1
|
Goldthwaite WT, Lambertson E, Gragg M, Windemuller D, Anthony JE, Zuehlsdorff TJ, Ostroverkhova O. Morphology- and crystal packing-dependent singlet fission and photodegradation in functionalized tetracene crystals and films. J Chem Phys 2024; 161:194712. [PMID: 39569690 DOI: 10.1063/5.0234494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/30/2024] [Indexed: 11/22/2024] Open
Abstract
Singlet fission (SF) is a charge carrier multiplication process that has potential for improving the performance of (opto)electronic devices from the conversion of one singlet exciton S1 into two triplet excitons T1 via a spin-entangled triplet pair state 1(TT). This process depends highly on molecular packing and morphology, both for the generation and dissociation of 1(TT) states. Many benchmark SF materials, such as acenes, are also prone to photodegradation reactions, such as endoperoxide (EPO) formation and photodimerization, which inhibit realization of SF devices. In this paper, we compare functionalized tetracenes R-Tc with two packing motifs: "slip-stack" packing in R = TES, TMS, and tBu and "gamma" packing in R = TBDMS to determine the effects of morphology on SF as well as on photodegradation using a combination of temperature and magnetic field dependent spectroscopy, kinetic modeling, and time-dependent density functional theory. We find that both "slip-stack" and "gamma" packing support SF with high T1 yield at room temperature (up to 191% and 181%, respectively), but "slip-stack" is considerably more advantageous at low temperatures (<150 K). In addition, each packing structure has a distinct emissive relaxation pathway competitive to SF, while the states involved in the SF itself are dark. The "gamma" packing has superior photostability, both in regards to EPO formation and photodimerization. The results indicate that the trade-off between SF efficiency and photostability can be overcome with material design, emphasize the importance of considering both photophysical and photochemical properties, and inform efforts to develop optimal SF materials for (opto)electronic applications.
Collapse
Affiliation(s)
| | - Evan Lambertson
- Department of Physics, Oregon State University, Corvallis, Oregon 97331, USA
| | - Madalyn Gragg
- Department of Physics, Oregon State University, Corvallis, Oregon 97331, USA
| | - Dean Windemuller
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40511, USA
| | - John E Anthony
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40511, USA
| | - Tim J Zuehlsdorff
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, USA
| | | |
Collapse
|
2
|
Krueger TD, Giesbers G, Van Court RC, Zhu L, Kim R, Beaudry CM, Robinson SC, Ostroverkhova O, Fang C. Ultrafast Dynamics and Photoresponse of a Fungi-Derived Pigment Xylindein from Solution to Thin Films. Chemistry 2021; 27:5627-5631. [PMID: 33543812 DOI: 10.1021/acs.jpcc.0c09627] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/05/2021] [Indexed: 05/22/2023]
Abstract
Organic semiconductor materials have recently gained momentum due to their non-toxicity, low cost, and sustainability. Xylindein is a remarkably photostable pigment secreted by fungi that grow on decaying wood, and its relatively strong electronic performance is enabled by π-π stacking and hydrogen-bonding network that promote charge transport. Herein, femtosecond transient absorption spectroscopy with a near-IR probe was used to unveil a rapid excited-state intramolecular proton transfer reaction. Conformational motions potentially lead to a conical intersection that quenches fluorescence in the monomeric state. In concentrated solutions, nascent aggregates exhibit a faster excited state lifetime due to excimer formation, confirmed by the excimer→charge-transfer excited-state absorption band of the xylindein thin film, thus limiting its optoelectronic performance. Therefore, extending the xylindein sidechains with branched alkyl groups may hinder the excimer formation and improve optoelectronic properties of naturally derived materials.
Collapse
Affiliation(s)
- Taylor D Krueger
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR, 97331-4003, USA
| | - Gregory Giesbers
- Department of Physics, Oregon State University, 301 Weniger Hall, Corvallis, OR, 97331-6507, USA
| | - Ray C Van Court
- Department of Wood Science and Engineering, Oregon State University, 119 Richardson Hall, Corvallis, OR, 97331-5704, USA
| | - Liangdong Zhu
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR, 97331-4003, USA
| | - Ryan Kim
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR, 97331-4003, USA
| | - Christopher M Beaudry
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR, 97331-4003, USA
| | - Seri C Robinson
- Department of Wood Science and Engineering, Oregon State University, 119 Richardson Hall, Corvallis, OR, 97331-5704, USA
| | - Oksana Ostroverkhova
- Department of Physics, Oregon State University, 301 Weniger Hall, Corvallis, OR, 97331-6507, USA
| | - Chong Fang
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR, 97331-4003, USA
| |
Collapse
|
3
|
Van Schenck JDB, Mayonado G, Anthony JE, Graham MW, Ostroverkhova O. Molecular packing-dependent exciton dynamics in functionalized anthradithiophene derivatives: From solutions to crystals. J Chem Phys 2020; 153:164715. [PMID: 33138416 DOI: 10.1063/5.0026072] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Understanding the impact of inter-molecular orientation on the optical properties of organic semiconductors is important for designing next-generation organic (opto)electronic and photonic devices. However, fundamental aspects of how various features of molecular packing in crystalline systems determine the nature and dynamics of excitons have been a subject of debate. Toward this end, we present a systematic study of how various molecular crystal packing motifs affect the optical properties of a class of high-performance organic semiconductors: functionalized derivatives of fluorinated anthradithiophene. The absorptive and emissive species present in three such derivatives (exhibiting "brickwork," "twisted-columnar," and "sandwich-herringbone" motifs, controlled by the side group R) were analyzed both in solution and in single crystals, using various modalities of optical and photoluminescence spectroscopy, revealing the nature of these excited states. In solution, in the emission band, two states were identified: a Franck-Condon state present at all concentrations and an excimer that emerged at higher concentrations. In single crystal systems, together with ab initio calculations, it was found in the absorptive band that Frenkel and Charge Transfer (CT) excitons mixed due to nonvanishing CT integrals in all derivatives, but the amount of admixture and exciton delocalization depended on the packing, with the "sandwich-herringbone" packing motif least conducive to delocalization. Three emissive species in the crystal phase were also identified: Frenkel excitons, entangled triplet pairs 1(TT) (which are precursors to forming free triplet states via singlet fission), and self-trapped excitons (STEs, similar in origin to excimers present in concentrated solution). The "twisted-columnar" packing motif was most conducive to the formation of Frenkel excitons delocalized over 4-7 molecules depending on the temperature. These delocalized Frenkel states were dominant across the full temperature range (78 K-293 K), though at lower temperatures, the entangled triplet states and STEs were present. In the derivative with the "brickwork" packing, all three emissive species were observed across the full temperature range and, most notably, the 1(TT) state was present at room temperature. Finally, the derivative with the "sandwich-herringbone" packing exhibited localized Frenkel excitons and had a strong propensity for self-trapped exciton formation even at higher temperatures. In this derivative, no formation of the 1(TT) state was observed. The temperature-dependent dynamics of these emissive states are reported, as well as their origin in fundamental inter-molecular interactions.
Collapse
Affiliation(s)
- J D B Van Schenck
- Department of Physics, Oregon State University, Corvallis, Oregon 97330, USA
| | - G Mayonado
- Department of Physics, Oregon State University, Corvallis, Oregon 97330, USA
| | - J E Anthony
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, USA
| | - M W Graham
- Department of Physics, Oregon State University, Corvallis, Oregon 97330, USA
| | - O Ostroverkhova
- Department of Physics, Oregon State University, Corvallis, Oregon 97330, USA
| |
Collapse
|
4
|
Giesbers G, Van Schenck J, Quinn A, Van Court R, Vega Gutierrez SM, Robinson SC, Ostroverkhova O. Xylindein: Naturally Produced Fungal Compound for Sustainable (Opto)electronics. ACS OMEGA 2019; 4:13309-13318. [PMID: 31460459 PMCID: PMC6704441 DOI: 10.1021/acsomega.9b01490] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 07/11/2019] [Indexed: 05/14/2023]
Abstract
Organic semiconductors are of interest for (opto)electronic applications due to their low cost, solution processability, and tunable properties. Recently, natural product-derived organic pigments attracted attention due to their extraordinary environmental stability and unexpectedly good optoelectronic performance, in spite of only partially conjugated molecular structure. Fungi-derived pigments are a naturally sourced, sustainable class of materials that are largely unexplored as organic semiconductor materials. We present a study of the optical and electronic properties of a fungi-derived pigment xylindein, which is secreted by the wood-staining fungi Chlorociboria aeruginosa, and its blends with poly(methyl methacrylate) (PMMA) and crystalline nanocellulose (CNC). Optical absorption spectra of xylindein revealed the presence of two tautomers whose structures and properties were established using density functional theory. Pronounced pigment aggregation in polar solvents and in films, driven by intermolecular hydrogen bonding, was also observed. The pigment exhibited high photostability, electron mobility up to 0.4 cm2/(V s) in amorphous films, and thermally activated charge transport and photoresponse with activation energies of ∼0.3 and 0.2 eV, respectively. The dark and photocurrents in xylindein:PMMA blends were comparable to those in pristine xylindein film, whereas blends with CNC exhibited lower currents due to inhomogeneous distribution of xylindein in the CNC.
Collapse
Affiliation(s)
- Gregory Giesbers
- Department
of Physics and Department of Wood Science and Engineering, Oregon State University, Corvallis, Oregon 97331, United States
| | - Jonathan Van Schenck
- Department
of Physics and Department of Wood Science and Engineering, Oregon State University, Corvallis, Oregon 97331, United States
| | - Alexander Quinn
- Department
of Physics and Department of Wood Science and Engineering, Oregon State University, Corvallis, Oregon 97331, United States
| | - Ray Van Court
- Department
of Physics and Department of Wood Science and Engineering, Oregon State University, Corvallis, Oregon 97331, United States
| | - Sarath M. Vega Gutierrez
- Department
of Physics and Department of Wood Science and Engineering, Oregon State University, Corvallis, Oregon 97331, United States
| | - Seri C. Robinson
- Department
of Physics and Department of Wood Science and Engineering, Oregon State University, Corvallis, Oregon 97331, United States
| | - Oksana Ostroverkhova
- Department
of Physics and Department of Wood Science and Engineering, Oregon State University, Corvallis, Oregon 97331, United States
| |
Collapse
|
5
|
Pensack RD, Tilley AJ, Grieco C, Purdum GE, Ostroumov EE, Granger DB, Oblinsky DG, Dean JC, Doucette GS, Asbury JB, Loo YL, Seferos DS, Anthony JE, Scholes GD. Striking the right balance of intermolecular coupling for high-efficiency singlet fission. Chem Sci 2018; 9:6240-6259. [PMID: 30090312 PMCID: PMC6062843 DOI: 10.1039/c8sc00293b] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 05/31/2018] [Indexed: 12/02/2022] Open
Abstract
Singlet fission is a process that splits collective excitations, or excitons, into two with unity efficiency. This exciton splitting process, unique to molecular photophysics, has the potential to considerably improve the efficiency of optoelectronic devices through more efficient light harvesting. While the first step of singlet fission has been characterized in great detail, subsequent steps critical to achieving overall highly-efficient singlet-to-triplet conversion are only just beginning to become well understood. One of the most elementary suggestions, which has yet to be tested, is that an appropriately balanced coupling is necessary to ensure overall highly efficient singlet fission; that is, the coupling needs to be strong enough so that the first step is fast and efficient, yet weak enough to ensure the independent behavior of the resultant triplets. In this work, we show how high overall singlet-to-triplet conversion efficiencies can be achieved in singlet fission by ensuring that the triplets comprising the triplet pair behave as independently as possible. We show that side chain sterics govern local packing in amorphous pentacene derivative nanoparticles, and that this in turn controls both the rate at which triplet pairs form and the rate at which they decay. We show how compact side chains and stronger couplings promote a triplet pair that effectively couples to the ground state, whereas bulkier side chains promote a triplet pair that appears more like two independent and long-lived triplet excitations. Our results show that the triplet pair is not emissive, that its decay is best viewed as internal conversion rather than triplet-triplet annihilation, and perhaps most critically that, in contrast to a number of recent suggestions, the triplets comprising the initially formed triplet pair cannot be considered independently. This work represents a significant step toward better understanding intermediates in singlet fission, and how molecular packing and couplings govern overall triplet yields.
Collapse
Affiliation(s)
- Ryan D Pensack
- Department of Chemistry , Princeton University , Princeton , New Jersey 08544 , USA .
| | - Andrew J Tilley
- Department of Chemistry , University of Toronto , Toronto , Ontario M5S 3H6 , Canada
| | - Christopher Grieco
- Department of Chemistry , The Pennsylvania State University , University Park , Pennsylvania 16802 , USA
| | - Geoffrey E Purdum
- Department of Chemical and Biological Engineering , Princeton University , Princeton , New Jersey 08544 , USA
| | - Evgeny E Ostroumov
- Department of Chemistry , Princeton University , Princeton , New Jersey 08544 , USA .
| | - Devin B Granger
- Department of Chemistry , University of Kentucky , Lexington , Kentucky 40506 , USA .
| | - Daniel G Oblinsky
- Department of Chemistry , Princeton University , Princeton , New Jersey 08544 , USA .
| | - Jacob C Dean
- Department of Chemistry , Princeton University , Princeton , New Jersey 08544 , USA .
| | - Grayson S Doucette
- Department of Chemistry , The Pennsylvania State University , University Park , Pennsylvania 16802 , USA
| | - John B Asbury
- Department of Chemistry , The Pennsylvania State University , University Park , Pennsylvania 16802 , USA
| | - Yueh-Lin Loo
- Department of Chemical and Biological Engineering , Princeton University , Princeton , New Jersey 08544 , USA
- Andlinger Center for Energy and the Environment , Princeton University , Princeton , New Jersey 08544 , USA
| | - Dwight S Seferos
- Department of Chemistry , University of Toronto , Toronto , Ontario M5S 3H6 , Canada
- Department of Chemical Engineering and Applied Chemistry , University of Toronto , Toronto , Ontario M5S 3E5 , Canada
| | - John E Anthony
- Department of Chemistry , University of Kentucky , Lexington , Kentucky 40506 , USA .
| | - Gregory D Scholes
- Department of Chemistry , Princeton University , Princeton , New Jersey 08544 , USA .
| |
Collapse
|
6
|
Abstract
Organic (opto)electronic materials have received considerable attention due to their applications in thin-film-transistors, light-emitting diodes, solar cells, sensors, photorefractive devices, and many others. The technological promises include low cost of these materials and the possibility of their room-temperature deposition from solution on large-area and/or flexible substrates. The article reviews the current understanding of the physical mechanisms that determine the (opto)electronic properties of high-performance organic materials. The focus of the review is on photoinduced processes and on electronic properties important for optoelectronic applications relying on charge carrier photogeneration. Additionally, it highlights the capabilities of various experimental techniques for characterization of these materials, summarizes top-of-the-line device performance, and outlines recent trends in the further development of the field. The properties of materials based both on small molecules and on conjugated polymers are considered, and their applications in organic solar cells, photodetectors, and photorefractive devices are discussed.
Collapse
Affiliation(s)
- Oksana Ostroverkhova
- Department of Physics, Oregon State University , Corvallis, Oregon 97331, United States
| |
Collapse
|
7
|
Marshall JL, Uchida K, Frederickson CK, Schütt C, Zeidell AM, Goetz KP, Finn TW, Jarolimek K, Zakharov LN, Risko C, Herges R, Jurchescu OD, Haley MM. Indacenodibenzothiophenes: synthesis, optoelectronic properties and materials applications of molecules with strong antiaromatic character. Chem Sci 2016; 7:5547-5558. [PMID: 28066536 PMCID: PMC5207214 DOI: 10.1039/c6sc00950f] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 05/04/2016] [Indexed: 12/14/2022] Open
Abstract
Indeno[1,2-b]fluorenes (IFs), while containing 4n π-electrons, are best described as two aromatic benzene rings fused to a weakly paratropic s-indacene core. In this study, we find that replacement of the outer benzene rings of an IF with benzothiophenes allows the antiaromaticity of the central s-indacene to strongly reassert itself. Herein we report a combined synthetic, computational, structural, and materials study of anti- and syn-indacenodibenzothiophenes (IDBTs). We have developed an efficient and scalable synthesis for preparation of a series of aryl- and ethynyl-substituted IDBTs. NICS-XY scans and ACID calculations reveal an increasingly antiaromatic core from [1,2-b]IF to anti-IDBT, with syn-IDBT being nearly as antiaromatic as the parent s-indacene. As an initial evaluation, the intermolecular electronic couplings and electronic band structure of a diethynyl anti-IDBT derivative reveal the potential for hole and / or electron transport. OFETs constructed using this molecule show the highest hole mobilities yet achieved for a fully conjugated IF derivative.
Collapse
Affiliation(s)
- Jonathan L. Marshall
- Department of Chemistry & Biochemistry and Materials Science Institute
, University of Oregon
,
Eugene
, Oregon 97403-1253
, USA
.
| | - Kazuyuki Uchida
- Department of Chemistry
, Graduate School of Science
, Osaka University
,
Toyonaka
, Osaka 560-0043
, Japan
| | - Conerd K. Frederickson
- Department of Chemistry & Biochemistry and Materials Science Institute
, University of Oregon
,
Eugene
, Oregon 97403-1253
, USA
.
| | - Christian Schütt
- Otto-Diels-Institute of Organic Chemistry
, University of Kiel
,
Otto-Hahn-Platz 4
, Kiel 24098
, Germany
| | - Andrew M. Zeidell
- Department of Physics
, Wake Forest University
,
Winston-Salem
, North Carolina 27109
, USA
| | - Katelyn P. Goetz
- Department of Physics
, Wake Forest University
,
Winston-Salem
, North Carolina 27109
, USA
| | - Tristan W. Finn
- Department of Chemistry and Center for Applied Energy Research
, University of Kentucky
,
Lexington
, Kentucky 40506
, USA
| | - Karol Jarolimek
- Department of Chemistry and Center for Applied Energy Research
, University of Kentucky
,
Lexington
, Kentucky 40506
, USA
| | - Lev N. Zakharov
- CAMCOR
, University of Oregon
,
Eugene
, Oregon 97403-1433
, USA
| | - Chad Risko
- Department of Chemistry and Center for Applied Energy Research
, University of Kentucky
,
Lexington
, Kentucky 40506
, USA
| | - Rainer Herges
- Otto-Diels-Institute of Organic Chemistry
, University of Kiel
,
Otto-Hahn-Platz 4
, Kiel 24098
, Germany
| | - Oana D. Jurchescu
- Department of Physics
, Wake Forest University
,
Winston-Salem
, North Carolina 27109
, USA
| | - Michael M. Haley
- Department of Chemistry & Biochemistry and Materials Science Institute
, University of Oregon
,
Eugene
, Oregon 97403-1253
, USA
.
| |
Collapse
|