1
|
Cervera J, Manzanares JA, Levin M, Mafe S. Oscillatory phenomena in electrophysiological networks: The coupling between cell bioelectricity and transcription. Comput Biol Med 2024; 180:108964. [PMID: 39106669 DOI: 10.1016/j.compbiomed.2024.108964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/04/2024] [Accepted: 07/27/2024] [Indexed: 08/09/2024]
Abstract
Morphogenetic regulation during embryogenesis and regeneration rely on information transfer and coordination between different regions. Here, we explore theoretically the coupling between bioelectrical and transcriptional oscillations at the individual cell and multicellular levels. The simulations, based on a set of ion channels and intercellular gap junctions, show that bioelectrical and transcriptional waves can electrophysiologically couple distant regions of a model network in phase and antiphase oscillatory states that include synchronization phenomena. In this way, different multicellular regionalizations can be encoded by cell potentials that oscillate between depolarized and polarized states, thus allowing a spatio-temporal coding. Because the electric potential patterns characteristic of development and regeneration are correlated with the spatial distributions of signaling ions and molecules, bioelectricity can act as a template for slow biochemical signals following a hierarchy of experimental times. In particular, bioelectrical gradients that couple cell potentials to transcription rates give to each single cell a rough idea of its location in the multicellular ensemble, thus controlling local differentiation processes that switch on and off crucial parts of the genome.
Collapse
Affiliation(s)
- Javier Cervera
- Dept. Termodinàmica, Facultat de Física, Universitat de València, 46100, Burjassot, Spain.
| | - José A Manzanares
- Dept. Termodinàmica, Facultat de Física, Universitat de València, 46100, Burjassot, Spain
| | - Michael Levin
- Dept. of Biology, Tufts University, Medford, MA, 02155, USA; Allen Discovery Center at Tufts University, Medford, MA, 02155, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02215, USA
| | - Salvador Mafe
- Dept. Termodinàmica, Facultat de Física, Universitat de València, 46100, Burjassot, Spain; Allen Discovery Center at Tufts University, Medford, MA, 02155, USA
| |
Collapse
|
2
|
Martino A, Terracciano R, Milićević B, Milošević M, Simić V, Fallon BC, Carcamo-Bahena Y, Royal ALR, Carcamo-Bahena AA, Butler EB, Willson RC, Kojić M, Filgueira CS. An Insight into Perfusion Anisotropy within Solid Murine Lung Cancer Tumors. Pharmaceutics 2024; 16:1009. [PMID: 39204354 PMCID: PMC11360231 DOI: 10.3390/pharmaceutics16081009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/15/2024] [Accepted: 07/24/2024] [Indexed: 09/04/2024] Open
Abstract
Blood vessels are essential for maintaining tumor growth, progression, and metastasis, yet the tumor vasculature is under a constant state of remodeling. Since the tumor vasculature is an attractive therapeutic target, there is a need to predict the dynamic changes in intratumoral fluid pressure and velocity that occur across the tumor microenvironment (TME). The goal of this study was to obtain insight into perfusion anisotropy within lung tumors. To achieve this goal, we used the perfusion marker Hoechst 33342 and vascular endothelial marker CD31 to stain tumor sections from C57BL/6 mice harboring Lewis lung carcinoma tumors on their flank. Vasculature, capillary diameter, and permeability distribution were extracted at different time points along the tumor growth curve. A computational model was generated by applying a unique modeling approach based on the smeared physical fields (Kojic Transport Model, KTM). KTM predicts spatial and temporal changes in intratumoral pressure and fluid velocity within the growing tumor. Anisotropic perfusion occurs within two domains: capillary and extracellular space. Anisotropy in tumor structure causes the nonuniform distribution of pressure and fluid velocity. These results provide insights regarding local vascular distribution for optimal drug dosing and delivery to better predict distribution and duration of retention within the TME.
Collapse
Affiliation(s)
- Antonio Martino
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA; (A.M.); (R.T.); (B.C.F.); (Y.C.-B.); (A.L.R.R.); (A.A.C.-B.); (M.K.)
- Department of Materials Science and Engineering, University of Houston, Houston, TX 77024, USA
| | - Rossana Terracciano
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA; (A.M.); (R.T.); (B.C.F.); (Y.C.-B.); (A.L.R.R.); (A.A.C.-B.); (M.K.)
- Department of Electronics and Telecommunications, Politecnico di Torino, 10129 Torino, Italy
| | - Bogdan Milićević
- Bioengineering Research and Development Center (BioIRC), 34000 Kragujevac, Serbia; (B.M.); (M.M.); (V.S.)
- Faculty of Engineering, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Miljan Milošević
- Bioengineering Research and Development Center (BioIRC), 34000 Kragujevac, Serbia; (B.M.); (M.M.); (V.S.)
- Institute for Information Technologies, University of Kragujevac, 34000 Kragujevac, Serbia
- Faculty of Information Technology, Belgrade Metropolitan University, 11000 Belgrade, Serbia
| | - Vladimir Simić
- Bioengineering Research and Development Center (BioIRC), 34000 Kragujevac, Serbia; (B.M.); (M.M.); (V.S.)
- Institute for Information Technologies, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Blake C. Fallon
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA; (A.M.); (R.T.); (B.C.F.); (Y.C.-B.); (A.L.R.R.); (A.A.C.-B.); (M.K.)
| | - Yareli Carcamo-Bahena
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA; (A.M.); (R.T.); (B.C.F.); (Y.C.-B.); (A.L.R.R.); (A.A.C.-B.); (M.K.)
| | - Amber Lee R. Royal
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA; (A.M.); (R.T.); (B.C.F.); (Y.C.-B.); (A.L.R.R.); (A.A.C.-B.); (M.K.)
| | - Aileen A. Carcamo-Bahena
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA; (A.M.); (R.T.); (B.C.F.); (Y.C.-B.); (A.L.R.R.); (A.A.C.-B.); (M.K.)
| | - Edward Brian Butler
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA;
| | - Richard C. Willson
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77024, USA;
| | - Miloš Kojić
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA; (A.M.); (R.T.); (B.C.F.); (Y.C.-B.); (A.L.R.R.); (A.A.C.-B.); (M.K.)
- Bioengineering Research and Development Center (BioIRC), 34000 Kragujevac, Serbia; (B.M.); (M.M.); (V.S.)
- Serbian Academy of Sciences and Arts, 11000 Belgrade, Serbia
| | - Carly S. Filgueira
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA; (A.M.); (R.T.); (B.C.F.); (Y.C.-B.); (A.L.R.R.); (A.A.C.-B.); (M.K.)
- Department of Cardiovascular Surgery, Houston Methodist Research Institute, Houston, TX 77030, USA
| |
Collapse
|
3
|
Kojic M, Milosevic M, Simic V, Milicevic B, Terracciano R, Filgueira CS. On the generality of the finite element modeling physical fields in biological systems by the multiscale smeared concept (Kojic transport model). Heliyon 2024; 10:e26354. [PMID: 38434281 PMCID: PMC10907537 DOI: 10.1016/j.heliyon.2024.e26354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 02/09/2024] [Accepted: 02/12/2024] [Indexed: 03/05/2024] Open
Abstract
The biomechanical and biochemical processes in the biological systems of living organisms are extremely complex. Advances in understanding these processes are mainly achieved by laboratory and clinical investigations, but in recent decades they are supported by computational modeling. Besides enormous efforts and achievements in this modeling, there still is a need for new methods that can be used in everyday research and medical practice. In this report, we give a view of the generality of the finite element methodology introduced by the first author and supported by his collaborators. It is based on the multiscale smeared physical fields, termed as Kojic Transport Model (KTM), published in several journal papers and summarized in a recent book (Kojic et al., 2022) [1]. We review relevant literature to demonstrate the distinctions and advantages of our methodology and indicate possible further applications. We refer to our published results by a selection of a few examples which include modeling of partitioning, blood flow, molecular transport within the pancreas, multiscale-multiphysics model of coupling electrical field and ion concentration, and a model of convective-diffusive transport within the lung parenchyma. Two new examples include a model of convective-diffusive transport within a growing tumor, and drug release from nanofibers with fiber degradation.
Collapse
Affiliation(s)
- Milos Kojic
- Houston Methodist Research Institute, The Department of Nanomedicine, 6670 Bertner Ave., R7 117, Houston, TX, 77030, USA
- Bioengineering Research and Development Center BioIRC Kragujevac, Prvoslava Stojanovica 6, 3400, Kragujevac, Serbia
- Serbian Academy of Sciences and Arts, Knez Mihailova 35, 11000, Belgrade, Serbia
| | - Miljan Milosevic
- Bioengineering Research and Development Center BioIRC Kragujevac, Prvoslava Stojanovica 6, 3400, Kragujevac, Serbia
- Institute of Information Technologies, University of Kragujevac, Department of Technical- Technological Sciences, Jovana Cvijica bb, 34000, Kragujevac, Serbia
- Belgrade Metropolitan University, Tadeusa Koscuska 63, 11000, Belgrade, Serbia
| | - Vladimir Simic
- Bioengineering Research and Development Center BioIRC Kragujevac, Prvoslava Stojanovica 6, 3400, Kragujevac, Serbia
- Institute of Information Technologies, University of Kragujevac, Department of Technical- Technological Sciences, Jovana Cvijica bb, 34000, Kragujevac, Serbia
| | - Bogdan Milicevic
- Bioengineering Research and Development Center BioIRC Kragujevac, Prvoslava Stojanovica 6, 3400, Kragujevac, Serbia
- Faculty of Engineering, University of Kragujevac, Kragujevac, 34000, Serbia
| | - Rossana Terracciano
- Houston Methodist Research Institute, The Department of Nanomedicine, 6670 Bertner Ave., R7 117, Houston, TX, 77030, USA
- Department of Electronics and Telecommunications, Politecnico di Torino, Torino, Italy
| | - Carly S. Filgueira
- Houston Methodist Research Institute, The Department of Nanomedicine, 6670 Bertner Ave., R7 117, Houston, TX, 77030, USA
- Department of Cardiovascular Surgery, Houston Methodist Research Institute, Houston, TX, 77030, USA
| |
Collapse
|
4
|
Xiao C, Sun Y, Huang H, Yue X, Song Z, David T, Xu S. Cellular communication among smooth muscle cells: The role of membrane potential via connexins. J Theor Biol 2024; 576:111627. [PMID: 37977477 DOI: 10.1016/j.jtbi.2023.111627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/16/2023] [Accepted: 09/25/2023] [Indexed: 11/19/2023]
Abstract
Communication via action potentials among neurons has been extensively studied. However, effective communication without action potentials is ubiquitous in biological systems, yet it has received much less attention in comparison. Multi-cellular communication among smooth muscles is crucial for regulating blood flow, for example. Understanding the mechanism of this non-action potential communication is critical in many cases, like synchronization of cellular activity, under normal and pathological conditions. In this paper, we employ a multi-scale asymptotic method to derive a macroscopic homogenized bidomain model from the microscopic electro-neutral (EN) model. This is achieved by considering different diffusion coefficients and incorporating nonlinear interface conditions. Subsequently, the homogenized macroscopic model is used to investigate communication in multi-cellular tissues. Our computational simulations reveal that the membrane potential of syncytia, formed by interconnected cells via connexins, plays a crucial role in propagating oscillations from one region to another, providing an effective means for fast cellular communication. Statement of Significance: In this study, we investigated cellular communication and ion transport in vascular smooth muscle cells, shedding light on their mechanisms under normal and abnormal conditions. Our research highlights the potential of mathematical models in understanding complex biological systems. We developed effective macroscale electro-neutral bi-domain ion transport models and examined their behavior in response to different stimuli. Our findings revealed the crucial role of connexinmediated membrane potential changes and demonstrated the effectiveness of cellular communication through syncytium membranes. Despite some limitations, our study provides valuable insights into these processes and emphasizes the importance of mathematical modeling in unraveling the complexities of cellular communication and ion transport.
Collapse
Affiliation(s)
- Chun Xiao
- School of Mathematics and Statistics, Lingnan Normal University, Zhanjiang, 524048, China.
| | - Yishui Sun
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, United Kingdom.
| | - Huaxiong Huang
- Research Center for Mathematics, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, Guangdong, 519088, China; Guangdong Provincial Key Laboratory of Interdisciplinary Research and Application for Data Science, BNU-HKBU United International College, Zhuhai, Guangdong, 519088, China; Laboratory of Mathematics and Complex Systems, MOE, Beijing Normal University, 100875, Beijing, China; Department of Mathematics and Statistics York University, Toronto, ON, M3J 1P3, Canada.
| | - Xingye Yue
- School of Mathematical Sciences, Soochow University, Suzhou 215006, China.
| | - Zilong Song
- Math and Statistics Department, Utah State University, Old Main Hill, Logan , UT 84322, USA.
| | - Tim David
- Department of Mechanical Engineering, College of Engineering, University of Canterbury, Private Bag 4800, Christchurch, 8041, New Zealand.
| | - Shixin Xu
- Zu Chongzhi Center for Mathematics and Computational Sciences (CMCS), Duke Kunshan University, Kunshan, 215316, China.
| |
Collapse
|
5
|
Filipovic N, Sustersic T, Milosevic M, Milicevic B, Simic V, Prodanovic M, Mijailovic S, Kojic M. SILICOFCM platform, multiscale modeling of left ventricle from echocardiographic images and drug influence for cardiomyopathy disease. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 227:107194. [PMID: 36368295 DOI: 10.1016/j.cmpb.2022.107194] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/06/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND AND OBJECTIVE In silico clinical trials are the future of medicine and virtual testing and simulation are the future of medical engineering. The use of a computational platform can reduce costs and time required for developing new models of medical devices and drugs. The computational platform, which is one of the main results of the SILICOFCM project, was developed using state-of-the-art finite element modeling for macro simulation of fluid-structure interaction with micro modeling at the molecular level for drug interaction with the cardiac cells. SILICOFCM platform is using for risk prediction and optimal drug therapy of familial cardiomyopathy in a specific patient. METHODS In order to obtain 3D image reconstruction, the U-net architecture was used to determine geometric parameters for the left ventricle which were extracted from the echocardiographic apical and M-mode views. A micro-mechanics cellular model which includes three kinetic processes of sarcomeric proteins interactions was developed. It allows simulation of the drugs which are divided into three major groups defined by the principal action of each drug. Fluid-solid coupling for the left ventricle was presented. A nonlinear material model of the heart wall that was developed by using constitutive curves which include the stress-strain relationship was used. RESULTS The results obtained with the parametric model of the left ventricle where pressure-volume (PV) diagrams depend on the change of Ca2+ were presented. It directly affects the ejection fraction. The presented approach with the variation of the left ventricle (LV) geometry and simulations which include the influence of different parameters on the PV diagrams are directly interlinked with drug effects on the heart function. It includes different drugs such as Entresto and Digoxin that directly affect the cardiac PV diagrams and ejection fraction. CONCLUSIONS Computational platforms such as the SILICOFCM platform are novel tools for risk prediction of cardiac disease in a specific patient that will certainly open a new avenue for in silico clinical trials in the future.
Collapse
Affiliation(s)
- Nenad Filipovic
- Faculty of Engineering, University of Kragujevac, Kragujevac, Serbia; BioIRC Bioengineering Research and Development center, Kragujevac, Serbia.
| | - Tijana Sustersic
- Faculty of Engineering, University of Kragujevac, Kragujevac, Serbia; BioIRC Bioengineering Research and Development center, Kragujevac, Serbia
| | - Miljan Milosevic
- Faculty of Engineering, University of Kragujevac, Kragujevac, Serbia; BioIRC Bioengineering Research and Development center, Kragujevac, Serbia
| | - Bogdan Milicevic
- Faculty of Engineering, University of Kragujevac, Kragujevac, Serbia; BioIRC Bioengineering Research and Development center, Kragujevac, Serbia
| | - Vladimir Simic
- Faculty of Engineering, University of Kragujevac, Kragujevac, Serbia; BioIRC Bioengineering Research and Development center, Kragujevac, Serbia
| | - Momcilo Prodanovic
- BioIRC Bioengineering Research and Development center, Kragujevac, Serbia
| | | | - Milos Kojic
- Faculty of Engineering, University of Kragujevac, Kragujevac, Serbia; BioIRC Bioengineering Research and Development center, Kragujevac, Serbia
| |
Collapse
|
6
|
Milosevic M, Stojanovic DB, Simic V, Grkovic M, Bjelovic M, Uskokovic PS, Kojic M. Preparation and modeling of three-layered PCL/PLGA/PCL fibrous scaffolds for prolonged drug release. Sci Rep 2020; 10:11126. [PMID: 32636450 PMCID: PMC7341868 DOI: 10.1038/s41598-020-68117-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 06/10/2020] [Indexed: 12/27/2022] Open
Abstract
The authors present the preparation procedure and a computational model of a three‐layered fibrous scaffold for prolonged drug release. The scaffold, produced by emulsion/sequential electrospinning, consists of a poly(d,l-lactic-co-glycolic acid) (PLGA) fiber layer sandwiched between two poly(ε-caprolactone) (PCL) layers. Experimental results of drug release rates from the scaffold are compared with the results of the recently introduced computational finite element (FE) models for diffusive drug release from nanofibers to the three-dimensional (3D) surrounding medium. Two different FE models are used: (1) a 3D discretized continuum and fibers represented by a simple radial one-dimensional (1D) finite elements, and (2) a 3D continuum discretized by composite smeared finite elements (CSFEs) containing the fiber smeared and surrounding domains. Both models include the effects of polymer degradation and hydrophobicity (as partitioning) of the drug at the fiber/surrounding interface. The CSFE model includes a volumetric fraction of fibers and diameter distribution, and is additionally enhanced by using correction function to improve the accuracy of the model. The computational results are validated on Rhodamine B (fluorescent drug l) and other hydrophilic drugs. Agreement with experimental results proves that numerical models can serve as efficient tools for drug release to the surrounding porous medium or biological tissue. It is demonstrated that the introduced three-layered scaffold delays the drug release process and can be used for the time-controlled release of drugs in postoperative therapy.
Collapse
Affiliation(s)
- Miljan Milosevic
- Bioengineering Research and Development Center BioIRC Kragujevac, Prvoslava Stojanovica 6, Kragujevac, 34000, Serbia.,Belgrade Metropolitan University, Tadeusa Koscuska 63, Belgrade, 11000, Serbia
| | - Dusica B Stojanovic
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, Belgrade, 11000, Serbia
| | - Vladimir Simic
- Bioengineering Research and Development Center BioIRC Kragujevac, Prvoslava Stojanovica 6, Kragujevac, 34000, Serbia
| | - Mirjana Grkovic
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, Belgrade, 11000, Serbia
| | - Milos Bjelovic
- Department for Minimally Invasive Upper Digestive Surgery, Clinical Center of Serbia, Hospital for Digestive Surgery - First Surgical Hospital, Dr Koste Todorovica 66, Belgrade, 11000, Serbia
| | - Petar S Uskokovic
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, Belgrade, 11000, Serbia
| | - Milos Kojic
- Bioengineering Research and Development Center BioIRC Kragujevac, Prvoslava Stojanovica 6, Kragujevac, 34000, Serbia. .,The Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Ave., R7 117, Houston, TX, 77030, USA. .,Serbian Academy of Sciences and Arts, Knez Mihailova 35, Belgrade, 11000, Serbia.
| |
Collapse
|
7
|
Kojic M, Milosevic M, Simic V, Milicevic B, Geroski V, Nizzero S, Ziemys A, Filipovic N, Ferrari M. Smeared Multiscale Finite Element Models for Mass Transport and Electrophysiology Coupled to Muscle Mechanics. Front Bioeng Biotechnol 2020; 7:381. [PMID: 31921800 PMCID: PMC6914730 DOI: 10.3389/fbioe.2019.00381] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 11/15/2019] [Indexed: 11/22/2022] Open
Abstract
Mass transport represents the most fundamental process in living organisms. It includes delivery of nutrients, oxygen, drugs, and other substances from the vascular system to tissue and transport of waste and other products from cells back to vascular and lymphatic network and organs. Furthermore, movement is achieved by mechanical forces generated by muscles in coordination with the nervous system. The signals coming from the brain, which have the character of electrical waves, produce activation within muscle cells. Therefore, from a physics perspective, there exist a number of physical fields within the body, such as velocities of transport, pressures, concentrations of substances, and electrical potential, which is directly coupled to biochemical processes of transforming the chemical into mechanical energy and further internal forces for motion. The overall problems of mass transport and electrophysiology coupled to mechanics can be investigated theoretically by developing appropriate computational models. Due to the enormous complexity of the biological system, it would be almost impossible to establish a detailed computational model for the physical fields related to mass transport, electrophysiology, and coupled fields. To make computational models feasible for applications, we here summarize a concept of smeared physical fields, with coupling among them, and muscle mechanics, which includes dependence on the electrical potential. Accuracy of the smeared computational models, also with coupling to muscle mechanics, is illustrated with simple example, while their applicability is demonstrated on a liver model with tumors present. The last example shows that the introduced methodology is applicable to large biological systems.
Collapse
Affiliation(s)
- Milos Kojic
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, United States.,Bioengineering Research and Development Center BioIRC Kragujevac, Kragujevac, Serbia.,Serbian Academy of Sciences and Arts, Belgrade, Serbia
| | - Miljan Milosevic
- Bioengineering Research and Development Center BioIRC Kragujevac, Kragujevac, Serbia.,Faculty of Information Technologies, Belgrade Metropolitan University, Belgrade, Serbia
| | - Vladimir Simic
- Bioengineering Research and Development Center BioIRC Kragujevac, Kragujevac, Serbia
| | - Bogdan Milicevic
- Bioengineering Research and Development Center BioIRC Kragujevac, Kragujevac, Serbia
| | - Vladimir Geroski
- Bioengineering Research and Development Center BioIRC Kragujevac, Kragujevac, Serbia
| | - Sara Nizzero
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, United States.,Applied Physics Graduate Program, Rice University, Houston, TX, United States
| | - Arturas Ziemys
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, United States
| | - Nenad Filipovic
- Faculty for Engineering Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Mauro Ferrari
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, United States
| |
Collapse
|