1
|
Fan P, Liu Y, He Y, Hu Y, Chao L, Wang Y, Liu L, Li J. Experimental Study on the Mechanism and Law of Low-Salinity Water Flooding for Enhanced Oil Recovery in Tight Sandstone Reservoirs. ACS OMEGA 2024; 9:12665-12675. [PMID: 38524499 PMCID: PMC10955587 DOI: 10.1021/acsomega.3c07960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/06/2023] [Accepted: 01/23/2024] [Indexed: 03/26/2024]
Abstract
Currently, research surrounding low-salinity water flooding predominantly focuses on medium- to high-permeability sandstone reservoirs. Nevertheless, further investigation is necessary to implement this technique with regard to tight sandstone reservoirs. The present study comprises a series of experiments conducted on the crude oil and core of the Ordos Chang 6 reservoir to investigate the influence of ionic composition on low-salinity water flooding in tight oil reservoirs. The change in wettability on the rock surface was analyzed by using the contact angle experiment. The change in recovery rate was analyzed using a core displacement experiment. The reaction between rock fluids was analyzed using an ion chromatography experiment. Additionally, a nuclear magnetic resonance (NMR) experiment was used to analyze the mobilization law of crude oil and the change in wettability on the scale of the rock core. This led to a comprehensive discussion of the law and mechanism of enhancing the recovery rate via low-salinity water flooding from various perspectives. Experiments show that low-salinity water flooding is an effective technique for enhancing recovery in tight sandstone reservoirs. Altering the ionic composition of injected water can improve the water wettability of the rock surface and enhance recovery. Decreasing the mass concentration of Ca2+ or increasing the mass concentration of SO42- can prompt the ion-exchange reaction on the rock surface and detachment of polar components from the surface. Consequently, the wettability of the rock surface strengthens, augmenting the recovery process. Nuclear magnetic resonance experiments evidence that low-salinity water injection, with ion adjustment, significantly alters the interactions between the rock and fluid in tight sandstone reservoirs. As a result, the T2 signal amplitude decreases significantly, residual oil saturation reduces considerably, and the hydrophilic nature of the rock surface increases.
Collapse
Affiliation(s)
- Pingtian Fan
- State
Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum (Beijing), Beijing 102249, China
- Nanniwan
Oil Production Plant, Yanchang Oilfield Co., Ltd., Yan’an 716000, China
| | - Yuetian Liu
- State
Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum (Beijing), Beijing 102249, China
| | - Yuting He
- State
Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum (Beijing), Beijing 102249, China
| | - Yuanping Hu
- Nanniwan
Oil Production Plant, Yanchang Oilfield Co., Ltd., Yan’an 716000, China
| | - Leihui Chao
- Nanniwan
Oil Production Plant, Yanchang Oilfield Co., Ltd., Yan’an 716000, China
| | - Yapeng Wang
- Nanniwan
Oil Production Plant, Yanchang Oilfield Co., Ltd., Yan’an 716000, China
| | - Lang Liu
- Nanniwan
Oil Production Plant, Yanchang Oilfield Co., Ltd., Yan’an 716000, China
| | - Jingpeng Li
- State
Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum (Beijing), Beijing 102249, China
| |
Collapse
|
2
|
Ansari AA, Muthumareeswaran M, Lv R. Coordination chemistry of the host matrices with dopant luminescent Ln3+ ion and their impact on luminescent properties. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
3
|
Ansari AA, Aldajani KM, AlHazaa AN, Albrithen HA. Recent progress of fluorescent materials for fingermarks detection in forensic science and anti-counterfeiting. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214523] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
4
|
Ansari AA, Parchur AK, Chen G. Surface modified lanthanide upconversion nanoparticles for drug delivery, cellular uptake mechanism, and current challenges in NIR-driven therapies. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214423] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
5
|
Natarajan D, Ye Z, Wang L, Ge L, Pathak JL. Rare earth smart nanomaterials for bone tissue engineering and implantology: Advances, challenges, and prospects. Bioeng Transl Med 2022; 7:e10262. [PMID: 35111954 PMCID: PMC8780931 DOI: 10.1002/btm2.10262] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 10/09/2021] [Indexed: 12/18/2022] Open
Abstract
Bone grafts or prosthetic implant designing for clinical application is challenging due to the complexity of integrated physiological processes. The revolutionary advances of nanotechnology in the biomaterial field expedite and endorse the current unresolved complexity in functional bone graft and implant design. Rare earth (RE) materials are emerging biomaterials in tissue engineering due to their unique biocompatibility, fluorescence upconversion, antimicrobial, antioxidants, and anti-inflammatory properties. Researchers have developed various RE smart nano-biomaterials for bone tissue engineering and implantology applications in the past two decades. Furthermore, researchers have explored the molecular mechanisms of RE material-mediated tissue regeneration. Recent advances in biomedical applications of micro or nano-scale RE materials have provided a foundation for developing novel, cost-effective bone tissue engineering strategies. This review attempted to provide an overview of RE nanomaterials' technological innovations in bone tissue engineering and implantology and summarized the osteogenic, angiogenic, immunomodulatory, antioxidant, in vivo bone tissue imaging, and antimicrobial properties of various RE nanomaterials, as well as the molecular mechanisms involved in these biological events. Further, we extend to discuss the challenges and prospects of RE smart nano-biomaterials in the field of bone tissue engineering and implantology.
Collapse
Affiliation(s)
- Duraipandy Natarajan
- Affiliated Stomatology Hospital of Guangzhou Medical UniversityGuangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative MedicineGuangzhouChina
| | - Zhitong Ye
- Affiliated Stomatology Hospital of Guangzhou Medical UniversityGuangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative MedicineGuangzhouChina
| | - Liping Wang
- Affiliated Stomatology Hospital of Guangzhou Medical UniversityGuangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative MedicineGuangzhouChina
| | - Linhu Ge
- Affiliated Stomatology Hospital of Guangzhou Medical UniversityGuangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative MedicineGuangzhouChina
| | - Janak Lal Pathak
- Affiliated Stomatology Hospital of Guangzhou Medical UniversityGuangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative MedicineGuangzhouChina
| |
Collapse
|
6
|
Biocompatible NaYF4:Yb,Er upconversion nanoparticles: Colloidal stability and optical properties. JOURNAL OF SAUDI CHEMICAL SOCIETY 2021. [DOI: 10.1016/j.jscs.2021.101390] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
7
|
Ansari AA, Parchur AK, Labis JP, Shar MA. Physiochemical characterization of highly biocompatible, and colloidal LaF 3:Yb/Er upconversion nanoparticles. Photochem Photobiol Sci 2021; 20:1195-1208. [PMID: 34449078 DOI: 10.1007/s43630-021-00092-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 08/17/2021] [Indexed: 10/20/2022]
Abstract
Highly colloidal upconversion nanoparticles (UCNPs) were synthesized at low temperatures by the thermal decomposition process. The structure, morphology, crystallinity, surface chemistry, and optical properties were systematically optimized and studied through various spectroscopic techniques. X-ray diffraction (XRD) patterns have shown the formation of single-phase, highly purified, well-crystalline, hexagonal LaF3 NPs, while the TEM micrographs show small, irregular sizes, spherically shaped, and aggregated polycrystalline UCNPs with an average crystalline size of about 8-15 nm. The Negative Zeta Potential value exhibits good biocompatibility of the UCNPs, which supports the idea that surface-anchored hydroxyl groups facilitate the stabilization of the NPs in aqueous media, as well as enhance biomolecules' tagging efficiency. The absorption spectrum, Zeta Potential, and hydrodynamic size that were measured in aqueous media illustrate excellent dispersibility, colloidal stability, biocompatibility, and cytotoxicity character of the UCNPs. Zeta potential and MTT assay studies illustrated high biocompatibility, it could be due to the surface-anchored hydroxyl groups. The nanoproduct demonstrates an excellent UC luminescence spectrum (i.e., prominent green emission 4S3/2 → 4I/15/2) upon irradiation by the 980-nm laser diode. TEM micrographs, further, revealed that this optically active material with aqueous sensitivities, porous crystal structure, and excellent UCNPs, could be a favorable candidate for potential photonics-based bio-related applications.
Collapse
Affiliation(s)
- Anees A Ansari
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh-11451, Saudi Arabia.
| | - Abdul K Parchur
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, 53226, USA
| | - Joselito P Labis
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh-11451, Saudi Arabia
| | - Muhammad Ali Shar
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh-11451, Saudi Arabia
| |
Collapse
|
8
|
Zhao J, Bu DY, Zhang N, Tian DN, Ma LY, Yang HF. Cytotoxicity of mesoporous silica modified by amino and carboxyl groups on vascular endothelial cells. ENVIRONMENTAL TOXICOLOGY 2021; 36:1422-1433. [PMID: 33764655 DOI: 10.1002/tox.23138] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 09/04/2020] [Accepted: 03/13/2021] [Indexed: 06/12/2023]
Abstract
Mesoporous silica is widely used because of its unique and excellent properties, especially it can be used as a drug carrier and gene carrier in the biomedical field. After the mesoporous silica is put into clinical use, it is more likely to be exposed in human body. Therefore, the effect of mesoporous silica on human body cannot be ignored. The injury of vascular endothelial cells is a prerequisite for the occurrence of many cardiovascular diseases. As a drug and gene carrier, mesoporous silica increases its contact with vascular endothelial cells, so its toxic effect on cardiovascular system cannot be ignored. In this study, amino (NH2 ) and carboxyl (COOH) were modified on mesoporous silica SBA-15 by post-grafting. The results showed that it still maintained the one-dimensional hexagonal mesoporous structure of SBA-15 and had typical mesoporous structure. Then human umbilical vein endothelial cells (HUVECs) were infected with SBA-15, NH2 -SBA-15, and COOH-SBA-15. The results showed that the functionalized mesoporous silica SBA-15 had cytotoxicity to HUVECs and damaged the cell membrane, but compared with the unmodified mesoporous silica SBA-15 the cytotoxicity of functionalized mesoporous silica SBA-15 was lower and the toxicity of carboxyl modified group was the lowest. By comparing the cell inhibition rate and the expression level of lactate dehydrogenate and reactive oxygen species induced by the three materials, oxidative damage and cell membrane damage may be two mechanisms of cytotoxicity. Mesoporous silica SBA-15 has an effect on cardiovascular system by inducing the high expression of nitric oxide, intercellular adhesive molecule-1 and vascular cell adhesive molecule-1 in HUVECs. In summary, our results show that mesoporous silica is toxic to vascular endothelial cells.
Collapse
Affiliation(s)
- Ji Zhao
- Department of Occupational and Environmental Health, School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia, China
| | - De-Yun Bu
- Department of Occupational and Environmental Health, School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Na Zhang
- Department of Occupational and Environmental Health, School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Da-Nian Tian
- Department of Occupational and Environmental Health, School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Li-Ya Ma
- Department of Occupational and Environmental Health, School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Hui-Fang Yang
- Department of Occupational and Environmental Health, School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia, China
| |
Collapse
|