1
|
Abbasi U, Khan MZ, Fatima M, Gupta G, Molugulu N, Sahebkar A, Abourehab MAS, Kesharwani P. Exploring the potential of nanoemulgels for dermatological disorders. J Drug Target 2025:1-23. [PMID: 40275860 DOI: 10.1080/1061186x.2025.2497368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 03/30/2025] [Accepted: 04/20/2025] [Indexed: 04/26/2025]
Abstract
BACKGROUND AND PURPOSE Nanoemulgels are an advanced innovation in dermatological formulations designed to treat various skin diseases. By combining the advantages of hydrogels and nanoemulsions, these hybrid systems optimise drug delivery and improve therapeutic results. Because of their nanoscale droplets, nanoemulsions improve solubility by increasing surface area and stability and bioavailability of medications. METHODS AND RESULTS When embedded in a hydrogel matrix, their transformation into nanoemulgels, provide regulated and prolonged drug release, ensuring sustained therapeutic action. The ability of nanoemulgels to penetrate deeply into the layers of skin and get past obstacles like the stratum corneum to improve drug penetration and efficacy makes them highly effective in dermatology. Since the gel component helps to reduce the surface and interfacial tension and a rise in spreading coefficient along with the viscosity. The benefits of using NEGs for external use include their thixotropic, greaseless, readily dispersed properties, longer shelf life, emollient, effortlessly removed, non-staining clear, cosmetically attractive and environment friendly characteristics. CONCLUSIONS By providing an overview of research on nanoemulgels' permeability mechanisms, pharmacokinetics, uses, properties and the difficulties involved in topical drug delivery for skin disorders, this review emphasises the potential of these materials as topical drug delivery systems in dermatology.
Collapse
Affiliation(s)
- Umar Abbasi
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, India
| | - Mohd Zaid Khan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, India
| | - Mahak Fatima
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, India
| | - Garima Gupta
- Graphic Era Hill University, Dehradun, India
- School of Allied Medical Sciences, Lovely Professional University, Phagwara, India
| | | | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Mohammed A S Abourehab
- Department of Pharmaceutical Sciences, College of Pharmacy, Umm Al Qura University, Makkah, Saudi Arabia
| | - Prashant Kesharwani
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar, India
| |
Collapse
|
2
|
Ibrahim TM, Fathi AM, Abdulla NA. Nasal In-Situ Gels of Brij ®-Enriched Novasomes as Optimistic Nanovesicular Carriers for Enhancing Anti-Depressant Action of Agomelatine. AAPS PharmSciTech 2025; 26:110. [PMID: 40246739 DOI: 10.1208/s12249-025-03097-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Accepted: 03/24/2025] [Indexed: 04/19/2025] Open
Abstract
The purpose of study was to exploit distinctive features of nasal administration route to boost agomelatine permeation and upgrade its anti-depressant action after being embedded in Brij®-enriched novasomes (NVs) as non-phospholipid vesicular systems. Different amounts and types of excipients were used to evaluate NVs using definitive screening design (DSD). Optimal NV was incorporated in thermosensitive in-situ gels containing poloxamer 407 (P-407) and hydroxypropyl methyl cellulose (HPMC). After evaluation of novasomal in-situ gels (NVGs), optimal NVG was subjected to ex-vivo, in-vivo, and biochemical investigations. Results showed significant increase in entrapment capability (EC%), particle size (P.S), and zeta potential (Z.P) of NVs after increasing free fatty acid, surfactant, and cholesterol amounts. The capability of Brij® to improve fluidization of lipid bilayers, decrease P.S, and increase Z.P was observed. Lipohilicity, EC%, and Z.P of Brij® 56-enriched NVs were higher than those containing Brij® 35. Gradual increase in HPMC concentration and gel/NV ratio led to marked decrease in gelation time and spreadability and increase in gel strength and viscosity values of NVGs. Optimal NVG9 displayed higher permeation profile (538.34 μg/cm2) and drug flux (39.38 μg/cm2.h-1) through fresh sheep nasal mucosa in comparison to control gel (150.76 μg/cm2 and 14.44 μg/cm2.h-1, respectively). Rats treated with nasal optimal NVG9 manifested increased sucrose preference (SP) percent (80.73%) and levels of dopamine (50.42 ng/g) and serotonin (44.92 ng/g) with decreased low latency time values (5.86 min). This study confirmed the in-vivo safety and amplification of precognitive and anti-depressant action of agomelatine after intranasal administration.
Collapse
Affiliation(s)
- Tarek M Ibrahim
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.
| | - Ayman M Fathi
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Nourhan A Abdulla
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| |
Collapse
|
3
|
Mohamed SA, Eraqi WA, Georghiou PE, Zakaria MY. Luteolin loaded PEGylated cerosomes: a novel treatment for MRSA skin infections. BMC Microbiol 2025; 25:182. [PMID: 40165071 PMCID: PMC11956497 DOI: 10.1186/s12866-025-03873-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 03/05/2025] [Indexed: 04/02/2025] Open
Abstract
BACKGROUND Methicillin-resistant Staphylococcus aureus (MRSA) is a major cause of skin and soft tissue infections which, due to the spread of antimicrobial resistance, have become increasingly serious. Bacterial skin infection affects the barrier function of skin causing depletion of the ceramide content in the stratum corneum (SC) of the epidermis. In the study reported herein, luteolin (LUT) a naturally-occurring flavonoid was incorporated in PEGylated cerosomes (PCs) to boost its antibacterial action as a topical application. The opimal formulation of the surface-modified lipidic vesicles was chosen with the aid of a 23 full factorial design. The effectiveness of the optimal LUT formulation which was developed was evaluated using several MRSA strains both in vitro and in vivo studies. RESULTS A 23 full factorial design was employed for the preparation of the optimum PC formulation, designated herein as F5. A comparative in vitro release study revealed the superiority of F5 over a LUT suspension in solubilizing and releasing after 24 h, a higher percentage 78.1 ± 1.8% of luteolin compared with only 18.3 ± 2.1% for the luteolin suspension. When tested against MRSA strains, F5 showed antimicrobial activity that was higher than that of the luteolin suspension, having a MIC value of 187.5 µg/mL versus 1500 µg/mL. In addition to having enhanced anti-virulence activity than the luteolin suspension in terms of antibiofilm formation (with % inhibition ranging from 45 to 99% with the tested strains at 0.5 × and 0.25 × MICs, where the luteolin suspension only had a range from 1 to 45%), enhanced anti-pigment production, and anti-α-hemolysin activity were also observed. Moreover, F5 affected the cell wall integrity as confirmed by transmission electron microscopy (TEM). Scanning electron microscopy (SEM) verified the effect of F5 on bacterial biofilm formation, showing reduction of cellular adhesion and disruption of biofilm, factors which greatly contribute to bacterial pathogenesis and antibiotic resistance. When compared to the negative control and the luteolin suspension groups, the F5 formulation also resulted in reducing the bacterial load in the murine skin infection model. CONCLUSIONS F5 PEGylated cerosomes are potential new potent defense agents against MRSA infections, demonstrating promising therapeutic capabilities.
Collapse
Affiliation(s)
- Sally A Mohamed
- Microbiology and Immunology Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| | - Walaa A Eraqi
- Microbiology and Immunology Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Paris E Georghiou
- Department of Chemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, A1B 3X7, Canada
| | - Mohamed Y Zakaria
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, King Salman International University, Ras Sudr, 46612, South Sinai, Egypt
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Port Said University, Port Said, 42526, Egypt
| |
Collapse
|
4
|
Zahoor I, Bala R, Wani SN, Chauhan S, Madaan R, Kumar R, Hakeem KR, Malik IA. Potential role of NSAIDs loaded nano-formulations to treat inflammatory diseases. Inflammopharmacology 2025; 33:1189-1207. [PMID: 39953360 DOI: 10.1007/s10787-025-01644-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 09/25/2024] [Indexed: 02/17/2025]
Abstract
Inflammation is a necessary immunological response that promotes survival and preserves tissue homeostasis, a common characteristic linked to various diseases. However, in some circumstances, the inflammatory response is deleterious and contributes to disease pathogenesis. Anti-inflammatory substances have poor affinity for inflamed tissues, resulting in low concentrations in the target tissue and a higher incidence of severe adverse effects. To address this issue, several potential approaches have been proposed, such as chemical modification of drug molecules and the development of nanocarriers for drug delivery. Since the development of nanotechnology at the beginning of the twenty-first century, researchers have been using the pathophysiological characteristics of inflammation, primarily leaky vasculature, and biomarker overexpression to develop nanomedicines that can deliver therapeutics via passive and active targeting mechanisms to sites of inflammation and produce therapeutic effects. Drug carriers based on nanoparticles can enhance the safety and efficacy of drugs by increasing their capacity, enhancing their solubility, combining several drugs, protecting them from metabolism, and regulating their release. An approach that shows promise in the treatment of various inflammatory diseases is the application of nanomedicines. Nanomedicine involves nanoparticles that have been loaded with a therapeutically active component. Nanomedicines can target inflammation by recognizing molecules highly expressed on endothelial cells or activated macrophage surfaces, enhancing the permeability of vessels, or even by biomimicry. A review of the research findings shows significant potential for the use of nanotechnology to enhance the quality of life for people using NSAIDs for chronic disorders by minimizing drug side effects or the duration of administration. After a brief introduction to inflammation, its various forms- acute and chronic inflammation, and the pathophysiology of inflammation, this review highlights the main innovative nanocarriers utilized for carrying various nonsteroidal anti-inflammatory drugs that have been utilized in treating various inflammatory disorders.
Collapse
Affiliation(s)
- Ishrat Zahoor
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India.
- Department of Pharmaceutics, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133207, Haryana, India.
| | - Rajni Bala
- University School of Pharmaceutical Sciences, Rayat-Bhara University, Kharar, Punjab, India
| | - Shahid Nazir Wani
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
- Aman Pharmacy College, Dholakhera Udaipurwati, Jhunjhunu, Rajasthan, India
| | - Samrat Chauhan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Reecha Madaan
- Adesh College of Pharmacy, NH1 Shahabad Kurukshetra, Haryana, India
| | - Rajesh Kumar
- Amity School of Pharmaceutical Sciences, Amity University, Mohali, Punjab, India
| | - Khalid Rehman Hakeem
- Department of Biological Sciences, Faculty of Science, King Adualaziz University, 21589, Jeddah, Saudi Arabia
- Department of Public Health, Daffodil International University, Dhaka, 1341, Bangladesh
- Centre of Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India
| | - Irfan Ahmad Malik
- Department of Pharmacology, Sanjivani College of Pharmaceutical Education and Research, Kopargaon, 423603, Maharashtra, India
| |
Collapse
|
5
|
Elmsmari F, González Sánchez JA, Delgado LM, Espina M, Duran-Sindreu F, García ML, Sánchez-López E. Development of clobetasol-loaded biodegradable nanoparticles as an endodontic intracanal medicament. Int Endod J 2024; 57:1147-1164. [PMID: 38687284 DOI: 10.1111/iej.14072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 02/15/2024] [Accepted: 04/03/2024] [Indexed: 05/02/2024]
Abstract
AIM The aim of current study is the development and optimization of biodegradable polymeric nanoparticles (NPs) to be used in the field of Endodontics as intracanal medication in cases of avulsed teeth with extended extra-oral time, utilizing PLGA polymers loaded with the anti-inflammatory drug clobetasol propionate (CP). METHODOLOGY CP-loaded nanoparticles (CP-NPs) were prepared using the solvent displacement method. CP release profile from CP-NPs was assessed for 48 h against free CP. Using extracted human teeth, the degree of infiltration inside the dentinal tubules was studied for both CP-NPs and CP. The anti-inflammatory capacity of CP-NPs was evaluated in vitro measuring their response and reaction against inflammatory cells, in particular against macrophages. The enzyme-linked immunosorbent assay (ELISA) was used to examine the cytokine release of IL-1β and TNF-α. RESULTS Optimized CP-NPs displayed an average size below 200 nm and a monomodal population. Additionally, spherical morphology and non-aggregation of CP-NPs were confirmed by transmission electron microscopy. Interaction studies showed that CP was encapsulated inside the NPs and no covalent bonds were formed. Moreover, CP-NPs exhibited a prolonged and steady release with only 21% of the encapsulated CP released after 48 h. Using confocal laser scanning microscopy, it was observed that CP-NPs were able to display enhanced penetration into the dentinal tubules. Neither the release of TNF-α nor IL-1β increased in CP-NPs compared to the LPS control, displaying results similar and even less than the TCP after 48 h. Moreover, IL-1β release in LPS-stimulated cells, decreased when macrophages were treated with CP-NPs. CONCLUSIONS In the present work, CP-NPs were prepared, optimized and characterized displaying significant increase in the degree of infiltration inside the dentinal tubules against CP and were able to significantly reduce TNF-α release. Therefore, CP-NPs constitute a promising therapy for the treatment of avulsed teeth with extended extra-oral time.
Collapse
Affiliation(s)
- Firas Elmsmari
- Department of Clinical Sciences, College of Dentistry, Ajman University, Ajman, United Arab Emirates
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
- Department of Endodontics, Faculty of Dentistry, Universitat Internacional de Catalunya, Barcelona, Spain
| | | | - Luis M Delgado
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Marta Espina
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| | - Fernando Duran-Sindreu
- Department of Endodontics, Faculty of Dentistry, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Maria Luisa García
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
- Networking Research Centre of Neurodegenerative Disease (CIBERNED), Instituto de Salud Juan Carlos III, Madrid, Spain
| | - Elena Sánchez-López
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
- Networking Research Centre of Neurodegenerative Disease (CIBERNED), Instituto de Salud Juan Carlos III, Madrid, Spain
- Unit of Synthesis and Biomedical Applications of Peptides, IQAC-CSIC, Barcelona, Spain
| |
Collapse
|
6
|
Nayak D, Rathnanand M, Tippavajhala VK. Navigating Skin Delivery Horizon: An Innovative Approach in Pioneering Surface Modification of Ultradeformable Vesicles. AAPS PharmSciTech 2024; 25:126. [PMID: 38834910 DOI: 10.1208/s12249-024-02847-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/20/2024] [Indexed: 06/06/2024] Open
Abstract
In the dynamic landscape of pharmaceutical advancements, the strategic application of active pharmaceutical ingredients to the skin through topical and transdermal routes has emerged as a compelling avenue for therapeutic interventions. This non-invasive approach has garnered considerable attention in recent decades, with numerous attempts yielding approaches and demonstrating substantial clinical potential. However, the formidable barrier function of the skin, mainly the confinement of drugs on the upper layers of the stratum corneum, poses a substantial hurdle, impeding successful drug delivery via this route. Ultradeformable vesicles/carriers (UDVs), positioned within the expansive realm of nanomedicine, have emerged as a promising tool for developing advanced dermal and transdermal therapies. The current review focuses on improving the passive dermal and transdermal targeting capacity by integrating functionalization groups by strategic surface modification of drug-loaded UDV nanocarriers. The present review discusses the details of case studies of different surface-modified UDVs with their bonding strategies and covers the recent patents and clinical trials. The design of surface modifications holds promise for overcoming existing challenges in drug delivery by marking a significant leap forward in the field of pharmaceutical sciences.
Collapse
Affiliation(s)
- Devika Nayak
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Mahalaxmi Rathnanand
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Vamshi Krishna Tippavajhala
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India.
| |
Collapse
|
7
|
Ahmed S, Amin MM, Sayed S. A comprehensive review on recent nanosystems for enhancing antifungal activity of fenticonazole nitrate from different routes of administration. Drug Deliv 2023; 30:2179129. [PMID: 36788709 PMCID: PMC9930819 DOI: 10.1080/10717544.2023.2179129] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/06/2023] [Indexed: 02/16/2023] Open
Abstract
This review aims to comprehensively highlight the recent nanosystems enclosing Fenticonazole nitrate (FTN) and to compare between them regarding preparation techniques, studied factors and responses. Moreover, the optimum formulae were compared in terms of in vitro, ex vivo and in vivo studies in order to detect the best formula. FTN is a potent antifungal imidazole compound that had been used for treatment of many dangerous fungal infections affecting eye, skin or vagina. FTN had been incorporated in various innovative nanosystems in the recent years in order to achieve significant recovery such as olaminosomes, novasomes, cerosomes, terpesomes and trans-novasomes. These nanosystems were formulated by various techniques (ethanol injection or thin film hydration) utilizing different statistical designs (Box-Behnken, central composite, full factorial and D-optimal). Different factors were studied in each nanosystem regarding its composition as surfactant concentrations, surfactant type, amount of oleic acid, cholesterol, oleylamine, ceramide, sodium deoxycholate, terpene concentration and ethanol concentration. Numerous responses were studied such as percent entrapment efficiency (EE%), particle size (PS), poly-dispersity index (PDI), zeta potential (ZP), and in vitro drug release. Selection of the optimum formula was based on numerical optimization accomplished by Design-Expert® software taking in consideration the largest EE %, ZP (as absolute value) and in vitro drug release and lowest PS and PDI. In vitro comparisons were done employing different techniques such as Transmission electron microscopy, pH determination, effect of gamma sterilization, elasticity evaluation and docking study. In addition to, ex vivo permeation, in vivo irritancy test, histopathological, antifungal activity and Kinetic study.
Collapse
Affiliation(s)
- Sadek Ahmed
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Maha M. Amin
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Sinar Sayed
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
8
|
Maisto M, Piccolo V, Novellino E, Schiano E, Iannuzzo F, Ciampaglia R, Summa V, Tenore GC. Optimization of Ursolic Acid Extraction in Oil from Annurca Apple to Obtain Oleolytes with Potential Cosmeceutical Application. Antioxidants (Basel) 2023; 12:224. [PMID: 36829781 PMCID: PMC9952326 DOI: 10.3390/antiox12020224] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/19/2023] Open
Abstract
Ursolic acid (UA) is a plant-derived molecule with relevant anti-aging activity, which makes this molecule a potential functional active ingredient in cosmetic formulations. The main objectives of this study were to optimize the UA extraction process from Annurca apple (AA) with sunflower oil as a lyophilic food-grade solvent using Response Surface Methodology (RSM) to determine the potential cosmetic application of the obtained extract. The results of RSM analysis showed a maximum UA yield of 784.40 ± 7.579 (μg/mL) obtained under the following optimized conditions: sunflower oil as extraction solvent, 68.85 °C as extraction temperature, and 63 h as extraction time. The HPLC-DAD-HESI-MS/MS analysis performed on the extract obtained under these conditions, named Optimized Annurca Apple Oleolyte (OAAO), led to the identification of twenty-three phenolic and terpenoid molecules and the quantification of eight of them. To explore the biological properties of OAAO, the in vitro antioxidant activity was evaluated by DPPH, ABTS, and FRAP assays, resulting in 16.63 ± 0.22, 5.90 ± 0.49, and 21.72 ± 0.68 μmol Trolox equivalent/g extract, respectively. Moreover, the permeation study has shown that OAAO may be considered a safe and functional ingredient in potential cosmetic formulations.
Collapse
Affiliation(s)
- Maria Maisto
- Department of Pharmacy, University of Naples Federico II, via Domenico Montesano 49, 80131 Naples, Italy
| | - Vincenzo Piccolo
- Department of Pharmacy, University of Naples Federico II, via Domenico Montesano 49, 80131 Naples, Italy
| | - Ettore Novellino
- Faculty of Medicine, University Cattolica del Sacro Cuore, Largo Francesco Vito, 00168 Rome, Italy
| | - Elisabetta Schiano
- Department of Pharmacy, University of Naples Federico II, via Domenico Montesano 49, 80131 Naples, Italy
| | - Fortuna Iannuzzo
- Department of Pharmacy, University of Naples Federico II, via Domenico Montesano 49, 80131 Naples, Italy
| | - Roberto Ciampaglia
- Department of Pharmacy, University of Naples Federico II, via Domenico Montesano 49, 80131 Naples, Italy
| | - Vincenzo Summa
- Department of Pharmacy, University of Naples Federico II, via Domenico Montesano 49, 80131 Naples, Italy
| | - Gian Carlo Tenore
- Department of Pharmacy, University of Naples Federico II, via Domenico Montesano 49, 80131 Naples, Italy
| |
Collapse
|
9
|
Oktay AN, Celebi N, Ilbasmis-Tamer S, Kaplanoğlu GT. Cyclodextrin-based nanogel of flurbiprofen for dermal application: In vitro studies and in vivo skin irritation evaluation. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Albash R, Ragaie MH, Hassab MAE, El-Haggar R, Eldehna WM, Al-Rashood ST, Mosallam S. Fenticonazole nitrate loaded trans-novasomes for effective management of tinea corporis: design characterization, in silico study, and exploratory clinical appraisal. Drug Deliv 2022; 29:1100-1111. [PMID: 35373684 PMCID: PMC8986243 DOI: 10.1080/10717544.2022.2057619] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The current investigation aimed for loading fenticonazole nitrate (FTN), an antifungal agent with low aqueous solubility, into trans-novasomes (TNs) for management of tinea corporis topically. TNs contain Brij® as an edge activator besides the components of novasomes (cholesterol, Span 60, and oleic acid) owing to augment the topical delivery of FTN. TNs were fabricated applying ethanol injection method based on D-optimal experiment. TNs were evaluated with regard to entrapment efficiency percent (EE%), particle size (PS), polydispersity index (PDI), and zeta potential (ZP). Further explorations were conducted on the optimum formulation (F7). F7 showed spherical appearance with EE%, PS, PDI, and ZP of 100.00 ± 1.10%, 358.60 ± 10.76 nm, 0.51 ± 0.004, and −30.00 ± 0.80 mV, respectively. The in silico study revealed the ability of the FTN–cholesterol complex to maintain favorable interactions throughout the molecular dynamics simulation (MDS) study. Moreover, Trichophyton mentagrophytes growth was inhibited effectively by F7 than by FTN suspension applying 2,3-bis(2-methyloxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT) reduction assay. Furthermore, a clinical appraisal on patients with tinea corporis fungal lesions confirmed the superiority of F7 compared to Miconaz® cream in the magnitude of clinical cure of tinea corporis. Thereby, TNs could be considered as promising vesicles for enhancing the antifungal potential of FTN for the topical management of tinea corporis.
Collapse
Affiliation(s)
- Rofida Albash
- Department of Pharmaceutics, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Giza, Egypt
| | - Maha H Ragaie
- Department of Dermatology, STD's and Andrology, Faculty of Medicine, Minia University, Al-Minya, Egypt
| | - Mahmoud A El Hassab
- Department of Medicinal Chemistry, Faculty of Pharmacy, King Salman International University (KSIU), South Sinai, Egypt
| | - Radwan El-Haggar
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafr el-Sheikh, Egypt
| | - Sara T Al-Rashood
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Shaimaa Mosallam
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October 6 University, Giza, Egypt
| |
Collapse
|
11
|
Minhas MU, Ahmad S, Khan KU, Sohail M, Abdullah O, Khalid I, Malik NS. Synthesis And Evaluation of Polyethylene Glycol-4000-Co-Poly (AMPS) Based Hydrogel Membranes for Controlled Release of Mupirocin for Efficient Wound Healing. Curr Drug Deliv 2022; 19:1102-1115. [PMID: 35301948 DOI: 10.2174/1567201819666220317112649] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/11/2021] [Accepted: 12/28/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Chronic wound healing is a major challenge for health care system around the globe. Current study was conducted to develop and characterize chemically cross-linked polyethylene glycol-co-poly (AMPS) hydrogel membranes to enhanced the wound healing efficiency of antibiotic mupirocin (MP). METHODS Free radical polymerization technique was used for the development of hydrogel membranes. In aqueous medium, polymer PEG-4000 cross-linked with the monomer 2-acrylamido-2-methylpropane sulfonic acid (AMPS) in the presence of initiators ammonium peroxide sulfate (APS) and sodium hydrogen sulfite (SHS). N, N-Methylenebisacrylamide (MBA) was used as cross-linker in the preparation of hydrogel membranes. Developed membranes were spherical, transparent, and elastic. FTIR, TGA/DSC, and SEM were used to characterize the polymeric system. Swelling behavior, drug loading, and its release pattern at pH of 5.5 and 7.4, irritation study, ex vivo drug permeation, and deposition study was also evaluated. RESULTS Formed membranes were spherical, transparent and elastic. The formation of a stable polymeric network was confirmed by structural and thermal analysis. Permeation of the drug its deposition in the skin showed good permeation and retention. No irritancy to the skin was observed. CONCLUSION On the basis of results obtained, the present study concluded that it may be an ideal network for the delivery of mupirocin in skin infections.
Collapse
Affiliation(s)
- Muhammad Usman Minhas
- College of Pharmacy, University of Sargodha, University Road Sargodha City, Punjab, Pakistan
| | - Sarfaraz Ahmad
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Punjab, Pakistan
| | - Kifayat Ullah Khan
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Punjab, Pakistan
| | - Muhammad Sohail
- Department of Pharmacy, COMSATS Institute of Information Technology, Abbottabad 22060, KPK, Pakistan
| | - Orva Abdullah
- Hamdard Institute of Pharmaceutical Science Hamdard University Islamabad, Pakistan
| | - Ikrima Khalid
- Faculty of Pharmaceutical Sciences, GC University Faisalabad, Punjab- Pakistan
| | - Nadia Shamshad Malik
- Department of Pharmacy, Capital University of Science and Technology, Islamabad, Pakistan
| |
Collapse
|
12
|
Albash R, Yousry C, Al-Mahallawi AM, Alaa-Eldin AA. Utilization of PEGylated cerosomes for effective topical delivery of fenticonazole nitrate: in-vitro characterization, statistical optimization, and in-vivo assessment. Drug Deliv 2021; 28:1-9. [PMID: 33322971 PMCID: PMC7744155 DOI: 10.1080/10717544.2020.1859000] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/29/2020] [Accepted: 11/29/2020] [Indexed: 12/17/2022] Open
Abstract
In this investigation, we focused on ceramide IIIB, a skin component whose depletion tends to augment multiple skin disorders and fungal infections. Ceramide IIIB was included into PEGylated surfactant-based vesicular phospholipid system to formulate 'PEGylated cerosomes' (PCs) loaded with fenticonazole nitrate (FTN). FTN is a potent antifungal agent adopted in the treatment of mixed mycotic and bacterial infections. The ceramide content of the vesicles may provide protective and regenerative skin activity whereas Brij®; the PEGylated surfactant, can enhance drug deposition and skin hydration. Both components are expected to augment the topical effect of FTN. PCs were prepared by thin-film hydration technique. A 23 full-factorial design was applied to study the effect of ceramide amount (X1), Brij type (X2) and Brij amount (X3) on the physicochemical properties of the formulated PCs namely; entrapment efficiency (EE%;Y1), particle size (PS;Y2), polydispersity index (PDI;Y3) and zeta potential (ZP;Y4). The optimal formula was selected for further in-vivo dermatokinetic and histopathological study. The optimal FTN-loaded PC (PC6) showed nanosized cerosomes (551.60 nm) with high EE% (83.00%w/w), and an acceptable ZP value of 20.90 mV. Transmission electron micrographs of the optimal formula illustrated intertwined tubulation form deviated from the conventional spherical vesicles. Finally, the dermatokinetic study of PC6 showed higher drug concentration and localization of FTN in skin layers when compared with FTN suspension and the histopathological study confirmed its safety for topical application. The overall findings of our study verified the effectiveness of utilizing PEGylated cerosomes to augment the activity of FTN as a topical antifungal agent.
Collapse
Affiliation(s)
- Rofida Albash
- Department of Pharmaceutics, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Giza, Egypt
| | - Carol Yousry
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Abdulaziz Mohsen Al-Mahallawi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- Department of Pharmaceutics, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| | - Ahmed Adel Alaa-Eldin
- Department of Pharmaceutics, Faculty of Pharmacy, Fayoum University, Elfayoum, Egypt
| |
Collapse
|
13
|
Folle C, Marqués AM, Díaz-Garrido N, Espina M, Sánchez-López E, Badia J, Baldoma L, Calpena AC, García ML. Thymol-loaded PLGA nanoparticles: an efficient approach for acne treatment. J Nanobiotechnology 2021; 19:359. [PMID: 34749747 PMCID: PMC8577023 DOI: 10.1186/s12951-021-01092-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 10/17/2021] [Indexed: 11/17/2022] Open
Abstract
Background Acne is a common skin disorder that involves an infection inside the hair follicle, which is usually treated with antibiotics, resulting in unbalanced skin microbiota and microbial resistance. For this reason, we developed polymeric nanoparticles encapsulating thymol, a natural active compound with antimicrobial and antioxidant properties. In this work, optimization physicochemical characterization, biopharmaceutical behavior and therapeutic efficacy of this novel nanostructured system were assessed. Results Thymol NPs (TH-NP) resulted on suitable average particle size below 200 nm with a surface charge around − 28 mV and high encapsulation efficiency (80%). TH-NP released TH in a sustained manner and provide a slow-rate penetration into the hair follicle, being highly retained inside the skin. TH-NP possess a potent antimicrobial activity against Cutibacterium acnes and minor effect towards Staphylococcus epidermis, the major resident of the healthy skin microbiota. Additionally, the stability and sterility of developed NPs were maintained along storage. Conclusion TH-NP showed a promising and efficient alternative for the treatment of skin acne infection, avoiding antibiotic administration, reducing side effects, and preventing microbial drug resistance, without altering the healthy skin microbiota. Additionally, TH-NP enhanced TH antioxidant activity, constituting a natural, preservative-free, approach for acne treatment. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-021-01092-z.
Collapse
Affiliation(s)
- Camila Folle
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028, Barcelona, Spain
| | - Ana M Marqués
- Department of Biology, Healthcare and Environment, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028, Barcelona, Spain
| | - Natalia Díaz-Garrido
- Department of Biochemistry and Physiology, Biochemistry and Biomolecular Science, University of Barcelona, 08028, Barcelona, Spain.,Institute of Biomedicine of the University of Barcelona (IBUB), 08028, Barcelona, Spain.,Research Institute Sant Joan De Déu (IR-SJD), 08950, Barcelona, Spain
| | - Marta Espina
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028, Barcelona, Spain.,Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028, Barcelona, Spain
| | - Elena Sánchez-López
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028, Barcelona, Spain. .,Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028, Barcelona, Spain.
| | - Josefa Badia
- Department of Biochemistry and Physiology, Biochemistry and Biomolecular Science, University of Barcelona, 08028, Barcelona, Spain.,Institute of Biomedicine of the University of Barcelona (IBUB), 08028, Barcelona, Spain.,Research Institute Sant Joan De Déu (IR-SJD), 08950, Barcelona, Spain
| | - Laura Baldoma
- Department of Biochemistry and Physiology, Biochemistry and Biomolecular Science, University of Barcelona, 08028, Barcelona, Spain.,Institute of Biomedicine of the University of Barcelona (IBUB), 08028, Barcelona, Spain.,Research Institute Sant Joan De Déu (IR-SJD), 08950, Barcelona, Spain
| | - Ana Cristina Calpena
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028, Barcelona, Spain.,Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028, Barcelona, Spain
| | - Maria Luisa García
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028, Barcelona, Spain. .,Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028, Barcelona, Spain.
| |
Collapse
|
14
|
Folle C, Díaz-Garrido N, Sánchez-López E, Marqués AM, Badia J, Baldomà L, Espina M, Calpena AC, García ML. Surface-Modified Multifunctional Thymol-Loaded Biodegradable Nanoparticles for Topical Acne Treatment. Pharmaceutics 2021; 13:pharmaceutics13091501. [PMID: 34575577 PMCID: PMC8471012 DOI: 10.3390/pharmaceutics13091501] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/06/2021] [Accepted: 09/10/2021] [Indexed: 12/02/2022] Open
Abstract
The present work is focused on the development of novel surface-functionalized poly(lactic-co-glycolic acid) nanoparticles loaded with thymol (TH-NPs) for topical administration enhancing thymol anti-inflammatory, antioxidant and wound healing activities against acne. TH-NPs were prepared by solvent evaporation method using different surface functionalization strategies and obtaining suitable physicochemical parameters and a good short-term stability at 4 °C. Moreover, TH-NPs skin penetration and antioxidant activity were assessed in ex vivo pig skin models. Skin penetration of TH-NPs followed the follicular route, independently of the surface charge and they were able to enhance antioxidant capacity. Furthermore, antimicrobial activity against Cutibacterium acnes was evaluated in vitro by the suspension test showing improved antibacterial performance. Using human keratinocyte cells (HaCat), cytotoxicity, cellular uptake, antioxidant, anti-inflammatory and wound healing activities were studied. TH-NPs were non-toxic and efficiently internalized inside the cells. In addition, TH-NPs displayed significant anti-inflammatory, antioxidant and wound healing activities, which were highly influenced by TH-NPs surface modifications. Moreover, a synergic activity between TH-NPs and their surface functionalization was demonstrated. To conclude, surface-modified TH-NPs had proven to be suitable to be used as anti-inflammatory, antioxidant and wound healing agents, constituting a promising therapy for treating acne infection and associated inflammation.
Collapse
Affiliation(s)
- Camila Folle
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (C.F.); (M.E.); (A.C.C.); (M.L.G.)
| | - Natalia Díaz-Garrido
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (N.D.-G.); (J.B.); (L.B.)
- Institute of Biomedicine, University of Barcelona, 08028 Barcelona, Spain
- Sant Joan de Déu Research Institute (IR-SJD), 08950 Barcelona, Spain
| | - Elena Sánchez-López
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (C.F.); (M.E.); (A.C.C.); (M.L.G.)
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
- Correspondence:
| | - Ana Maria Marqués
- Department of Biology, Healthcare and Environment, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain;
| | - Josefa Badia
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (N.D.-G.); (J.B.); (L.B.)
- Institute of Biomedicine, University of Barcelona, 08028 Barcelona, Spain
- Sant Joan de Déu Research Institute (IR-SJD), 08950 Barcelona, Spain
| | - Laura Baldomà
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (N.D.-G.); (J.B.); (L.B.)
- Institute of Biomedicine, University of Barcelona, 08028 Barcelona, Spain
- Sant Joan de Déu Research Institute (IR-SJD), 08950 Barcelona, Spain
| | - Marta Espina
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (C.F.); (M.E.); (A.C.C.); (M.L.G.)
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
| | - Ana Cristina Calpena
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (C.F.); (M.E.); (A.C.C.); (M.L.G.)
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
| | - María Luisa García
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; (C.F.); (M.E.); (A.C.C.); (M.L.G.)
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
15
|
Elmsmari F, González Sánchez JA, Duran-Sindreu F, Belkadi R, Espina M, García ML, Sánchez-López E. Calcium hydroxide-loaded PLGA biodegradable nanoparticles as an intracanal medicament. Int Endod J 2021; 54:2086-2098. [PMID: 34355406 DOI: 10.1111/iej.13603] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 08/01/2021] [Accepted: 08/03/2021] [Indexed: 12/19/2022]
Abstract
AIM To develop a formulation in which calcium hydroxide (Ca(OH)₂) was successfully loaded into poly(lactic-co-glycolic acid) (PLGA) biodegradable nanoparticles (NPs) to be used in the field of endodontics as an intracanal medicament, including NP optimization and characterization, plus drug release profile of the NPs compared with free Ca(OH)₂. Additionally, the depth and area of penetration of the NPs inside the dentinal tubules of extracted teeth were compared with those of the free Ca(OH)₂. METHODOLOGY Ca(OH)₂ NPs were prepared using the solvent displacement method. NPs was optimized with a central composite design to obtain a final optimized formulation. The morphology of the NPs was examined under transmission electron microscopy (TEM), and characterization was carried out using X-ray diffraction (XRD), Fourier transform infrared (FTIR) and differential scanning calorimetry (DSC). The drug release profile of the Ca(OH)₂ NPs and free Ca(OH)₂ was evaluated up to 48 h. Finally, the depth and area of penetration inside the dentinal tubules of extracted teeth were examined for both the Ca(OH)₂ NPs and free Ca(OH)₂ using the Mann-Whitney U test to determine any significant differences. RESULTS Utilizing the optimized formulation, the Ca(OH)₂ NPs had an average size below 200 nm and polydispersity index lower than 0.2, along with a highly negative zeta potential and suitable entrapment efficiency percentage. The spherical morphology of the Ca(OH)₂ NPs was confirmed using TEM. The results of the XRD, FTIR and DSC revealed no interactions and confirmed that the drug was encapsulated inside the NPs. The drug release profile of the Ca(OH)₂ NPs exhibited a prolonged steady release that remained stable up to 48 h with higher concentrations than the free Ca(OH)₂. After examination by confocal laser scanning microscopy, Ca(OH)₂ NPs had a significantly greater depth and area of penetration inside dentinal tubules compared with the free drug. CONCLUSIONS Ca(OH)₂-loaded PLGA NPs were successfully optimized and characterized. The NPs exhibited a prolonged drug release profile and superior penetration inside dentinal tubules of extracted teeth when compared to Ca(OH)2 .
Collapse
Affiliation(s)
- Firas Elmsmari
- Department of Endodontics, Faculty of Dentistry, Universitat Internacional de Catalunya, Barcelona, Spain.,Department of Clinical Sciences, College of Dentistry, Ajman University, Ajman, United Arab Emirates
| | | | - Fernando Duran-Sindreu
- Department of Endodontics, Faculty of Dentistry, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Roumaissa Belkadi
- Department of Endodontics, Faculty of Dentistry, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Marta Espina
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain.,Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| | - Maria Luisa García
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain.,Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain.,Networking Research Centre of Neurodegenerative Disease (CIBERNED), Instituto de Salud Juan Carlos III, Madrid, Spain
| | - Elena Sánchez-López
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain.,Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain.,Networking Research Centre of Neurodegenerative Disease (CIBERNED), Instituto de Salud Juan Carlos III, Madrid, Spain
| |
Collapse
|
16
|
Dexibuprofen Therapeutic Advances: Prodrugs and Nanotechnological Formulations. Pharmaceutics 2021; 13:pharmaceutics13030414. [PMID: 33808908 PMCID: PMC8003675 DOI: 10.3390/pharmaceutics13030414] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/14/2021] [Accepted: 03/17/2021] [Indexed: 11/30/2022] Open
Abstract
S-(+) enantiomer of ibuprofen (IBU) dexibuprofen (DXI) is known to be more potent than its R-(−) form and exhibits many advantages over the racemic mixture of IBU such as lower toxicity, greater clinical efficacy, and lesser variability in therapeutic effects. Moreover, DXI potential has been recently advocated to reduce cancer development and prevent the development of neurodegenerative diseases in addition to its anti-inflammatory properties. During the last decade, many attempts have been made to design novel formulations of DXI aimed at increasing its therapeutic benefits and minimizing the adverse effects. Therefore, this article summarizes pharmacological information about DXI, its pharmacokinetics, safety, and therapeutic outcomes. Moreover, modified DXI drug delivery approaches are extensively discussed. Recent studies of DXI prodrugs and novel DXI nanoformulations are analyzed as well as reviewing their efficacy for ocular, skin, and oral applications.
Collapse
|
17
|
Miranda GM, Santos VORE, Bessa JR, Teles YCF, Yahouédéhou SCMA, Goncalves MS, Ribeiro-Filho J. Inclusion Complexes of Non-Steroidal Anti-Inflammatory Drugs with Cyclodextrins: A Systematic Review. Biomolecules 2021; 11:biom11030361. [PMID: 33673414 PMCID: PMC7996898 DOI: 10.3390/biom11030361] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/18/2021] [Accepted: 02/22/2021] [Indexed: 01/01/2023] Open
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) are one of the most widely used classes of medicines in the treatment of inflammation, fever, and pain. However, evidence has demonstrated that these drugs can induce significant toxicity. In the search for innovative strategies to overcome NSAID-related problems, the incorporation of drugs into cyclodextrins (CDs) has demonstrated promising results. This study aims to review the impact of cyclodextrin incorporation on the biopharmaceutical and pharmacological properties of non-steroidal anti-inflammatory drugs. A systematic search for papers published between 2010 and 2020 was carried out using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) protocol and the following search terms: “Complexation”; AND “Cyclodextrin”; AND “non-steroidal anti-inflammatory drug”. A total of 24 different NSAIDs, 12 types of CDs, and 60 distinct inclusion complexes were identified, with meloxicam and β-CD appearing in most studies. The results of the present review suggest that CDs are drug delivery systems capable of improving the pharmacological and biopharmaceutical properties of non-steroidal anti-inflammatory drugs.
Collapse
Affiliation(s)
- Gustavo Marinho Miranda
- Laboratory of Investigation in Genetics and Translational Hematology, Gonçalo Moniz Institute (IGM), Oswaldo Cruz Foundation (FIOCRUZ), Salvador, BA 40296-710, Brazil; (G.M.M.); (V.O.R.eS.); (S.C.M.A.Y.); (M.S.G.)
| | - Vitória Ohana Ramos e Santos
- Laboratory of Investigation in Genetics and Translational Hematology, Gonçalo Moniz Institute (IGM), Oswaldo Cruz Foundation (FIOCRUZ), Salvador, BA 40296-710, Brazil; (G.M.M.); (V.O.R.eS.); (S.C.M.A.Y.); (M.S.G.)
| | - Jonatas Reis Bessa
- Institute of Psychology (IPS), Federal University of Bahia (UFBA), Salvador, BA 40170-055, Brazil;
| | - Yanna C. F. Teles
- Agrarian Sciences Center (CCA), Department of Chemistry and Physics (DQF), Federal University of Paraiba (UFPB), Areia, PB 58397-000, Brazil;
| | - Setondji Cocou Modeste Alexandre Yahouédéhou
- Laboratory of Investigation in Genetics and Translational Hematology, Gonçalo Moniz Institute (IGM), Oswaldo Cruz Foundation (FIOCRUZ), Salvador, BA 40296-710, Brazil; (G.M.M.); (V.O.R.eS.); (S.C.M.A.Y.); (M.S.G.)
| | - Marilda Souza Goncalves
- Laboratory of Investigation in Genetics and Translational Hematology, Gonçalo Moniz Institute (IGM), Oswaldo Cruz Foundation (FIOCRUZ), Salvador, BA 40296-710, Brazil; (G.M.M.); (V.O.R.eS.); (S.C.M.A.Y.); (M.S.G.)
| | - Jaime Ribeiro-Filho
- Laboratory of Investigation in Genetics and Translational Hematology, Gonçalo Moniz Institute (IGM), Oswaldo Cruz Foundation (FIOCRUZ), Salvador, BA 40296-710, Brazil; (G.M.M.); (V.O.R.eS.); (S.C.M.A.Y.); (M.S.G.)
- Correspondence: ; Tel.: +55-71-3126-2226
| |
Collapse
|
18
|
Rincón-López J, Almanza-Arjona YC, Riascos AP, Rojas-Aguirre Y. Technological evolution of cyclodextrins in the pharmaceutical field. J Drug Deliv Sci Technol 2020; 61:102156. [PMID: 33078064 PMCID: PMC7553870 DOI: 10.1016/j.jddst.2020.102156] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/21/2020] [Accepted: 10/05/2020] [Indexed: 01/07/2023]
Abstract
We herein disclose how global cyclodextrin-based pharmaceutical technologies have evolved since the early 80s through a 1998 patents dataset retrieved from Derwent Innovation Index. We used text-mining techniques based on the patents semantic content to extract the knowledge contained therein, to analyze technologies related to the principal attributes of CDs: solubility, stability, and taste-masking enhancement. The majority of CDs pharmaceutical technologies are directed toward parenteral aqueous solutions. The development of oral and ocular formulations is rapidly growing, while technologies for nasal and pulmonary routes are emerging and seem to be promising. Formulations for topical, transdermal, vaginal, and rectal routes do not account for a high number of patents, but they may be hiding a great potential, representing opportunity research areas. Certainly, the progress in materials sciences, supramolecular chemistry, and nanotechnology, will influence the trend of that, apparently neglected, research. The bottom line, CDs pharmaceutical technologies are still increasing, and this trend is expected to continue in the coming years. Patent monitoring allows the identification of relevant technologies and trends to prioritize research, development, and investment in both, academia and industry. We expect the scope of this approach to be applied in the pharmaceutical field beyond CDs technological applications.
Collapse
Affiliation(s)
- Juliana Rincón-López
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria, 04510, Mexico City, Mexico
| | - Yara C Almanza-Arjona
- Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria, 04510, Mexico City, Mexico
| | - Alejandro P Riascos
- Instituto de Física, Universidad Nacional Autónoma de México, Apartado Postal 20-364, 01000, Ciudad de México, Mexico
| | - Yareli Rojas-Aguirre
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria, 04510, Mexico City, Mexico
| |
Collapse
|
19
|
Takeuchi I, Kagawa A, Makino K. Skin permeability and transdermal delivery route of 30-nm cyclosporin A-loaded nanoparticles using PLGA-PEG-PLGA triblock copolymer. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124866] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
20
|
Sánchez-López E, Esteruelas G, Ortiz A, Espina M, Prat J, Muñoz M, Cano A, Calpena AC, Ettcheto M, Camins A, Alsafi Z, Souto EB, García ML, Pujol M. Dexibuprofen Biodegradable Nanoparticles: One Step Closer towards a Better Ocular Interaction Study. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E720. [PMID: 32290252 PMCID: PMC7221783 DOI: 10.3390/nano10040720] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 03/30/2020] [Accepted: 04/04/2020] [Indexed: 02/08/2023]
Abstract
Ocular inflammation is one of the most prevalent diseases in ophthalmology, which can affect various parts of the eye or the surrounding tissues. Non-steroidal anti-inflammatory drugs (NSAIDs) such as ibuprofen, are commonly used to treat ocular inflammation in the form of eye-drops. However, their bioavailability in ocular tissues is very low (less than 5%). Therefore, drug delivery systems such as biodegradable polymeric PLGA nanoparticles constitute a suitable alternative to topical eye administration, as they can improve ocular bioavailability and simultaneously reduce drug induced side effects. Moreover, their prolonged drug release can enhance patient treatment adherence as they require fewer administrations. Therefore, several formulations of PLGA based nanoparticles encapsulating dexibuprofen (active enantiomer of Ibuprofen) were prepared using the solvent displacement method employing different surfactants. The formulations have been characterized and their interactions with a customized lipid corneal membrane model were studied. Ex vivo permeation through ocular tissues and in vivo anti-inflammatory efficacy have also been studied.
Collapse
Affiliation(s)
- Elena Sánchez-López
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain; (G.E.); (A.O.); (M.E.); (J.P.); (M.M.); (A.C.); (A.C.C.); (M.L.G.); (M.P.)
- Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain
- Center for Biomedical Research in Neurodegenerative Diseases Network (CIBERNED), Carlos III Health Institute, 28031 Madrid, Spain; (M.E.); (A.C.)
| | - Gerard Esteruelas
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain; (G.E.); (A.O.); (M.E.); (J.P.); (M.M.); (A.C.); (A.C.C.); (M.L.G.); (M.P.)
| | - Alba Ortiz
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain; (G.E.); (A.O.); (M.E.); (J.P.); (M.M.); (A.C.); (A.C.C.); (M.L.G.); (M.P.)
- Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain
| | - Marta Espina
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain; (G.E.); (A.O.); (M.E.); (J.P.); (M.M.); (A.C.); (A.C.C.); (M.L.G.); (M.P.)
- Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain
| | - Josefina Prat
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain; (G.E.); (A.O.); (M.E.); (J.P.); (M.M.); (A.C.); (A.C.C.); (M.L.G.); (M.P.)
- Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain
| | - Montserrat Muñoz
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain; (G.E.); (A.O.); (M.E.); (J.P.); (M.M.); (A.C.); (A.C.C.); (M.L.G.); (M.P.)
- Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain
| | - Amanda Cano
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain; (G.E.); (A.O.); (M.E.); (J.P.); (M.M.); (A.C.); (A.C.C.); (M.L.G.); (M.P.)
- Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain
- Center for Biomedical Research in Neurodegenerative Diseases Network (CIBERNED), Carlos III Health Institute, 28031 Madrid, Spain; (M.E.); (A.C.)
| | - Ana Cristina Calpena
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain; (G.E.); (A.O.); (M.E.); (J.P.); (M.M.); (A.C.); (A.C.C.); (M.L.G.); (M.P.)
- Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain
| | - Miren Ettcheto
- Center for Biomedical Research in Neurodegenerative Diseases Network (CIBERNED), Carlos III Health Institute, 28031 Madrid, Spain; (M.E.); (A.C.)
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain
| | - Antoni Camins
- Center for Biomedical Research in Neurodegenerative Diseases Network (CIBERNED), Carlos III Health Institute, 28031 Madrid, Spain; (M.E.); (A.C.)
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain
| | - Zaid Alsafi
- Glaucoma and Retinal Neurodegeneration Research Visual Neuroscience, UCL Institute of Ophthalmology, Bath Street, London EC1V 9EL, UK;
| | - Eliana B. Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Maria Luisa García
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain; (G.E.); (A.O.); (M.E.); (J.P.); (M.M.); (A.C.); (A.C.C.); (M.L.G.); (M.P.)
- Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain
- Center for Biomedical Research in Neurodegenerative Diseases Network (CIBERNED), Carlos III Health Institute, 28031 Madrid, Spain; (M.E.); (A.C.)
| | - Montserrat Pujol
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain; (G.E.); (A.O.); (M.E.); (J.P.); (M.M.); (A.C.); (A.C.C.); (M.L.G.); (M.P.)
- Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
21
|
Mura P. Advantages of the combined use of cyclodextrins and nanocarriers in drug delivery: A review. Int J Pharm 2020; 579:119181. [PMID: 32112928 DOI: 10.1016/j.ijpharm.2020.119181] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 01/09/2023]
Abstract
Complexation with cyclodextrins (CDs) has been widely and successfully used in pharmaceutical field, mainly for enhancing solubility, stability and bioavailability of a variety of drugs. However, some important drawbacks, including rapid removal from the bloodstream after in vivo administration, or possible replacement, in biological media, of the entrapped drug moieties by other molecules with higher affinity for the CD cavity, can limit the CDs effectiveness as drug carriers. This review is focused on combined strategies simultaneously exploiting CD complexation, and loading of the complexed drug into various colloidal carriers (liposomes, niosomes, polymeric nanoparticles, lipid nanoparticles, nanoemulsions, micelles) which have been investigated as a possible means for circumventing the problems associated with both such carriers, when used separately, and join their relative benefits in a unique delivery system. Several examples of applications have been reported, to illustrate the possible advantages achievable by such a dual strategy, depending on the CD-nanocarrier combination, and mainly resulting in enhanced performance of the delivery system and improved biopharmaceutical properties and therapeutic efficacy of drugs. The major problems and/or drawbacks found in the development of such systems, as well as the (rare) case of failures in achieving the expected improvements have also been highlighted.
Collapse
Affiliation(s)
- Paola Mura
- Department of Chemistry, Florence University, via Schiff 6, Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
22
|
Guermech I, Lassoued MA, Abdelhamid A, Sfar S. Development and Assessment of Lipidic Nanoemulsions Containing Sodium Hyaluronate and Indomethacin. AAPS PharmSciTech 2019; 20:330. [PMID: 31677079 DOI: 10.1208/s12249-019-1543-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 09/18/2019] [Indexed: 11/30/2022] Open
Abstract
The present work attempts to develop and optimize the formula of a lipidic nanoemulsion (NE) containing sodium hyaluronate (HNa) and indomethacin (Ind) as HNa-Ind for enhanced transdermal antiarthritic activity. NEs were prepared by the spontaneous emulsification method and characterized by Fourier-transform infrared (FTIR) spectroscopy. The composition of the optimal formulation was statistically optimized using Box-Behnken experimental design method with three independent factors and was characterized for particle size, polydispersity index, and percent transmittance. The selected formula was tested for its in vitro antioxidant activity and in vivo anti-inflammatory activity. The optimized HNa-Ind NE formula was characterized and displayed a particle size of 12.87 ± 0.032 nm, polydispersity index of 0.606 ± 0.082, and 99.4 ± 0.1 percentage of transmittance. FTIR showed no interaction between HNa and Ind as a physical mixture. In addition, the optimized HNa-Ind NE was able to preserve the antioxidant ability of the two drugs, as evidenced through a 2,2-diphenyl-1-picrylhydrazyl (DPPH) inhibition assay used to assess free radical scavenging ability. The cell viability was increased while the free radical scavenging activity was decreased (94.28% inhibition at higher concentrations compared with vitamin C as a reference with an inhibition of 100%). Moreover, the pharmacological anti-inflammatory potential of the optimized HNa-Ind NE formulation was assessed using an in vivo model. Compared with reference drugs (ibuprofen gel 5%), the remarkable activity of the optimized formulation was established using xylene-induced ear edema in mice model, in which the inflamed region reduced by 92.5% upon treatment. The optimized HNa-Ind NE formulation showed considerably higher skin permeation and drug deposition capability compared with the HNa-Ind solution. HNa-Ind NE was demonstrated to be a successful carrier with enhanced antioxidant and anti-inflammatory potential while showing better skin penetration, thus being a promising vehicle for transdermal drug delivery.
Collapse
|
23
|
Nanomedicine for the effective and safe delivery of non-steroidal anti-inflammatory drugs: A review of preclinical research. Eur J Pharm Biopharm 2019; 142:179-194. [DOI: 10.1016/j.ejpb.2019.06.025] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/22/2019] [Accepted: 06/20/2019] [Indexed: 02/06/2023]
|
24
|
Croisfelt FM, Tundisi LL, Ataide JA, Silveira E, Tambourgi EB, Jozala AF, Souto EMB, Mazzola PG. Modified-release topical hydrogels: a ten-year review. JOURNAL OF MATERIALS SCIENCE 2019; 54:10963-10983. [DOI: 10.1007/s10853-019-03557-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 03/20/2019] [Indexed: 01/06/2025]
|
25
|
Cano A, Ettcheto M, Chang JH, Barroso E, Espina M, Kühne BA, Barenys M, Auladell C, Folch J, Souto EB, Camins A, Turowski P, García ML. Dual-drug loaded nanoparticles of Epigallocatechin-3-gallate (EGCG)/Ascorbic acid enhance therapeutic efficacy of EGCG in a APPswe/PS1dE9 Alzheimer's disease mice model. J Control Release 2019; 301:62-75. [PMID: 30876953 PMCID: PMC6510952 DOI: 10.1016/j.jconrel.2019.03.010] [Citation(s) in RCA: 192] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 03/08/2019] [Accepted: 03/10/2019] [Indexed: 02/07/2023]
Abstract
Epigallocatechin-3-gallate (EGCG) is a candidate for treatment of Alzheimer's disease (AD) but its inherent instability limits bioavailability and effectiveness. We found that EGCG displayed increased stability when formulated as dual-drug loaded PEGylated PLGA nanoparticles (EGCG/AA NPs). Oral administration of EGCG/AA NPs in mice resulted in EGCG accumulation in all major organs, including the brain. Pharmacokinetic comparison of plasma and brain accumulation following oral administration of free or EGCG/AA NPs showed that, whilst in both cases initial EGCG concentrations were similar, long-term (5–25 h) concentrations were ca. 5 fold higher with EGCG/AA NPs. No evidence was found that EGCG/AA NPs utilised a specific pathway across the blood-brain barrier (BBB). However, EGCG, empty NPs and EGCG/AA NPs all induced tight junction disruption and opened the BBB in vitro and ex vivo. Oral treatment of APPswe/PS1dE9 (APP/PS1) mice, a familial model of AD, with EGCG/AA NPs resulted in a marked increase in synapses, as judged by synaptophysin (SYP) expression, and reduction of neuroinflammation as well as amyloid β (Aβ) plaque burden and cortical levels of soluble and insoluble Aβ(1-42) peptide. These morphological changes were accompanied by significantly enhanced spatial learning and memory. Mechanistically, we propose that stabilisation of EGCG in NPs complexes and a destabilized BBB led to higher therapeutic EGCG concentrations in the brain. Thus EGCG/AA NPs have the potential to be developed as a safe and strategy for the treatment of AD.
Collapse
Affiliation(s)
- Amanda Cano
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), Barcelona, Spain; Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain; UCL Institute of Ophthalmology, University College of London, United Kingdom
| | - Miren Ettcheto
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain; Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Spain; Unit of Biochemistry and Pharmacology, Faculty of Medicine and Health Sciences, University of Rovira i Virgili, Reus, Tarragona, Spain
| | - Jui-Hsien Chang
- UCL Institute of Ophthalmology, University College of London, United Kingdom
| | - Emma Barroso
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Spain; Biomedical Research Center in Diabetes and Associated Metabolic Diseases (CIBERDEM)-Health Institute Carlos III, Barcelona, Spain; Research Institute-Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - Marta Espina
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), Barcelona, Spain
| | - Britta A Kühne
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Spain
| | - Marta Barenys
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Spain
| | - Carmen Auladell
- Department of Cellular Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Spain
| | - Jaume Folch
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain; Unit of Biochemistry and Pharmacology, Faculty of Medicine and Health Sciences, University of Rovira i Virgili, Reus, Tarragona, Spain
| | - Eliana B Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Antoni Camins
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain; Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Spain
| | - Patric Turowski
- UCL Institute of Ophthalmology, University College of London, United Kingdom..
| | - Maria Luisa García
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), Barcelona, Spain.
| |
Collapse
|
26
|
Menezes PDP, Andrade TDA, Frank LA, de Souza EPBSS, Trindade GDGG, Trindade IAS, Serafini MR, Guterres SS, Araújo AADS. Advances of nanosystems containing cyclodextrins and their applications in pharmaceuticals. Int J Pharm 2019; 559:312-328. [PMID: 30703500 DOI: 10.1016/j.ijpharm.2019.01.041] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/22/2019] [Accepted: 01/23/2019] [Indexed: 10/27/2022]
Abstract
For many years, researchers have worked with supramolecular structures involving inclusion complexes with cyclodextrins. These studies have resulted in new commercially available drugs which have been of great benefit. More recently, studies using nanoparticles, including nanosystems containing cyclodextrins, have become a focus of academic research due to the versatility of the systems and their remarkable therapeutic potential. This review focuses on studies published between 2002 and 2018 involving nanosystems containing cyclodextrins. We consider the type of nanosystems, their importance in a health context, the physicochemical techniques used to show the quality of these systems and their potential for the development of novel pharmaceutical formulations. These have been developed in recent studies which have mainly been focusing on basic science with no clinical trials as yet being performed. This is important to note because it means that the studies do not include any toxicity tests. Despite this limitation, the characterization assays performed suggest that these new formulations may have therapeutic potential. However, more research is required to assess the efficacy and safety of these nanosystems.
Collapse
Affiliation(s)
| | | | - Luiza Abrahão Frank
- College of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | | | | | | | | | | | | |
Collapse
|
27
|
Jacob S, Nair AB. Cyclodextrin complexes: Perspective from drug delivery and formulation. Drug Dev Res 2018; 79:201-217. [PMID: 30188584 DOI: 10.1002/ddr.21452] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 06/22/2018] [Accepted: 06/22/2018] [Indexed: 02/05/2023]
Abstract
Cyclodextrins (CDs) have been widely investigated as a unique pharmaceutical excipient for past few decades and is still explored for new applications. They are highly versatile oligosaccharides which possess multifunctional characteristics, and are mainly used to improve the physicochemical stability, solubility, dissolution rate, and bioavailability of drugs. Stability constant, factors affecting complexation, techniques to enhance complexation efficiency, the preparation methods for molecular inclusion complexes and release of guest molecules are discussed in brief. In addition, different CD derivatives and their pharmacokinetics are elaborated. Further, the significance of CD complex in aqueous solubility, dissolution and bioavailability, stability, and taste masking is explained. The recent advancement of CDs in developing various drug delivery systems is enlightened. Indeed, the potential of CDs by means of inclusion complex formation have widen the applicability of these materials in various drug delivery systems including ocular, osmotic, mucoadhesive, transdermal, nasal, and targeted delivery systems. Feasibility studies have been performed on the benefit of these cyclic oligomers as nanocarriers, a strategy that can modify the drugs with improved physicochemical properties. Studies also demonstrated the feasibility of CDs to self-assemble in the form of stable nanoaggregates, which may extend the scope of CDs in drug delivery to the continually expanding list of new drug entities.
Collapse
Affiliation(s)
- Shery Jacob
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman, United Arab Emirates
| | - Anroop B Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
| |
Collapse
|
28
|
Effect of surface chemistry of polymeric nanoparticles on cutaneous penetration of cholecalciferol. Int J Pharm 2018; 553:120-131. [PMID: 30316003 DOI: 10.1016/j.ijpharm.2018.09.046] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 09/17/2018] [Accepted: 09/18/2018] [Indexed: 02/07/2023]
Abstract
We investigated the influence of nanoparticle (NP) surface composition on different aspects of skin delivery of a lipophilic drug: chemical stability, release and skin penetration. Cholecalciferol was chosen as a labile model drug. Poly(lactic acid) (PLA)-based NPs without surface coating, with a non-ionic poly(ethylene glycol) (PEG) coating, or with a zwitterionic poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC) coating were prepared using flash nanoprecipitation. Process was optimized to obtain similar hydrodynamic diameters. Polymeric NPs were compared to non-polymeric cholecalciferol formulations. Cholecalciferol stability in aqueous medium was improved by polymeric encapsulation with a valuable effect of a hydrophilic coating. However, the in vitro release of the drug was found independent of the presence of any polymer, as for the drug penetration in an intact skin model. Such tendency was not observed in impaired skin since, when stratum corneum was removed, we found that a neutral hydrophilic coating around NPs reduced drug penetration compared to pure drug NPs and bare PLA NPs. The nature of the hydrophilic block (PEG or PMPC) had however no impact. We hypothesized that NPs surface influenced drug penetration in impaired skin due to different electrostatic interactions between NPs and charged skin components of viable skin layers.
Collapse
|
29
|
Dermal flurbiprofen nanosuspensions: Optimization with design of experiment approach and in vitro evaluation. Eur J Pharm Sci 2018; 122:254-263. [DOI: 10.1016/j.ejps.2018.07.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 07/03/2018] [Accepted: 07/03/2018] [Indexed: 11/24/2022]
|
30
|
Cano A, Ettcheto M, Espina M, Auladell C, Calpena AC, Folch J, Barenys M, Sánchez-López E, Camins A, García ML. Epigallocatechin-3-gallate loaded PEGylated-PLGA nanoparticles: A new anti-seizure strategy for temporal lobe epilepsy. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:1073-1085. [PMID: 29454994 DOI: 10.1016/j.nano.2018.01.019] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 12/16/2017] [Accepted: 01/23/2018] [Indexed: 12/17/2022]
Abstract
Temporal lobe epilepsy is the most common type of pharmacoresistant epilepsy in adults. Epigallocatechin-3-gallate has aroused much interest because of its multiple therapeutic effects, but its instability compromises the potential effectiveness. PEGylated-PLGA nanoparticles of Epigallocatechin-3-gallate were designed to protect the drug and to increase the brain delivery. Nanoparticles were prepared by the double emulsion method and cytotoxicity, behavioral, Fluoro-Jade C, Iba1 and GFAP immunohistochemistry studies were carried out to determine their effectiveness. Nanoparticles showed an average size of 169 nm, monodisperse population, negative surface charge, encapsulation efficiency of 95% and sustained release profile. Cytotoxicity assays exhibited that these nanocarriers were non-toxic. Behavioral test showed that nanoparticles reduced most than free drug the number of epileptic episodes and their intensity. Neurotoxicity and immunohistochemistry studies confirmed a decrease in neuronal death and neuroinflammation. In conclusion, Epigallocatechin-3-gallate PEGylated-PLGA nanoparticles could be a suitable strategy for the treatment of temporal lobe epilepsy.
Collapse
Affiliation(s)
- Amanda Cano
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), Barcelona, Spain
| | - Miren Ettcheto
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Spain; Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain; Unit of Biochemistry and Pharmacology, Faculty of Medicine and Health Sciences, University of Rovira i Virgili, Reus (Tarragona), Spain
| | - Marta Espina
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), Barcelona, Spain
| | - Carmen Auladell
- Department of Cellular Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Spain
| | - Ana Cristina Calpena
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), Barcelona, Spain
| | - Jaume Folch
- Unit of Biochemistry and Pharmacology, Faculty of Medicine and Health Sciences, University of Rovira i Virgili, Reus (Tarragona), Spain
| | - Marta Barenys
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Spain; Institute of Nutrition Research and Food Safety (INSA-UB), University of Barcelona, Spain
| | - Elena Sánchez-López
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), Barcelona, Spain
| | - Antoni Camins
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Spain; Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Maria Luisa García
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, Spain; Institute of Nanoscience and Nanotechnology (IN2UB), Barcelona, Spain.
| |
Collapse
|
31
|
Synthesis and Characterization of PLGA-PEG Thymoquinone Nanoparticles and Its Cytotoxicity Effects in Tamoxifen-Resistant Breast Cancer Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1292:65-82. [PMID: 30560443 DOI: 10.1007/5584_2018_302] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Drug resistance has been a continuous challenge in cancer treatment. The use of nanotechnology in the development of new cancer drugs has potential. One of the extensively studied compounds is thymoquinone (TQ), and this work aims to compare two types of TQ-nanoformulation and its cytotoxicity toward resistant breast cancer cells. METHOD TQ-nanoparticles were prepared and optimized by using two different formulations with different drugs to PLGA-PEG ratio (1:20 and 1:7) and different PLGA-PEG to Pluronic F68 ratio (10:1 and 2:1). The morphology and size were determined using TEM and DLS. Characterization of particles was done using UV-VIS, ATR-IR, entrapment efficiency, and drug release. The effects of drug, polymer, and surfactants were compared between the two formulations. Cytotoxicity assay was performed using MTS assay. RESULTS TEM finding showed 96% of particles produced with 1:7 drug to PLGA-PEG were less than 90 nm in size and spherical in shape. This was confirmed with DLS which showed smaller particle size than those formed with 1:20 drug to PLGA-PEG ratio. Further analysis showed zeta potential was negatively charged which could facilitate cellular uptake as reported previously. In addition, PDI value was less than 0.1 in both formulations indicating monodispersed and less broad in size distribution. The absorption peak of PLGA-PEG-TQ-Nps was at 255 nm. The 1:7 drug to polymer formulation was selected for further analysis where the entrapment efficiency was 79.9% and in vitro drug release showed a maximum release of TQ of 50%. Cytotoxicity result showed IC50 of TQ-nanoparticle at 20.05 μM and free TQ was 8.25 μM. CONCLUSION This study showed that nanoparticle synthesized with 1:7 drug to PLGA-PEG ratio and 2:1 PLGA-PEG to Pluronic F68 formed nanoparticles with less than 100 nm and had spherical shape as confirmed with DLS. This could facilitate its transportation and absorption to reach its target. There was conserved TQ stability as exhibited slow release of this volatile oil. The TQ-nanoparticles showed selective cytotoxic effect toward UACC 732 cells compared to MCF-7 breast cancer cells.
Collapse
|
32
|
Mallandrich M, Fernández-Campos F, Clares B, Halbaut L, Alonso C, Coderch L, Garduño-Ramírez ML, Andrade B, Del Pozo A, Lane ME, Calpena AC. Developing Transdermal Applications of Ketorolac Tromethamine Entrapped in Stimuli Sensitive Block Copolymer Hydrogels. Pharm Res 2017; 34:1728-1740. [PMID: 28540502 DOI: 10.1007/s11095-017-2181-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 05/11/2017] [Indexed: 02/08/2023]
Abstract
PURPOSE In order to obtain dermal vehicles of ketorolac tromethamine (KT) for the local treatment of inflammation and restrict undesirable side effects of systemic levels hydrogels (HGs) of poloxamer and carbomer were developed. METHODS KT poloxamer based HG (KT-P407-HG) and KT carbomer based HG (KT-C940-HG) were elaborated and characterized in terms of swelling, degradation, porosity, rheology, stability, in vitro release, ex vivo permeation and distribution skin layers. Finally, in vivo anti-inflammatory efficacy and skin tolerance were also assessed. RESULTS HGs were transparent and kept stable after 3 months exhibiting biocompatible near neutral pH values. Rheological patterns fitted to Herschel-Bulkley for KT-C940-HG and Newton for KT-P407-HG due to its low viscosity at 25°C. Rapid release profiles were observed through first order kinetics. Following the surface the highest concentration of KT from C940-HG was found in the epidermis and the stratum corneum for P407-HG. Relevant anti-inflammatory efficacy of KT-P407-HG revealed enough ability to provide sufficient bioavailability KT to reach easily the site of action. The application of developed formulations in volunteers did not induce any visual skin irritation. CONCLUSIONS KT-P407-HG was proposed as suitable formulation for anti-inflammatory local treatment without theoretical systemic side effect.
Collapse
Affiliation(s)
- Mireia Mallandrich
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, School of Pharmacy and Food Sciences, University of Barcelona, 27-31 Joan XXIII Av,, 08028, Barcelona,, Spain.,Nanoscience and Nanotechnology Institute (IN2UB), University of Barcelona, 27-31 Joan XXIII Av, 08028, Barcelona, Spain
| | - Francisco Fernández-Campos
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, School of Pharmacy and Food Sciences, University of Barcelona, 27-31 Joan XXIII Av,, 08028, Barcelona,, Spain
| | - Beatriz Clares
- Nanoscience and Nanotechnology Institute (IN2UB), University of Barcelona, 27-31 Joan XXIII Av, 08028, Barcelona, Spain. .,Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Granada, Campus of Cartuja s/n,, 18071, Granada,, Spain.
| | - Lyda Halbaut
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, School of Pharmacy and Food Sciences, University of Barcelona, 27-31 Joan XXIII Av,, 08028, Barcelona,, Spain.,Nanoscience and Nanotechnology Institute (IN2UB), University of Barcelona, 27-31 Joan XXIII Av, 08028, Barcelona, Spain
| | - Cristina Alonso
- Institute of Advanced Chemistry of Catalonia, 18-26 Jordi Girona St, 08034, Barcelona, Spain
| | - Luisa Coderch
- Institute of Advanced Chemistry of Catalonia, 18-26 Jordi Girona St, 08034, Barcelona, Spain
| | - Maria L Garduño-Ramírez
- Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001,, 62209, Cuernavaca, Morelos, Mexico
| | - Berenice Andrade
- Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001,, 62209, Cuernavaca, Morelos, Mexico
| | - Alfonso Del Pozo
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, School of Pharmacy and Food Sciences, University of Barcelona, 27-31 Joan XXIII Av,, 08028, Barcelona,, Spain
| | - Majella E Lane
- Department of Pharmaceutics, UCL School of Pharmacy, 29-39 Brunswick Square,, London,, WC1N 1AX, UK
| | - Ana C Calpena
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, School of Pharmacy and Food Sciences, University of Barcelona, 27-31 Joan XXIII Av,, 08028, Barcelona,, Spain.,Nanoscience and Nanotechnology Institute (IN2UB), University of Barcelona, 27-31 Joan XXIII Av, 08028, Barcelona, Spain
| |
Collapse
|
33
|
Development and characterization of fast dissolving tablets of oxaprozin based on hybrid systems of the drug with cyclodextrins and nanoclays. Int J Pharm 2017; 531:640-649. [PMID: 28522425 DOI: 10.1016/j.ijpharm.2017.05.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 05/12/2017] [Accepted: 05/14/2017] [Indexed: 01/26/2023]
Abstract
Previous studies highlighted an increase of the randomly-methylated-ß-cyclodextrin (RAMEB) solubilizing power towards oxaprozin when used in combination with L-arginine (ARG) or sepiolite nanoclay (SV). Therefore, the aim of this work was to investigate the possibility of maximising the RAMEB solubilizing efficacy by a joined approach based on the entrapment in SV of the drug-RAMEB-ARG complex. The quaternary nanocomposite was prepared by different techniques and characterized for solid state and dissolution properties, compared to ternary drug combinations with RAMEB-ARG, RAMEB-SV or ARG-SV. The dissolution rank order was drug-RAMEB-ARG-SV>>drug-RAMEB-ARG≈drug-RAMEB-SV>>drug-ARG-SV. The new hybrid nanocomposite enabled an increase from 60 up to 90% of oxaprozin dissolution parameters compared to the ternary systems with RAMEB-ARG and RAMEB-SV. Moreover, the lowest solubilizing efficacy of ternary systems with ARG-SV evidenced the specific synergic effect of both ARG and SV with RAMEB in enhancing oxaprozin dissolution properties. The superior performance of the quaternary nanocomposite was maintained after incorporation in a tablet formulation. In vivo studies on rats proved that the developed fast-dissolving tablet formulation, containing oxaprozin as cofused system with RAMEB, ARG and SV was more effective than the marketed tablet in terms of faster and more intense pain relieving effect in the treatment of adjuvant-induced arthritis.
Collapse
|
34
|
New potential strategies for Alzheimer's disease prevention: pegylated biodegradable dexibuprofen nanospheres administration to APPswe/PS1dE9. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 13:1171-1182. [DOI: 10.1016/j.nano.2016.12.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 10/31/2016] [Accepted: 12/06/2016] [Indexed: 01/22/2023]
|
35
|
Sánchez-López E, Egea M, Cano A, Espina M, Calpena A, Ettcheto M, Camins A, Souto E, Silva A, García M. PEGylated PLGA nanospheres optimized by design of experiments for ocular administration of dexibuprofen—in vitro, ex vivo and in vivo characterization. Colloids Surf B Biointerfaces 2016; 145:241-250. [DOI: 10.1016/j.colsurfb.2016.04.054] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 04/26/2016] [Accepted: 04/30/2016] [Indexed: 11/16/2022]
|
36
|
Hybrid systems based on "drug - in cyclodextrin - in nanoclays" for improving oxaprozin dissolution properties. Int J Pharm 2016; 509:8-15. [PMID: 27188644 DOI: 10.1016/j.ijpharm.2016.05.028] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 05/12/2016] [Accepted: 05/13/2016] [Indexed: 11/24/2022]
Abstract
A combined approach based on drug complexation with cyclodextrins, and complex entrapment in nanoclays has been investigated, to join in a single delivery system the benefits of these carriers and potentiate their ability to improve the dissolution properties of oxaprozin (OXA), a poorly water-soluble anti-inflammatory drug. Based on previous studies, randomly methylated ß-cyclodextrin (RAMEB) was chosen as the most effective cyclodextrin for OXA complexation. Adsorption equilibrium studies performed on three different clays (sepiolite, attapulgite, bentonite) allowed selection of sepiolite (SV) for its greater adsorption power towards OXA. DSC and XRPD studies indicated drug amorphization in both binary OXA-RAMEB coground and OXA-SV cofused products, due to its complexation or very fine dispersion in the clay structure, respectively. The drug amorphous state was maintained also in the ternary OXA-RAMEB-SV cofused system. Dissolution studies evidenced a clear synergistic effect of RAMEB complexation and clay nanoencapsulation in improving the OXA dissolution properties, with an almost 100% increase in percent dissolved and dissolution efficiency compared to the OXA-RAMEB coground system. Therefore, the proposed combined approach represents an interesting tool for improving the therapeutic effectiveness of poorly soluble drugs, and reducing the CD amount necessary for obtaining the desired drug solubility and dissolution rate increase.
Collapse
|
37
|
Solid-state flurbiprofen and methyl-β-cyclodextrin inclusion complexes prepared using a single-step, organic solvent-free supercritical fluid process. Eur J Pharm Biopharm 2016; 104:164-70. [PMID: 27163245 DOI: 10.1016/j.ejpb.2016.04.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 03/24/2016] [Accepted: 04/27/2016] [Indexed: 11/23/2022]
Abstract
The aim of this study was to enhance the apparent solubility and dissolution properties of flurbiprofen through inclusion complexation with cyclodextrins. Especially, the efficacy of supercritical fluid technology as a preparative technique for the preparation of flurbiprofen-methyl-β-cyclodextrin inclusion complexes was evaluated. The complexes were prepared by supercritical carbon dioxide processing and were evaluated by solubility, differential scanning calorimetry, X-ray powder diffraction, scanning electron microscopy, practical yield, drug content estimation and in vitro dissolution studies. Computational molecular docking studies were conducted to study the possibility of molecular arrangement of inclusion complexes between flurbiprofen and methyl-β-cyclodextrin. The studies support the formation of stable molecular inclusion complexes between the drug and cyclodextrin in a 1:1 stoichiometry. In vitro dissolution studies showed that the dissolution properties of flurbiprofen were significantly enhanced by the binary mixtures prepared by supercritical carbon dioxide processing. The amount of flurbiprofen dissolved into solution alone was very low with 1.11±0.09% dissolving at the end of 60min, while the binary mixtures processed by supercritical carbon dioxide at 45°C and 200bar released 99.39±2.34% of the drug at the end of 30min. All the binary mixtures processed by supercritical carbon dioxide at 45°C exhibited a drug release of more than 80% within the first 10min irrespective of the pressure employed. The study demonstrated the single step, organic solvent-free supercritical carbon dioxide process as a promising approach for the preparation of inclusion complexes between flurbiprofen and methyl-β-cyclodextrin in solid-state.
Collapse
|
38
|
Maestrelli F, Bragagni M, Mura P. Advanced formulations for improving therapies with anti-inflammatory or anaesthetic drugs: A review. J Drug Deliv Sci Technol 2016. [DOI: 10.1016/j.jddst.2015.09.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
39
|
Biopharmaceutical profile of hydrogels containing pranoprofen-loaded PLGA nanoparticles for skin administration: In vitro, ex vivo and in vivo characterization. Int J Pharm 2016; 501:350-61. [PMID: 26844786 DOI: 10.1016/j.ijpharm.2016.01.071] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 01/26/2016] [Accepted: 01/28/2016] [Indexed: 11/22/2022]
Abstract
Pranoprofen (PF)-loaded nanoparticles (PF-F1NPs and PF-F2NPs) have been formulated into blank hydrogels (HG_PF-F1NPs and HG_PF-F1NPs) or into hydrogels composed of 3% azone (HG_PF-F1NPs-Azone and HG_PF-F2NPs-Azone), as innovative strategy to improve the biopharmaceutical profile of the selected non-steroidal anti-inflammatory drug (Pranoprofen, PF) for topical application. The purpose of this approach has been to increase the contact of PF with the skin, improve its retention in deeper layers, thus enhancing its anti-inflammatory and analgesic effects. The physicochemical characterization of the developed hydrogels showed a non-Newtonian behaviour, typical of semi-solid formulations for skin administration, with sustained release profile. The results obtained from ex vivo skin human permeation and in vivo anti-inflammatory efficacy studies suggest that topical application of HG_PF-F2NPs has been more effective in the treatment of oedema on the skin' surface in comparison to other hydrogels. No signs of skin irritancy have been detected for all the semi-solid formulations containing 0% or 3% azone.
Collapse
|
40
|
Song A, Su Z, Li S, Han F. Nanostructured lipid carriers-based flurbiprofen gel after topical administration: acute skin irritation, pharmacodynamics, and percutaneous absorption mechanism. Drug Dev Ind Pharm 2015; 41:1488-92. [PMID: 25231972 DOI: 10.3109/03639045.2014.959021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In order to assess the preliminary safety and effectiveness of nanostructured lipid carriers-based flurbiprofen gel (FP NLC-gel), the acute irritation test, in vivo pharmacodynamics evaluation and pharmacokinetic study were investigated after topical application. No dropsy and erythema were observed after continuous dosing 7 d of FP NLC-gel on the rabbit skin, and the xylene-induced ear drossy could be inhibited by FP NLC-gel at different dosages. The maximum concentration of FP in rats muscle was 2.03 μg/g and 1.55 μg/g after oral and topical administration, respectively. While the peak concentration in untreated muscle after topical administration was only 0.37 μg/mL. And at any time, following topical administration the mean muscle-plasma concentration ratio Cmuscle/CPlasma was obviously higher than that following oral administration. Results indicated that FP could directly penetrate into the subcutaneous muscle tissue from the administration site. Thus, the developed FP NLC-gel could be a safe and effective vehicle for topical delivery of FP.
Collapse
Affiliation(s)
- Aihua Song
- a College of Pharmacy , Shenyang Pharmaceutical University , Shenyang , PR China and
| | | | | | | |
Collapse
|
41
|
Alvarado HL, Abrego G, Souto EB, Garduño-Ramirez ML, Clares B, García ML, Calpena AC. Nanoemulsions for dermal controlled release of oleanolic and ursolic acids: In vitro, ex vivo and in vivo characterization. Colloids Surf B Biointerfaces 2015; 130:40-7. [PMID: 25899842 DOI: 10.1016/j.colsurfb.2015.03.062] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 03/24/2015] [Accepted: 03/31/2015] [Indexed: 12/12/2022]
Abstract
The aim of the present study was to design and optimize a nanoemulsion for dermal administration of mixtures of natural or synthetic pentacyclic triterpenes with recognized anti-inflammatory activity. The composition of the developed nanoemulsions was obtained from pseudo-ternary phase diagrams, composed of castor oil as the oil phase, labrasol as the surfactant, transcutol-P as co-surfactant and propylene glycol as the aqueous phase. Different ratios of surfactant/co-surfactant mixture (Smix) (4:1, 3:1, 2:1, 1:1, 1:2 and 1:4) were produced, and Smix 4:1 was chosen based on the greater area of optimal nanoemulsion conditions. Two different nanoemulsions of mean droplet size below 600 nm were produced, loading mixtures of natural or synthetic pentacyclic triterpenes, respectively. The viscosity of nanoemulsion containing natural pentacyclic triterpenes was 51.97±4.57 mPas and that loaded with synthetic mixtures was 55.33±0.28 mPas. The studies of release and skin permeation were performed using Franz diffusion cells, adjusting the release kinetics of both formulations to Korsmeyer-Peppas model. No significant differences in permeation parameters between the two nanoemulsions were observed. The amount of drug retained in the skin was higher than the amount of drug that has permeated, favoring a local action. The results of the in vivo tests demonstrated that the developed formulations were not toxic and not irritant to the skin. The formulation loading a mixture of natural triterpenes showed greater ability to inhibit inflammation than that loading the synthetic mixture. The findings clearly corroborate the added value of o/w nanoemulsions for dermal delivery of pentacyclic triterpenes.
Collapse
Affiliation(s)
- H L Alvarado
- Department of Biopharmacy and Pharmacology, Faculty of Pharmacy, University of Barcelona, Av. Joan XXIII s/n, 08028 Barcelona, Spain; Department of Physical Chemistry, Faculty of Pharmacy, University of Barcelona, Av. Joan XXIII s/n, 08028 Barcelona, Spain
| | - G Abrego
- Department of Biopharmacy and Pharmacology, Faculty of Pharmacy, University of Barcelona, Av. Joan XXIII s/n, 08028 Barcelona, Spain; Department of Physical Chemistry, Faculty of Pharmacy, University of Barcelona, Av. Joan XXIII s/n, 08028 Barcelona, Spain
| | - E B Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra (FFUC), Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal; Center for Neuroscience and Cell Biology & Institute for Biomedical Imaging and Life Sciences (CNC-IBILI), University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal.
| | - M L Garduño-Ramirez
- Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos, Av. Universidad No. 1001, Col Chamilpa, Cuernavaca, Morelos, Mexico
| | - B Clares
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071 Granada, Spain
| | - M L García
- Department of Physical Chemistry, Faculty of Pharmacy, University of Barcelona, Av. Joan XXIII s/n, 08028 Barcelona, Spain
| | - A C Calpena
- Department of Biopharmacy and Pharmacology, Faculty of Pharmacy, University of Barcelona, Av. Joan XXIII s/n, 08028 Barcelona, Spain.
| |
Collapse
|
42
|
Determination of Flurbiprofen in Human Plasma by High-Performance Liquid Chromatography. J Chromatogr Sci 2015; 53:1443-8. [DOI: 10.1093/chromsci/bmv032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Indexed: 11/14/2022]
|
43
|
Abrego G, Alvarado H, Souto EB, Guevara B, Bellowa LH, Parra A, Calpena A, Garcia ML. Biopharmaceutical profile of pranoprofen-loaded PLGA nanoparticles containing hydrogels for ocular administration. Eur J Pharm Biopharm 2015; 95:261-70. [PMID: 25681744 DOI: 10.1016/j.ejpb.2015.01.026] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 01/23/2015] [Accepted: 01/28/2015] [Indexed: 11/17/2022]
Abstract
Two optimized pranoprofen-loaded poly-l-lactic-co glycolic acid (PLGA) nanoparticles (PF-F1NPs; PF-F2NPs) have been developed and further dispersed into hydrogels for the production of semi-solid formulations intended for ocular administration. The optimized PF-NP suspensions were dispersed in freshly prepared carbomer hydrogels (HG_PF-F1NPs and HG_PF-F2NPs) or in hydrogels containing 1% azone (HG_PF-F1NPs-Azone and HG_PF-F2NPs-Azone) in order to improve the ocular biopharmaceutical profile of the selected non-steroidal anti-inflammatory drug (NSAID), by prolonging the contact of the pranoprofen with the eye, increasing the drug retention in the organ and enhancing its anti-inflammatory and analgesic efficiency. Carbomer 934 has been selected as gel-forming polymer. The hydrogel formulations with or without azone showed a non-Newtonian behavior and adequate physicochemical properties for ocular instillation. The release study of pranoprofen from the semi-solid formulations exhibited a sustained release behavior. The results obtained from ex vivo corneal permeation and in vivo anti-inflammatory efficacy studies suggest that the ocular application of the hydrogels containing azone was more effective over the azone-free formulations in the treatment of edema on the ocular surface. No signs of ocular irritancy have been detected for the produced hydrogels.
Collapse
Affiliation(s)
- Guadalupe Abrego
- Department of Physical Chemistry, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain; Department of Biopharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Helen Alvarado
- Department of Physical Chemistry, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain; Department of Biopharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Eliana B Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra (FFUC), Pólo das Ciências da Saúde, Coimbra, Portugal; Center for Neuroscience and Cell Biology & Institute for Biomedical Imaging and Life Sciences (CNC-IBILI), University of Coimbra, Pólo das Ciências da Saúde, Coimbra, Portugal.
| | - Bessy Guevara
- Department of Biopharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Lyda Halbaut Bellowa
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Alexander Parra
- Department of Physical Chemistry, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain; Department of Biopharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Ana Calpena
- Department of Biopharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - María Luisa Garcia
- Department of Physical Chemistry, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
44
|
Vecsernyés M, Fenyvesi F, Bácskay I, Deli MA, Szente L, Fenyvesi É. Cyclodextrins, blood-brain barrier, and treatment of neurological diseases. Arch Med Res 2014; 45:711-29. [PMID: 25482528 DOI: 10.1016/j.arcmed.2014.11.020] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Accepted: 11/24/2014] [Indexed: 12/20/2022]
Abstract
Biological barriers are the main defense systems of the homeostasis of the organism and protected organs. The blood-brain barrier (BBB), formed by the endothelial cells of brain capillaries, not only provides nutrients and protection to the central nervous system but also restricts the entry of drugs, emphasizing its importance in the treatment of neurological diseases. Cyclodextrins are increasingly used in human pharmacotherapy. Due to their favorable profile to form hydrophilic inclusion complexes with poorly soluble active pharmaceutical ingredients, they are present as excipients in many marketed drugs. Application of cyclodextrins is widespread in formulations for oral, parenteral, nasal, pulmonary, and skin delivery of drugs. Experimental and clinical data suggest that cyclodextrins can be used not only as excipients for centrally acting marketed drugs like antiepileptics, but also as active pharmaceutical ingredients to treat neurological diseases. Hydroxypropyl-β-cyclodextrin received orphan drug designation for the treatment of Niemann-Pick type C disease. In addition to this rare lysosomal storage disease with neurological symptoms, experimental research revealed the potential therapeutic use of cyclodextrins and cyclodextrin nanoparticles in neurodegenerative diseases, stroke, neuroinfections and brain tumors. In this context, the biological effects of cyclodextrins, their interaction with plasma membranes and extraction of different lipids are highly relevant at the level of the BBB.
Collapse
Affiliation(s)
- Miklós Vecsernyés
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary.
| | - Ferenc Fenyvesi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary
| | - Ildikó Bácskay
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary
| | - Mária A Deli
- Department of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Lajos Szente
- Cyclolab Cyclodextrin Research and Development Laboratory Ltd., Budapest, Hungary
| | - Éva Fenyvesi
- Cyclolab Cyclodextrin Research and Development Laboratory Ltd., Budapest, Hungary
| |
Collapse
|