03/18/2023] Open
Abstract
IntroductionThe incidence of Lyme disease (LD) in Canada and the United States has risen over the last decade, nearing 480,000 cases each year. Borrelia burgdorferi sensu lato, the causative agent of LD, is transmitted to humans through the bite of an infected tick, resulting in flu-like symptoms and often a characteristic bull’s-eye rash. In more severe cases, disseminated bacterial infection can cause arthritis, carditis and neurological impairments. Currently, no vaccine is available for the prevention of LD in humans.MethodsIn this study, we developed a lipid nanoparticle (LNP)-encapsulated DNA vaccine encoding outer surface protein C type A (OspC-type A) of B. burgdorferi.ResultsVaccination of C3H/HeN mice with two doses of the candidate vaccine induced significant OspC-type A-specific antibody titres and borreliacidal activity. Analysis of the bacterial burden following needle challenge with B. burgdorferi (OspC-type A) revealed that the candidate vaccine afforded effective protection against homologous infection across a range of susceptible tissues. Notably, vaccinated mice were protected against carditis and lymphadenopathy associated with Lyme borreliosis.DiscussionOverall, the results of this study provide support for the use of a DNA-LNP platform for the development of LD vaccines.
Collapse
Affiliation(s)
- Annabelle Pfeifle
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and World Health Organization Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Sathya N. Thulasi Raman
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and World Health Organization Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON, Canada
| | - Casey Lansdell
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and World Health Organization Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON, Canada
| | - Wanyue Zhang
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and World Health Organization Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Levi Tamming
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and World Health Organization Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Jonathon Cecillon
- Department of Chemistry and Biomolecular Sciences, Faculty of Science, University of Ottawa, Ottawa, ON, Canada
| | - Emmanuel Laryea
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Devina Patel
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and World Health Organization Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON, Canada
| | - Jianguo Wu
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and World Health Organization Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON, Canada
| | - Caroline Gravel
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and World Health Organization Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON, Canada
| | - Grant Frahm
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and World Health Organization Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON, Canada
| | - Jun Gao
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and World Health Organization Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON, Canada
- Centre for Vaccines, Clinical Trials and Biostatistics, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and World Health Organization Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON, Canada
| | - Wangxue Chen
- Human Health Therapeutics Research Center, National Research Council of Canada, Ottawa, ON, Canada
| | - George Chaconas
- Department of Biochemistry and Molecular Biology and Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| | - Simon Sauve
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and World Health Organization Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON, Canada
| | - Michael Rosu-Myles
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and World Health Organization Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Lisheng Wang
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Michael J. W. Johnston
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and World Health Organization Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON, Canada
- Department of Chemistry, Carleton University, Ottawa, ON, Canada
- *Correspondence: Michael J. W. Johnston, ; Xuguang Li,
| | - Xuguang Li
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada and World Health Organization Collaborating Center for Standardization and Evaluation of Biologicals, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- *Correspondence: Michael J. W. Johnston, ; Xuguang Li,
| |
Collapse
|
47
|
Peletta A, Lemoine C, Courant T, Collin N, Borchard G. Meeting vaccine formulation challenges in an emergency setting: Towards the development of accessible vaccines. Pharmacol Res 2023; 189:106699. [PMID: 36796463 DOI: 10.1016/j.phrs.2023.106699] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/16/2023]
Abstract
Vaccination is considered one of the most successful strategies to prevent infectious diseases. In the event of a pandemic or epidemic, the rapid development and distribution of the vaccine to the population is essential to reduce mortality, morbidity and transmission. As seen during the COVID-19 pandemic, the production and distribution of vaccines has been challenging, in particular for resource-constrained settings, essentially slowing down the process of achieving global coverage. Pricing, storage, transportation and delivery requirements of several vaccines developed in high-income countries resulted in limited access for low-and-middle income countries (LMICs). The capacity to manufacture vaccines locally would greatly improve global vaccine access. In particular, for the development of classical subunit vaccines, the access to vaccine adjuvants is a pre-requisite for more equitable access to vaccines. Vaccine adjuvants are agents required to augment or potentiate, and possibly target the specific immune response to such type of vaccine antigens. Openly accessible or locally produced vaccine adjuvants may allow for faster immunization of the global population. For local research and development of adjuvanted vaccines to expand, knowledge on vaccine formulation is of paramount importance. In this review, we aim to discuss the optimal characteristics of a vaccine developed in an emergency setting by focusing on the importance of vaccine formulation, appropriate use of adjuvants and how this may help overcome barriers for vaccine development and production in LMICs, achieve improved vaccine regimens, delivery and storage requirements.
Collapse
Affiliation(s)
- Allegra Peletta
- Section of Pharmaceutical Sciences, Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, Rue Michel-Servet 1, 1221 Geneva, Switzerland.
| | - Céline Lemoine
- Vaccine Formulation Institute, Rue du Champ-Blanchod 4, 1228 Plan-les-Ouates, Switzerland.
| | - Thomas Courant
- Vaccine Formulation Institute, Rue du Champ-Blanchod 4, 1228 Plan-les-Ouates, Switzerland.
| | - Nicolas Collin
- Vaccine Formulation Institute, Rue du Champ-Blanchod 4, 1228 Plan-les-Ouates, Switzerland.
| | - Gerrit Borchard
- Section of Pharmaceutical Sciences, Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, Rue Michel-Servet 1, 1221 Geneva, Switzerland.
| |
Collapse
|
48
|
Johnson AMF, Hager K, Alameh MG, Van P, Potchen N, Mayer-Blackwell K, Fiore-Gartland A, Minot S, Lin PJC, Tam YK, Weissman D, Kublin JG. The Regulation of Nucleic Acid Vaccine Responses by the Microbiome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.18.529093. [PMID: 36824851 PMCID: PMC9949122 DOI: 10.1101/2023.02.18.529093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
Nucleic acid vaccines, including both RNA and DNA platforms, are key technologies that have considerable promise in combating both infectious disease and cancer. However, little is known about the extrinsic factors that regulate nucleic acid vaccine responses and which may determine their effectiveness. The microbiome is recognized as a significant regulator of immune development and response, whose role in regulating some traditional vaccine platforms has recently been discovered. Using germ-free and specific-pathogen-free mouse models in combination with different protein, DNA, and mRNA vaccine regimens, we demonstrate that the microbiome is a significant regulator of nucleic acid vaccine immunogenicity. While the presence of the microbiome enhances CD8+ T cell responses to mRNA lipid nanoparticle (LNP) immunization, the microbiome suppresses immunoglobulin and CD4+ T cell responses to DNA-prime, DNA-protein-boost immunization, indicating contrasting roles for the microbiome in the regulation of these different nucleic acid vaccine platforms. In the case of mRNA-LNP vaccination, germ-free mice display reduced dendritic cell/macrophage activation that may underlie the deficient vaccine response. Our study identifies the microbiome as a relevant determinant of nucleic acid vaccine response with implications for their continued therapeutic development and deployment.
Collapse
|
49
|
Skin-Based Vaccination: A Systematic Mapping Review of the Types of Vaccines and Methods Used and Immunity and Protection Elicited in Pigs. Vaccines (Basel) 2023; 11:vaccines11020450. [PMID: 36851328 PMCID: PMC9962282 DOI: 10.3390/vaccines11020450] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
The advantages of skin-based vaccination include induction of strong immunity, dose-sparing, and ease of administration. Several technologies for skin-based immunisation in humans are being developed to maximise these key advantages. This route is more conventionally used in veterinary medicine. Skin-based vaccination of pigs is of high relevance due to their anatomical, physiological, and immunological similarities to humans, as well as being a source of zoonotic diseases and their livestock value. We conducted a systematic mapping review, focusing on vaccine-induced immunity and safety after the skin immunisation of pigs. Veterinary vaccines, specifically anti-viral vaccines, predominated in the literature. The safe and potent skin administration to pigs of adjuvanted vaccines, particularly emulsions, are frequently documented. Multiple methods of skin immunisation exist; however, there is a lack of consistent terminology and accurate descriptions of the route and device. Antibody responses, compared to other immune correlates, are most frequently reported. There is a lack of research on the underlying mechanisms of action and breadth of responses. Nevertheless, encouraging results, both in safety and immunogenicity, were observed after skin vaccination that were often comparable to or superior the intramuscular route. Further research in this area will underlie the development of enhanced skin vaccine strategies for pigs, other animals and humans.
Collapse
|
50
|
Yadav PD, Kumar S, Agarwal K, Jain M, Patil DR, Maithal K, Mathapati B, Giri S, Mohandas S, Shete A, Sapkal G, Patil DY, Dey A, Chandra H, Deshpande G, Gupta N, Abraham P, Kaushal H, Sahay RR, Tripathy A, Nyayanit D, Jain R, Kumar A, Sarkale P, Baradkar S, Rajanathan C, Raju HP, Patel S, Shah N, Dwivedi P, Singh D. Needle-free injection system delivery of ZyCoV-D DNA vaccine demonstrated improved immunogenicity and protective efficacy in rhesus macaques against SARS-CoV-2. J Med Virol 2023; 95:e28484. [PMID: 36625386 DOI: 10.1002/jmv.28484] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/12/2022] [Accepted: 01/06/2023] [Indexed: 01/11/2023]
Abstract
The apprehension of needles related to injection site pain, risk of transmitting bloodborne pathogens, and effective mass immunization have led to the development of a needle-free injection system (NFIS). Here, we evaluated the efficacy of the NFIS and needle injection system (NIS) for the delivery and immunogenicity of DNA vaccine candidate ZyCoV-D in rhesus macaques against SARS-CoV-2 infection. Briefly, 20 rhesus macaques were divided into 5 groups (4 animals each), that is, I (1 mg dose by NIS), II (2 mg dose by NIS), III (1 mg dose by NFIS), IV (2 mg dose by NFIS) and V (phosphate-buffer saline [PBS]). The macaques were immunized with the vaccine candidates/PBS intradermally on Days 0, 28, and 56. Subsequently, the animals were challenged with live SARS-CoV-2 after 15 weeks of the first immunization. Blood, nasal swab, throat swab, and bronchoalveolar lavage fluid specimens were collected on 0, 1, 3, 5, and 7 days post infection from each animal to determine immune response and viral clearance. Among all the five groups, 2 mg dose by NFIS elicited significant titers of IgG and neutralizing antibody after immunization with enhancement in their titers postvirus challenge. Besides this, it also induced increased lymphocyte proliferation and cytokine response. The minimal viral load post-SARS-CoV-2 challenge and significant immune response in the immunized animals demonstrated the efficiency of NFIS in delivering 2 mg ZyCoV-D vaccine candidate.
Collapse
Affiliation(s)
- Pragya D Yadav
- Indian Council of Medical Research-National Institute of Virology, Pune, Maharashtra, India
| | - Sanjay Kumar
- Department of Neurosurgery, Command Hospital [Southern Command], Armed Forces Medical College [AFMC], Pune, India
| | - Kshitij Agarwal
- Department of Respiratory Medicine, University college of Medical Scieneces and Guru Teg Bahadur Hospital, University of Delhi, New Delhi, India
| | - Mukul Jain
- Zydus Research Centre, Cadila Healthcare Limited, Ahmedabad, Gujarat, India
| | - Dilip R Patil
- Indian Council of Medical Research-National Institute of Virology, Pune, Maharashtra, India
| | - Kapil Maithal
- Vaccine Technology Centre, Cadila Healthcare Limited, Ahmedabad, Gujarat, India
| | - Basavaraj Mathapati
- Indian Council of Medical Research-National Institute of Virology, Pune, Maharashtra, India
| | - Suresh Giri
- Zydus Research Centre, Cadila Healthcare Limited, Ahmedabad, Gujarat, India
| | - Sreelekshmy Mohandas
- Indian Council of Medical Research-National Institute of Virology, Pune, Maharashtra, India
| | - Anita Shete
- Indian Council of Medical Research-National Institute of Virology, Pune, Maharashtra, India
| | - Gajanan Sapkal
- Indian Council of Medical Research-National Institute of Virology, Pune, Maharashtra, India
| | - Deepak Y Patil
- Indian Council of Medical Research-National Institute of Virology, Pune, Maharashtra, India
| | - Ayan Dey
- Vaccine Technology Centre, Cadila Healthcare Limited, Ahmedabad, Gujarat, India
| | - Harish Chandra
- Vaccine Technology Centre, Cadila Healthcare Limited, Ahmedabad, Gujarat, India
| | - Gururaj Deshpande
- Indian Council of Medical Research-National Institute of Virology, Pune, Maharashtra, India
| | | | - Priya Abraham
- Indian Council of Medical Research-National Institute of Virology, Pune, Maharashtra, India
| | - Himanshu Kaushal
- Indian Council of Medical Research-National Institute of Virology, Pune, Maharashtra, India
| | - Rima R Sahay
- Indian Council of Medical Research-National Institute of Virology, Pune, Maharashtra, India
| | - Anuradha Tripathy
- Indian Council of Medical Research-National Institute of Virology, Pune, Maharashtra, India
| | - Dimpal Nyayanit
- Indian Council of Medical Research-National Institute of Virology, Pune, Maharashtra, India
| | - Rajlaxmi Jain
- Indian Council of Medical Research-National Institute of Virology, Pune, Maharashtra, India
| | - Abhimanyu Kumar
- Indian Council of Medical Research-National Institute of Virology, Pune, Maharashtra, India
| | - Prasad Sarkale
- Indian Council of Medical Research-National Institute of Virology, Pune, Maharashtra, India
| | - Shreekant Baradkar
- Indian Council of Medical Research-National Institute of Virology, Pune, Maharashtra, India
| | | | - Hari Prasad Raju
- Vaccine Technology Centre, Cadila Healthcare Limited, Ahmedabad, Gujarat, India
| | - Satish Patel
- Zydus Research Centre, Cadila Healthcare Limited, Ahmedabad, Gujarat, India
| | - Niraj Shah
- Zydus Research Centre, Cadila Healthcare Limited, Ahmedabad, Gujarat, India
| | - Pankaj Dwivedi
- Zydus Research Centre, Cadila Healthcare Limited, Ahmedabad, Gujarat, India
| | - Dharmendra Singh
- Indian Council of Medical Research-National Institute of Virology, Pune, Maharashtra, India
| |
Collapse
|