1
|
Negrutiu M, Danescu S, Focsan M, Vesa SC, Cadar A, Vaida S, Oiegar A, Baican A. Enhancing Diagnosis in Squamous Cell Carcinoma: Non-Invasive Imaging and Multimodal Approach. Diagnostics (Basel) 2025; 15:1018. [PMID: 40310402 PMCID: PMC12026269 DOI: 10.3390/diagnostics15081018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/12/2025] [Accepted: 04/15/2025] [Indexed: 05/02/2025] Open
Abstract
Background/Objectives: Cutaneous squamous cell carcinoma (cSCC) is the second most common skin cancer, with diverse clinical presentations. This study aims to correlate findings from dermoscopy, ultrasonography, ex vivo confocal microscopy, and histology to improve diagnostic accuracy and guide better clinical management of cSCC. Methods: This cross-sectional study, conducted between July 2022 and December 2024, included 26 patients with 35 clinically suspicious cSCC tumors, analyzed through clinical, dermoscopic, high-frequency ultrasound (HFUS), ex vivo confocal fluorescence microscopy (FCM), and histopathology. Tumors were evaluated for various clinical, imaging, and histopathological criteria, such as tumor thickness, vascularization, differentiation degree, and invasion level, with FCM applied to 24 tumors for advanced microscopic analysis. Results: The study analyzed 35 cases of histopathologically confirmed cSCC, finding that invasive SCC was associated with greater tumor thickness, increased vascularization, and ulceration on both ultrasound and dermatoscopy, while in situ SCC showed homogeneous echogenicity and specific dermoscopic patterns like dotted vessels and white halos. Strong correlations were identified between ultrasound and histopathological measurements of tumor thickness and invasion depth, and confocal microscopy revealed that features like plump bright cells and nest-like structures were linked to invasive and poorly differentiated tumors. Conclusions: This study uniquely integrates advanced imaging techniques-dermatoscopy, skin ultrasound, and ex vivo confocal microscopy-with histopathological analysis to provide new insights into tumor grade, vascularity, and invasion depth in cSCC, enhancing non-invasive diagnosis.
Collapse
Affiliation(s)
- Mircea Negrutiu
- Department of Dermatology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (M.N.); (A.B.)
| | - Sorina Danescu
- Department of Dermatology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (M.N.); (A.B.)
| | - Monica Focsan
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, 400084 Cluj-Napoca, Romania;
| | - Stefan Cristian Vesa
- Department of Functional Sciences, Discipline of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Adelina Cadar
- Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Stefan Vaida
- Department of Plastic Surgery, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Alexandra Oiegar
- Municipal Clinical Emergency Hospital, 300041 Timișoara, Romania;
| | - Adrian Baican
- Department of Dermatology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (M.N.); (A.B.)
| |
Collapse
|
2
|
Kumar P, Ashique S, Sharma H, Yasmin S, Islam A, Mandal S, Gowda BHJ, Khalid M, Ansari MY, Singh M, Ehsan I, Taj T, Taghizadeh-Hesary F. A narrative review on the use of Green synthesized metallic nanoparticles for targeted cancer therapy. Bioorg Chem 2025; 157:108305. [PMID: 40022847 DOI: 10.1016/j.bioorg.2025.108305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/15/2025] [Accepted: 02/19/2025] [Indexed: 03/04/2025]
Abstract
Cancer is a leading cause of death worldwide. While traditional and synthetic medical therapies are in place for cancer treatment, their effectiveness is hindered by various limitations, such as toxic side effects, limited availability, and high costs. In recent years, a promising alternative approach has emerged in the form of green-synthesized metallic nanoparticles (MNPs), which offer targeted cancer therapy. These nanoparticles (NPs) have garnered significant attention from cancer researchers owing to their natural or surface-induced anticancer properties, versatility of metals as agents, and eco-friendly nature. This approach may positively impact healthy cells surrounding the cancerous cells. Green-synthesized MNPs have gained popularity in cancer management because of their ease of handling in the laboratory and the affordability of starting materials compared to synthetic methods. This review analyzes green-synthesized MNPs for targeted cancer therapy, highlighting tumor-targeting strategies, synthesis methods, and clinical challenges. Unlike general reviews, it compares plant-, microbial-, and enzyme-mediated synthesis approaches, emphasizing their impact on nanoparticle stability, functionalization, and interactions with the tumor microenvironment for enhanced therapeutic efficacy.
Collapse
Affiliation(s)
- Prashant Kumar
- SRM Modinagar College of Pharmacy, SRMIST Delhi-NCR Campus, Modinagar, Ghaziabad, Uttar Pradesh, 201204, India
| | - Sumel Ashique
- Department of Pharmaceutical Technology, Bharat Technology, Uluberia, West Bengal 711316, India.
| | - Himanshu Sharma
- Teerthanker Mahaveer College of Pharmacy, Teerthanker Mahaveer University, Moradabad, (UP), India
| | - Sabina Yasmin
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Anas Islam
- Faculty of Pharmacy, Integral University, Lucknow 226026, Uttar Pradesh, India
| | - Subhajit Mandal
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh 786004, Assam, India
| | - B H Jaswanth Gowda
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka 575018, India
| | - Mohammad Khalid
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Asir-Abha 61421, Saudi Arabia
| | - Mohammad Yousuf Ansari
- MM college of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana 133207, India; Ibne Seena College of Pharmacy, Azmi Vidya Nagri Anjhi Shahabad, Hardoi-241124 Uttar Pradesh (U.P.) India.
| | - Mansi Singh
- Research Scholar, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh 281406, India
| | - Iman Ehsan
- School of Pharmacy Sister Nivedita University, Kolkata-700156, WB, India
| | - Tahreen Taj
- Research Scholar, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh 281406, India; Department of Pharmacology, Yenepoya Pharmacy college and research centre, Yenepoya (Deemed to be) university, Mangalore 575018, India
| | - Farzad Taghizadeh-Hesary
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Department of Clinical Oncology, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Soto RF, Godoy SE. An automatic approach to detect skin cancer utilizing active infrared thermography. Heliyon 2024; 10:e40608. [PMID: 39687094 PMCID: PMC11647852 DOI: 10.1016/j.heliyon.2024.e40608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 10/16/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Skin cancer is a growing global concern, with cases steadily rising. Typically, malignant moles are identified through visual inspection, using dermatoscopy and patient history. Active thermography has emerged as an effective method to distinguish between malignant and benign lesions. Our previous research showed that spatio-temporal features can be extracted from suspicious lesions to accurately determine malignancy, which was applied in a distance-based classifier. In this study, we build on that foundation by introducing a set of novel spatial and temporal features that enhance classification accuracy and can be integrated into any machine learning approach. These features were implemented in a support-vector machine classifier to detect malignancy. Notably, our method addresses a common limitation in existing approaches-manual lesion selection-by automating the process using a U-Net convolutional neural network. We validated our system by comparing U-Net's performance with expert dermatologist segmentations, achieving a 17% improvement in the Jaccard index over a semi-automatic algorithm. The detection algorithm relies on accurate lesion segmentation, and its performance was evaluated across four segmentation techniques. At an 85% sensitivity threshold, expert segmentation provided the highest specificity at 87.62%, while non-expert and U-Net segmentations achieved comparable results of 69.63% and 68.80%, respectively. Semi-automatic segmentation lagged behind at 64.45%. This automated detection system performs comparably to high-accuracy methods while offering a more standardized and efficient solution. The proposed automatic system achieves 3% higher accuracy compared to the ResNet152V2 network when processing low-quality images obtained in a clinical setting.
Collapse
Affiliation(s)
- Ricardo F. Soto
- Department of Electrical Engineering, Universidad de Concepción, Edmundo Larenas 219, Concepción, 4030000, Biobío, Chile
| | - Sebastián E. Godoy
- Department of Electrical Engineering, Universidad de Concepción, Edmundo Larenas 219, Concepción, 4030000, Biobío, Chile
| |
Collapse
|
4
|
Kiss K, Kopřivová H, Stejskal V, Krbal L, Buday J, Brunnbauer L, Képeš E, Pořízka P, Ryška A, Kaška M, Kaiser J, Limbeck A. Assessing spatial distribution of bioindicator elements in various cutaneous tumors using correlative imaging with laser-ablation-based analytical methods. Talanta 2024; 279:126651. [PMID: 39121552 DOI: 10.1016/j.talanta.2024.126651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/23/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024]
Abstract
Correlative imaging of cutaneous tumors provides additional information to the standard histopathologic examination. However, the joint progress in the establishment of analytical techniques, such as Laser-Induced Breakdown Spectroscopy (LIBS) and Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) in clinical practice is still limited. Their combination provides complementary information as it is also shown in our study in terms of major biotic (Ca, Mg, and P) and trace (Cu and Zn) elements. To elucidate changes in the elemental composition in tumors, we have compiled a set of malignant tumors (Squamous Cell Carcinoma, Basal Cell Carcinoma, Malignant Melanoma, and Epithelioid Angiosarcoma), one benign tumor (Pigmented Nevus) and one healthy-skin sample. The data processing was based on a methodological pipeline involving binary image registration and affine transformation. Thus, our paper brings a feasibility study of a practical methodological concept that enables us to compare LIBS and LA-ICP-MS results despite the mutual spatial distortion of original elemental images. Moreover, we also show that LIBS could be a sufficient pre-screening method even for a larger number of samples according to the speed and reproducibility of the analyses. Whereas LA-ICP-MS could serve as a ground truth and reference technique for preselected samples.
Collapse
Affiliation(s)
- Kateřina Kiss
- Charles University, Faculty of Medicine in Hradec Králové, Academic Department of Surgery, Šimkova 870, 500 03 Hradec Králové, Czech Republic; Charles University, Third Faculty of Medicine, Department of Plastic Surgery, Ruská 2411, 100 00 Praha 10, Czech Republic; Surgical Department, Faculty of Medicine in Hradec Králové Charles University and University Hospital Hradec Králové, Sokolská 581, 500 05 Hradec Králové, Czech Republic
| | - Hana Kopřivová
- Central European Institute of Technology (CEITEC), Brno University of Technology, Purkyňova 123, 612 00 Brno, Czech Republic
| | - Václav Stejskal
- Charles University, Faculty of Medicine in Hradec Králové, Academic Department of Surgery, Šimkova 870, 500 03 Hradec Králové, Czech Republic; The Fingerland Department of Pathology, Faculty of Medicine in Hradec Králové Charles University and University Hospital Hradec Králové, Sokolská 581, 500 05 Hradec Králové, Czech Republic
| | - Lukáš Krbal
- Charles University, Faculty of Medicine in Hradec Králové, Academic Department of Surgery, Šimkova 870, 500 03 Hradec Králové, Czech Republic; The Fingerland Department of Pathology, Faculty of Medicine in Hradec Králové Charles University and University Hospital Hradec Králové, Sokolská 581, 500 05 Hradec Králové, Czech Republic
| | - Jakub Buday
- Central European Institute of Technology (CEITEC), Brno University of Technology, Purkyňova 123, 612 00 Brno, Czech Republic; Faculty of Mechanical Engineering (FME), Brno University of Technology, Technická 2 896, 616 69 Brno, Czech Republic
| | - Lukas Brunnbauer
- TU Wien, Institute of Chemical Technologies and Analytics, Getreidemarkt 9/164-I(2)AC, 1060 Vienna, Austria
| | - Erik Képeš
- Central European Institute of Technology (CEITEC), Brno University of Technology, Purkyňova 123, 612 00 Brno, Czech Republic
| | - Pavel Pořízka
- Central European Institute of Technology (CEITEC), Brno University of Technology, Purkyňova 123, 612 00 Brno, Czech Republic; Faculty of Mechanical Engineering (FME), Brno University of Technology, Technická 2 896, 616 69 Brno, Czech Republic.
| | - Aleš Ryška
- The Fingerland Department of Pathology, Faculty of Medicine in Hradec Králové Charles University and University Hospital Hradec Králové, Sokolská 581, 500 05 Hradec Králové, Czech Republic
| | - Milan Kaška
- Charles University, Faculty of Medicine in Hradec Králové, Academic Department of Surgery, Šimkova 870, 500 03 Hradec Králové, Czech Republic; Surgical Department, Faculty of Medicine in Hradec Králové Charles University and University Hospital Hradec Králové, Sokolská 581, 500 05 Hradec Králové, Czech Republic
| | - Jozef Kaiser
- Central European Institute of Technology (CEITEC), Brno University of Technology, Purkyňova 123, 612 00 Brno, Czech Republic; Faculty of Mechanical Engineering (FME), Brno University of Technology, Technická 2 896, 616 69 Brno, Czech Republic
| | - Andreas Limbeck
- TU Wien, Institute of Chemical Technologies and Analytics, Getreidemarkt 9/164-I(2)AC, 1060 Vienna, Austria
| |
Collapse
|
5
|
Attallah O. Skin-CAD: Explainable deep learning classification of skin cancer from dermoscopic images by feature selection of dual high-level CNNs features and transfer learning. Comput Biol Med 2024; 178:108798. [PMID: 38925085 DOI: 10.1016/j.compbiomed.2024.108798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/30/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024]
Abstract
Skin cancer (SC) significantly impacts many individuals' health all over the globe. Hence, it is imperative to promptly identify and diagnose such conditions at their earliest stages using dermoscopic imaging. Computer-aided diagnosis (CAD) methods relying on deep learning techniques especially convolutional neural networks (CNN) can effectively address this issue with outstanding outcomes. Nevertheless, such black box methodologies lead to a deficiency in confidence as dermatologists are incapable of comprehending and verifying the predictions that were made by these models. This article presents an advanced an explainable artificial intelligence (XAI) based CAD system named "Skin-CAD" which is utilized for the classification of dermoscopic photographs of SC. The system accurately categorises the photographs into two categories: benign or malignant, and further classifies them into seven subclasses of SC. Skin-CAD employs four CNNs of different topologies and deep layers. It gathers features out of a pair of deep layers of every CNN, particularly the final pooling and fully connected layers, rather than merely depending on attributes from a single deep layer. Skin-CAD applies the principal component analysis (PCA) dimensionality reduction approach to minimise the dimensions of pooling layer features. This also reduces the complexity of the training procedure compared to using deep features from a CNN that has a substantial size. Furthermore, it combines the reduced pooling features with the fully connected features of each CNN. Additionally, Skin-CAD integrates the dual-layer features of the four CNNs instead of entirely depending on the features of a single CNN architecture. In the end, it utilizes a feature selection step to determine the most important deep attributes. This helps to decrease the general size of the feature set and streamline the classification process. Predictions are analysed in more depth using the local interpretable model-agnostic explanations (LIME) approach. This method is used to create visual interpretations that align with an already existing viewpoint and adhere to recommended standards for general clarifications. Two benchmark datasets are employed to validate the efficiency of Skin-CAD which are the Skin Cancer: Malignant vs. Benign and HAM10000 datasets. The maximum accuracy achieved using Skin-CAD is 97.2 % and 96.5 % for the Skin Cancer: Malignant vs. Benign and HAM10000 datasets respectively. The findings of Skin-CAD demonstrate its potential to assist professional dermatologists in detecting and classifying SC precisely and quickly.
Collapse
Affiliation(s)
- Omneya Attallah
- Department of Electronics and Communications Engineering, College of Engineering and Technology, Arab Academy for Science, Technology and Maritime Transport, Alexandri, 21937, Egypt; Wearables, Biosensing, and Biosignal Processing Laboratory, Arab Academy for Science, Technology and Maritime Transport, Alexandria, 21937, Egypt.
| |
Collapse
|
6
|
Patil SS, khulbe P, Nitalikar MM, Das K, B.P. M, Alshehri S, Khormi AMS, Almalki MEM, Hussain SA, Rabbani SI, Asdaq SMB. Development of topical silver nano gel formulation of Bixin: Characterization, and evaluation of anticancer activity. Saudi Pharm J 2024; 32:102125. [PMID: 38933714 PMCID: PMC11201344 DOI: 10.1016/j.jsps.2024.102125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/01/2024] [Indexed: 06/28/2024] Open
Abstract
Objective Skin cancer refers to the pathological condition characterized by the proliferation of atypical skin cells in an uncontrolled manner. Plant-based products such as bixin although show promising anticancer properties, but maintaining their stability in a formulation is a difficult task. The objective of the research is to formulate a silver nanoparticle gel preparation of bixin and evaluate its anticancer properties. Methods The extract from Bixa orellana seed was prepared by hot extraction technique to isolate the active ingredient, bixin. A green synthesis approach was utilized for preparing the silver nanoparticle gel of bixin (BOAgNPs). Characterization of silver nanoparticles was done using FTIR, scanning electron microscopy, compatibility study, homogeneity testing, pH evaluation, and drug content determination. The in-vitro anticancer activity was performed using cell lines (B16F10) and in-vivo by chemical carcinogen (7,12-dimethylbenz (a) anthracene) in mice. Results The BOAgNPs-loaded topical gel was found to be homogeneous (clear orange color) and pH-compatible (pH ≈ 6.66) with the skin. The characterization studies indicated the presence of all functional groups in the formulation. An optimized batch of bixin-nano gel showed about 60% inhibitory effects on B16F10 cell lines (in-vitro activity) when equated with a reference drug, 5-fluorouracil. The in-vivo anticancer study suggested suppression of tumorigenesis and promotion of the healing process with bixin-nano gel application on the skin. Conclusion The results suggested the promising anticancer property of bixin when formulated in silver nanoparticle gel. The preparation of silver particles nano gel with bixin might provide an effective alternative option for treating skin cancers, provided more research complements the findings of the present study.
Collapse
Affiliation(s)
- Swapnil S. Patil
- Gyan Vihar School of Pharmacy, Suresh Gyan Vihar University Jaipur, 302017 Rajasthan, India
| | - Preeti khulbe
- Gyan Vihar School of Pharmacy, Suresh Gyan Vihar University Jaipur, 302017 Rajasthan, India
| | | | - Kuntal Das
- Mallige College of Pharmacy, #71, Silvepura, Chikkabanavara Post, Bangalore 560090, India
| | - Mallikarjuna B.P.
- MB School of Pharmaceutical Sciences (Erstwhile Sree Vidyanikethan College of Pharmacy), Mohan Babu University, Tirupati, Andhra Pradesh, 517102, India
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
| | | | | | - Syed Arif Hussain
- Department of Respiratory Care, College of Applied Sciences, AlMaarefa University, Dariyah 13713, Riyadh, Saudi Arabia
| | - Syed Imam Rabbani
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, 51452 Buraydah, Saudi Arabia
| | | |
Collapse
|
7
|
Yuan R, Bai Y, Du H. Screening of key modules and key genes in the prevention of skin cancer development based on gene volcano plot and WGCNA. Skin Res Technol 2024; 30:e13873. [PMID: 39073152 DOI: 10.1111/srt.13873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/04/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND Skin cancer, a prevalent form of cancer that is on the rise worldwide, requires proactive prevention strategies to reduce the burden of screening, treatment, and mortality. The KEGG research highlighted the significant involvement of red module genes in protein digestion and absorption. These findings provide valuable insights into the underlying molecular mechanisms associated with skin cancer susceptibility, offering potential targets for further research and development of preventive strategies. MATERIALS AND METHODS Hub genes numbered 130. "limma" in R found 600 DEGs from GSE66359 dataset. DEGs are enriched in BP: chromosome segregation, CC: chromosomal region, and MF: DNA replication origin binding, according to GO analysis. Cell cycle was enriched in DEGs by KEGG and GSEA. Finally, significant genes were COL5A1, CTHRC1, ECM1, FSTL1, KDELR3, and WIPI1. RESULTS ECM1 and WIPI1 greatly prevented skin cancer. This study created a coexpression network using WGCNA to investigate skin cancer susceptibility modules and cardiovascular disease genes. CONCLUSION Our study finds a module and many important genes that are essential building blocks in the etiology of skin cancer, which may help us understand the molecular mechanisms of disease prevention.
Collapse
Affiliation(s)
- Rui Yuan
- Department of Dermatology, The People's Hospital of Yubei District of Chongqing, Chongqing, China
| | - Yaqiong Bai
- Department of Dermatology, The People's Hospital of Yubei District of Chongqing, Chongqing, China
| | - Hanghang Du
- Chongqing Meilun Meihuan Plastic Surgery Hospital, Chongqing, China
| |
Collapse
|
8
|
Hobayan CGP, Gray AN, Waters MF, Mager LA, Kobayashi S, Essien EW, Ulman CA, Kaffenberger BH. Diagnostic accuracy of high-frequency ultrasound for cutaneous neoplasms: a narrative review of the literature. Arch Dermatol Res 2024; 316:419. [PMID: 38904763 PMCID: PMC11192820 DOI: 10.1007/s00403-024-03179-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/07/2024] [Accepted: 06/08/2024] [Indexed: 06/22/2024]
Abstract
High-frequency ultrasound has been used to visualize depth and vascularization of cutaneous neoplasms, but little has been synthesized as a review for a robust level of evidence about the diagnostic accuracy of high-frequency ultrasound in dermatology. A narrative review of the PubMed database was performed to establish the correlation between ultrasound findings and histopathologic/dermoscopic findings for cutaneous neoplasms. Articles were divided into the following four categories: melanocytic, keratinocytic/epidermal, appendageal, and soft tissue/neural neoplasms. Review of the literature revealed that ultrasound findings and histopathology findings were strongly correlated regarding the depth of a cutaneous neoplasm. Morphological characteristics were correlated primarily in soft tissue/neural neoplasms. Overall, there is a paucity of literature on the correlation between high-frequency ultrasound and histopathology of cutaneous neoplasms. Further studies are needed to investigate this correlation in various dermatologic conditions.
Collapse
Affiliation(s)
| | - Ashley N Gray
- Department of Dermatology, The Ohio State University, 540 Officecenter Place, Suite 240, Columbus, OH, 43230, USA
| | - Margo F Waters
- The Ohio State University College of Medicine, Columbus, OH, USA
| | - Layna A Mager
- The Ohio State University College of Medicine, Columbus, OH, USA
| | - Sonja Kobayashi
- The Ohio State University College of Medicine, Columbus, OH, USA
| | - Ellen W Essien
- The Ohio State University College of Medicine, Columbus, OH, USA
| | - Catherine A Ulman
- Department of Dermatology, The Ohio State University, 540 Officecenter Place, Suite 240, Columbus, OH, 43230, USA
| | - Benjamin H Kaffenberger
- Department of Dermatology, The Ohio State University, 540 Officecenter Place, Suite 240, Columbus, OH, 43230, USA.
| |
Collapse
|
9
|
Colao B, Khachemoune A. Mohs micrographic surgery challenges and new technologies to optimize care of cutaneous malignancies of the ear. Arch Dermatol Res 2024; 316:320. [PMID: 38822894 DOI: 10.1007/s00403-024-03127-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/29/2024] [Accepted: 04/29/2024] [Indexed: 06/03/2024]
Abstract
Cutaneous malignancies affecting the ear, exacerbated by extensive ultraviolet (UV) exposure, pose intricate challenges owing to the organ's complex anatomy. This article investigates how the anatomy contributes to late-stage diagnoses and ensuing complexities in surgical interventions. Mohs Micrographic Surgery (MMS), acknowledged as the gold standard for treating most cutaneous malignancies of the ear, ensures superior margin control and cure rates. However, the ear's intricacy necessitates careful consideration of tissue availability and aesthetic outcomes. The manuscript explores new technologies like Reflectance Confocal Microscopy (RCM), Optical Coherence Tomography (OCT), High-Frequency, High-Resolution Ultrasound (HFHRUS), and Raman spectroscopy (RS). These technologies hold the promise of enhancing diagnostic accuracy and providing real-time visualization of excised tissue, thereby improving tumor margin assessments. Dermoscopy continues to be a valuable non-invasive tool for identifying malignant lesions. Staining methods in Mohs surgery are discussed, emphasizing hematoxylin and eosin (H&E) as the gold standard for evaluating tumor margins. Toluidine blue is explored for potential applications in assessing basal cell carcinomas (BCC), and immunohistochemical staining is considered for detecting proteins associated with specific malignancies. As MMS and imaging technologies advance, a thorough evaluation of their practicality, cost-effectiveness, and benefits becomes essential for enhancing surgical outcomes and patient care. The potential synergy of artificial intelligence with these innovations holds promise in revolutionizing tumor detection and improving the efficacy of cutaneous malignancy treatments.
Collapse
Affiliation(s)
- Bliss Colao
- College of Medicine, University of Florida, Gainesville, FL, USA
| | - Amor Khachemoune
- Department of Dermatology, SUNY Downstate and Veterans Affairs Hospital, 800 Poly Place, Brooklyn, NY, 11209, USA.
| |
Collapse
|
10
|
Kandhro IA, Manickam S, Fatima K, Uddin M, Malik U, Naz A, Dandoush A. Performance evaluation of E-VGG19 model: Enhancing real-time skin cancer detection and classification. Heliyon 2024; 10:e31488. [PMID: 38826726 PMCID: PMC11141372 DOI: 10.1016/j.heliyon.2024.e31488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 05/16/2024] [Indexed: 06/04/2024] Open
Abstract
Skin cancer is a pervasive and potentially life-threatening disease. Early detection plays a crucial role in improving patient outcomes. Machine learning (ML) techniques, particularly when combined with pre-trained deep learning models, have shown promise in enhancing the accuracy of skin cancer detection. In this paper, we enhanced the VGG19 pre-trained model with max pooling and dense layer for the prediction of skin cancer. Moreover, we also explored the pre-trained models such as Visual Geometry Group 19 (VGG19), Residual Network 152 version 2 (ResNet152v2), Inception-Residual Network version 2 (InceptionResNetV2), Dense Convolutional Network 201 (DenseNet201), Residual Network 50 (ResNet50), Inception version 3 (InceptionV3), For training, skin lesions dataset is used with malignant and benign cases. The models extract features and divide skin lesions into two categories: malignant and benign. The features are then fed into machine learning methods, including Linear Support Vector Machine (SVM), k-Nearest Neighbors (KNN), Decision Tree (DT), Logistic Regression (LR) and Support Vector Machine (SVM), our results demonstrate that combining E-VGG19 model with traditional classifiers significantly improves the overall classification accuracy for skin cancer detection and classification. Moreover, we have also compared the performance of baseline classifiers and pre-trained models with metrics (recall, F1 score, precision, sensitivity, and accuracy). The experiment results provide valuable insights into the effectiveness of various models and classifiers for accurate and efficient skin cancer detection. This research contributes to the ongoing efforts to create automated technologies for detecting skin cancer that can help healthcare professionals and individuals identify potential skin cancer cases at an early stage, ultimately leading to more timely and effective treatments.
Collapse
Affiliation(s)
- Irfan Ali Kandhro
- Department of Computer Science, Sindh Madressatul Islam University, Karachi, 74000, Pakistan
| | - Selvakumar Manickam
- National Advanced IPv6 Centre (NAv6), Universiti Sains Malaysia, Gelugor, Penang, 11800, Malaysia
| | - Kanwal Fatima
- Department of Computer Science, Sindh Madressatul Islam University, Karachi, 74000, Pakistan
| | - Mueen Uddin
- College of Computing and Information Technology, University of Doha For Science & Technology, 24449, Doha, Qatar
| | - Urooj Malik
- Department of Computer Science, Sindh Madressatul Islam University, Karachi, 74000, Pakistan
| | - Anum Naz
- Department of Computer Science, Sindh Madressatul Islam University, Karachi, 74000, Pakistan
| | - Abdulhalim Dandoush
- College of Computing and Information Technology, University of Doha For Science & Technology, 24449, Doha, Qatar
| |
Collapse
|
11
|
Danescu S, Negrutiu M, Focsan M, Baican A. An overview of cutaneous squamous cell carcinoma imaging diagnosis methods. Front Med (Lausanne) 2024; 11:1388835. [PMID: 38737758 PMCID: PMC11084285 DOI: 10.3389/fmed.2024.1388835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/16/2024] [Indexed: 05/14/2024] Open
Abstract
Cutaneous squamous cell carcinoma, a type of non-melanoma skin cancer, is a form of keratinocyte carcinoma that stands as one of the most prevalent cancers, exhibiting a rising frequency. This review provides an overview of the latest literature on imaging methods for diagnosing squamous cell carcinoma (SCC) and actinic keratosis (AK). It discusses the diagnostic criteria, advantages, and disadvantages of various techniques such as dermatoscopy, skin ultrasound (US), in vivo and ex-vivo reflectance confocal microscopy (RCM), and line-field confocal optical coherence tomography (LC-OCT). These methods offer benefits including non-invasiveness, rapidity, comprehensive lesion imaging, and enhanced sensitivity, but face challenges like high costs and the need for specialized expertise. Despite obstacles, the use of these innovative techniques is expected to increase with ongoing technological advancements, improving diagnosis and treatment planning for keratinocyte carcinomas. Standardizing LC-OCT imaging algorithms for AK, Bowen's disease, and SCC remains an area for further research.
Collapse
Affiliation(s)
- Sorina Danescu
- Department of Dermatology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Mircea Negrutiu
- Department of Dermatology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Monica Focsan
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, Cluj-Napoca, Romania
- Biomolecular Physics Department, Faculty of Physics, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Adrian Baican
- Department of Dermatology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
12
|
Cong L, Zhao Q, Sun H, Zhou Z, Hu Y, Li C, Hao M, Cong X. A novel long non-coding RNA SLNCR1 promotes proliferation, migration, and invasion of melanoma via transcriptionally regulating SOX5. Cell Death Discov 2024; 10:160. [PMID: 38561355 PMCID: PMC10984963 DOI: 10.1038/s41420-024-01922-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 03/13/2024] [Accepted: 03/19/2024] [Indexed: 04/04/2024] Open
Abstract
Steroid receptor RNA activator (SRA)-like non-coding RNA (SLNCR1) has been implicated in various tumorigenic processes, but the precise regulatory role in melanoma progression remains uncertain. We performed a comprehensive analysis to investigate the prognostic value of SLNCR1 expression in patients with melanoma by TCGA database and melanoma tissue samples via the Kaplan-Meier method. Subsequently, we conducted qRT-PCR and Fluorescence in Situ Hybridization (FISH) assays to identify SLNCR1 expression levels and localization in tissues and cells, respectively. Loss-of-function assays utilizing shRNAs vectors were used to investigate the potential impact of SLNCR1. Our data showed that SLNCR1 is significantly up-regulated in human malignant melanoma tissues and cell lines and functions as an oncogene. Silencing of SLNCR1 suppressed melanoma cell proliferation, migration, invasion, and inhibited tumorigenesis in a mouse xenograft model. Additionally, we employed bioinformatic predictive analysis, combined with dual-luciferase reporter analysis and functional rescue assays, to elucidate the mechanistic target of the SLNCR1/SOX5 axis in melanoma. Mechanistically, we discovered that SLNCR1 promotes EMT of human melanoma by targeting SOX5, as downregulation of SLNCR1 expression leads to a decrease in SOX5 protein levels and inhibits melanoma tumorigenesis. Our research offers promising insights for more precise diagnosis and treatment of human melanoma.
Collapse
Affiliation(s)
- Lele Cong
- Department of Dermatology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Qing Zhao
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Hongyan Sun
- Department of Biobank, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Zilong Zhou
- Department of Biobank, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Yue Hu
- Department of Biobank, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Chunyi Li
- Institute of Antler Science and Product Technology, Changchun Sci-Tech University, Changchun, China
| | - Miao Hao
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China.
| | - Xianling Cong
- Department of Biobank, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China.
| |
Collapse
|
13
|
Vishwas S, Paul SD, Singh D. An Insight on Skin Cancer About Different Targets With Update on Clinical Trials and Investigational Drugs. Curr Drug Deliv 2024; 21:852-869. [PMID: 37496132 DOI: 10.2174/1567201820666230726150642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/12/2022] [Accepted: 01/10/2023] [Indexed: 07/28/2023]
Abstract
Cancer is a diverse disease caused by transcriptional changes involving genetic and epigenetic features that influence a huge variety of genes and proteins. Skin cancer is a potentially fatal disease that affects equally men and women globally and is characterized by many molecular changes. Despite the availability of various improved approaches for detecting and treating skin cancer, it continues to be the leading cause of death throughout society. This review highlights a general overview of skin cancer, with an emphasis on epidemiology, types, risk factors, pathological and targeted facets, biomarkers and molecular markers, immunotherapy, and clinical updates of investigational drugs associated with skin cancer. The skin cancer challenges are acknowledged throughout this study, and the potential application of novel biomarkers of skin cancer formation, progression, metastasis, and prognosis is explored. Although the mechanism of skin carcinogenesis is currently poorly understood, multiple articles have shown that genetic and molecular changes are involved. Furthermore, several skin cancer risk factors are now recognized, allowing for efficient skin cancer prevention. There have been considerable improvements in the field of targeted treatment, and future research into additional targets will expand patients' therapeutic choices. In comparison to earlier articles on the same issue, this review focused on molecular and genetic factors and examined various skin cancer-related factors in depth.
Collapse
Affiliation(s)
- Suraj Vishwas
- Shankaracharya Technical Campus, Faculty of Pharmaceutical Sciences, Bhilai (C.G.) India
- Sanskar City College of Pharmacy, Rajnandgaon, Bhilai (C.G.) India
| | - Swarnali Das Paul
- Shri Shankaracharya College of Pharmaceutical Sciences, Bhilai (C.G.) India
| | - Deepika Singh
- Shri Shankaracharya Technical Campus, Faculty of Pharmaceutical Sciences, Bhilai (C.G.) India
| |
Collapse
|
14
|
Burnette C, Sivesind TE, Dellavalle R. From the Cochrane Library: Optical Coherence Tomography for Diagnosing Skin Cancer in Adults. JMIR DERMATOLOGY 2023; 6:e41355. [PMID: 37632933 PMCID: PMC10335143 DOI: 10.2196/41355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 02/22/2023] [Accepted: 03/01/2023] [Indexed: 03/05/2023] Open
Affiliation(s)
- Colin Burnette
- Nova Southeastern University College of Osteopathic Medicine, Davie, FL, United States
| | - Torunn E Sivesind
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Robert Dellavalle
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Rocky Mountain Reginal Veterans Affairs Medical Center, Aurora, CO, United States
| |
Collapse
|
15
|
Thomsen IMN, Heerfordt IM, Karmisholt KE, Mogensen M. Detection of cutaneous malignant melanoma by tape stripping of pigmented skin lesions - A systematic review. Skin Res Technol 2023; 29:e13286. [PMID: 36973976 PMCID: PMC10155806 DOI: 10.1111/srt.13286] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/13/2023] [Indexed: 03/05/2023]
Abstract
BACKGROUND Cutaneous malignant melanoma (MM) is potentially aggressive, and numerous clinically suspicious pigmented skin lesions are excised, causing unnecessary mutilation for patients at high healthcare costs, but without histopathological evidence of MM. The high number of excisions may be lowered by using more accurate diagnostics. Tape stripping (TS) of clinically suspicious lesions is a non-invasive diagnostic test of MM that can potentially lower the number needed to biopsy/excise. MATERIALS AND METHODS The aim is to determine the diagnostic accuracy of TS in detecting MM in clinically suspicious pigmented skin lesions. This systematic review following PRISMA guidelines searched PubMed, Web of Science, and Embase (September 2022) using melanoma combined with tape stripping, adhesive patch(es), pigmented lesion assay, or epidermal genetic information retrieval. RESULTS Ten studies were included. Sensitivity ranged from 68.8% (95% confidence interval [CI] 51.5, 82.1) to 100% (95% CI 91.0, 100). Specificity ranged from 69.1% (95% CI 63.8, 74.0) to 100% (95% CI 78.5, 100). A pooled analysis of five studies testing the RNA markers LINC00518 and PRAME found a sensitivity of 86.9% (95% CI 81.7, 90.8) and a specificity of 82.4% (95% CI 80.8, 83.9). CONCLUSION Overall quality of studies was low, and the reliability of sensitivity and specificity is questionable. However, TS may supplement well-established diagnostic methods as pooled analysis of five studies indicates a moderate sensitivity. Future studies are needed to obtain more reliable data as independent studies with no conflict of interest.
Collapse
Affiliation(s)
| | - Ida M. Heerfordt
- Department of DermatologyCopenhagen University Hospital – BispebjergCopenhagenDenmark
| | - Katrine Elisabeth Karmisholt
- Department of DermatologyCopenhagen University Hospital – BispebjergCopenhagenDenmark
- Department of Clinical MedicineUniversity of CopenhagenCopenhagenDenmark
| | - Mette Mogensen
- Department of DermatologyCopenhagen University Hospital – BispebjergCopenhagenDenmark
- Department of Clinical MedicineUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
16
|
Farhana A. Enhancing Skin Cancer Immunotheranostics and Precision Medicine through Functionalized Nanomodulators and Nanosensors: Recent Development and Prospects. Int J Mol Sci 2023; 24:3493. [PMID: 36834917 PMCID: PMC9959821 DOI: 10.3390/ijms24043493] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/23/2023] [Accepted: 01/27/2023] [Indexed: 02/12/2023] Open
Abstract
Skin cancers, especially melanomas, present a formidable diagnostic and therapeutic challenge to the scientific community. Currently, the incidence of melanomas shows a high increase worldwide. Traditional therapeutics are limited to stalling or reversing malignant proliferation, increased metastasis, or rapid recurrence. Nonetheless, the advent of immunotherapy has led to a paradigm shift in treating skin cancers. Many state-of-art immunotherapeutic techniques, namely, active vaccination, chimeric antigen receptors, adoptive T-cell transfer, and immune checkpoint blockers, have achieved a considerable increase in survival rates. Despite its promising outcomes, current immunotherapy is still limited in its efficacy. Newer modalities are now being explored, and significant progress is made by integrating cancer immunotherapy with modular nanotechnology platforms to enhance its therapeutic efficacy and diagnostics. Research on targeting skin cancers with nanomaterial-based techniques has been much more recent than other cancers. Current investigations using nanomaterial-mediated targeting of nonmelanoma and melanoma cancers are directed at augmenting drug delivery and immunomodulation of skin cancers to induce a robust anticancer response and minimize toxic effects. Many novel nanomaterial formulations are being discovered, and clinical trials are underway to explore their efficacy in targeting skin cancers through functionalization or drug encapsulation. The focus of this review rivets on theranostic nanomaterials that can modulate immune mechanisms toward protective, therapeutic, or diagnostic approaches for skin cancers. The recent breakthroughs in nanomaterial-based immunotherapeutic modulation of skin cancer types and diagnostic potentials in personalized immunotherapies are discussed.
Collapse
Affiliation(s)
- Aisha Farhana
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Aljouf 72388, Saudi Arabia
| |
Collapse
|
17
|
Soglia S, Pérez-Anker J, Lobos Guede N, Giavedoni P, Puig S, Malvehy J. Diagnostics Using Non-Invasive Technologies in Dermatological Oncology. Cancers (Basel) 2022; 14:5886. [PMID: 36497368 PMCID: PMC9738560 DOI: 10.3390/cancers14235886] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 12/02/2022] Open
Abstract
The growing incidence of skin cancer, with its associated mortality and morbidity, has in recent years led to the developing of new non-invasive technologies, which allow an earlier and more accurate diagnosis. Some of these, such as digital photography, 2D and 3D total-body photography and dermoscopy are now widely used and others, such as reflectance confocal microscopy and optical coherence tomography, are limited to a few academic and referral skin cancer centers because of their cost or the long training period required. Health care professionals involved in the treatment of patients with skin cancer need to know the implications and benefits of new non-invasive technologies for dermatological oncology. In this article we review the characteristics and usability of the main diagnostic imaging methods available today.
Collapse
Affiliation(s)
- Simone Soglia
- Melanoma Unit, Dermatology Department, Hospital Clínic de Barcelona, IDIBAPS, Universitat de Barcelona, 08001 Barcelona, Spain
- Department of Dermatology, University of Brescia, 25121 Brescia, Italy
| | - Javiera Pérez-Anker
- Melanoma Unit, Dermatology Department, Hospital Clínic de Barcelona, IDIBAPS, Universitat de Barcelona, 08001 Barcelona, Spain
| | - Nelson Lobos Guede
- Melanoma Unit, Dermatology Department, Hospital Clínic de Barcelona, IDIBAPS, Universitat de Barcelona, 08001 Barcelona, Spain
| | - Priscila Giavedoni
- Melanoma Unit, Dermatology Department, Hospital Clínic de Barcelona, IDIBAPS, Universitat de Barcelona, 08001 Barcelona, Spain
| | - Susana Puig
- Melanoma Unit, Dermatology Department, Hospital Clínic de Barcelona, IDIBAPS, Universitat de Barcelona, 08001 Barcelona, Spain
| | - Josep Malvehy
- Melanoma Unit, Dermatology Department, Hospital Clínic de Barcelona, IDIBAPS, Universitat de Barcelona, 08001 Barcelona, Spain
| |
Collapse
|
18
|
Katz L, Woolman M, Kiyota T, Pires L, Zaidi M, Hofer SO, Leong W, Wouters BG, Ghazarian D, Chan AW, Ginsberg HJ, Aman A, Wilson BC, Berman HK, Zarrine-Afsar A. Picosecond Infrared Laser Mass Spectrometry Identifies a Metabolite Array for 10 s Diagnosis of Select Skin Cancer Types: A Proof-of-Concept Feasibility Study. Anal Chem 2022; 94:16821-16830. [DOI: 10.1021/acs.analchem.2c03918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Lauren Katz
- Techna Institute for the Advancement of Technology for Health, University Health Network, 100 College Street, Toronto, Ontario M5G 1P5, Canada
- Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Michael Woolman
- Techna Institute for the Advancement of Technology for Health, University Health Network, 100 College Street, Toronto, Ontario M5G 1P5, Canada
- Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Taira Kiyota
- Ontario Institute for Cancer Research (OICR), 661 University Ave Suite 510, Toronto, Ontario M5G 0A3, Canada
| | - Layla Pires
- Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada
- Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, Toronto, Ontario M5G 2C1, Canada
| | - Mark Zaidi
- Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Stefan O.P. Hofer
- Techna Institute for the Advancement of Technology for Health, University Health Network, 100 College Street, Toronto, Ontario M5G 1P5, Canada
- Department of Surgery, University of Toronto, 149 College Street, Toronto, Ontario M5T 1P5, Canada
- Division of Plastic and Reconstructive Surgery, Department of Surgery and Surgical Oncology, University Health Network, University of Toronto. Toronto General Hospital, 200 Elizabeth Street, Toronto, Ontario M5G 2C4, Canada
| | - Wey Leong
- Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, Toronto, Ontario M5G 2C1, Canada
- Department of Surgery, University of Toronto, 149 College Street, Toronto, Ontario M5T 1P5, Canada
- Department of Surgical Oncology, Princess Margaret Cancer Centre, University Health Network, Toronto Ontario M5G 2C1, Canada
| | - Brad G. Wouters
- Techna Institute for the Advancement of Technology for Health, University Health Network, 100 College Street, Toronto, Ontario M5G 1P5, Canada
- Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada
- Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, Toronto, Ontario M5G 2C1, Canada
| | - Danny Ghazarian
- Department of Laboratory Medicine and Pathobiology, University of Toronto and University Health Network, 200 Elizabeth Street, Toronto, Ontario M5G 2C4, Canada
| | - An-Wen Chan
- Division of Dermatology, Department of Medicine, University of Toronto, Canada and Women’s College Research Institute, Women’s College Hospital, 76 Grenville St, Toronto, Ontario M5S 1B2, Canada
| | - Howard J. Ginsberg
- Techna Institute for the Advancement of Technology for Health, University Health Network, 100 College Street, Toronto, Ontario M5G 1P5, Canada
- Department of Surgery, University of Toronto, 149 College Street, Toronto, Ontario M5T 1P5, Canada
- Keenan Research Center for Biomedical Science & the Li Ka Shing Knowledge Institute, St. Michael’s Hospital, 30 Bond Street, Toronto, Ontario M5B 1W8, Canada
| | - Ahmed Aman
- Ontario Institute for Cancer Research (OICR), 661 University Ave Suite 510, Toronto, Ontario M5G 0A3, Canada
- Leslie Dan, Faculty of Pharmacy, University of Toronto, 144 College St, Toronto, Ontario M5S 3M2, Canada
| | - Brian C. Wilson
- Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada
- Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, Toronto, Ontario M5G 2C1, Canada
| | - Hal K. Berman
- Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, Toronto, Ontario M5G 2C1, Canada
- Laboratory Medicine Program, University Health Network, 200 Elizabeth Street, Toronto, Ontario M5G 2C4, Canada
| | - Arash Zarrine-Afsar
- Techna Institute for the Advancement of Technology for Health, University Health Network, 100 College Street, Toronto, Ontario M5G 1P5, Canada
- Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada
- Department of Surgery, University of Toronto, 149 College Street, Toronto, Ontario M5T 1P5, Canada
- Keenan Research Center for Biomedical Science & the Li Ka Shing Knowledge Institute, St. Michael’s Hospital, 30 Bond Street, Toronto, Ontario M5B 1W8, Canada
| |
Collapse
|
19
|
Anderson JM, Moy L, Moy RL. Preventative Options and the Future of Chemoprevention for Cutaneous Tumors. Dermatol Clin 2022; 41:231-238. [DOI: 10.1016/j.det.2022.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
20
|
Lopes J, Rodrigues CMP, Gaspar MM, Reis CP. Melanoma Management: From Epidemiology to Treatment and Latest Advances. Cancers (Basel) 2022; 14:4652. [PMID: 36230575 PMCID: PMC9562203 DOI: 10.3390/cancers14194652] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 09/17/2022] [Accepted: 09/20/2022] [Indexed: 11/30/2022] Open
Abstract
Melanoma is the deadliest skin cancer, whose morbidity and mortality indicators show an increasing trend worldwide. In addition to its great heterogeneity, melanoma has a high metastatic potential, resulting in very limited response to therapies currently available, which were restricted to surgery, radiotherapy and chemotherapy for many years. Advances in knowledge about the pathophysiological mechanisms of the disease have allowed the development of new therapeutic classes, such as immune checkpoint and small molecule kinase inhibitors. However, despite the incontestable progress in the quality of life and survival rates of the patients, effectiveness is still far from desired. Some adverse side effects and resistance mechanisms are the main barriers. Thus, the search for better options has resulted in many clinical trials that are now investigating new drugs and/or combinations. The low water solubility of drugs, low stability and rapid metabolism limit the clinical potential and therapeutic use of some compounds. Thus, the research of nanotechnology-based strategies is being explored as the basis for the broad application of different types of nanosystems in the treatment of melanoma. Future development focus on challenges understanding the mechanisms that make these nanosystems more effective.
Collapse
Affiliation(s)
- Joana Lopes
- Research Institute for Medicines, iMed.ULisboa—Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal
| | - Cecília M. P. Rodrigues
- Research Institute for Medicines, iMed.ULisboa—Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal
| | - Maria Manuela Gaspar
- Research Institute for Medicines, iMed.ULisboa—Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal
| | - Catarina Pinto Reis
- Research Institute for Medicines, iMed.ULisboa—Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal
- Instituto de Biofísica e Engenharia Biomédica, IBEB, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| |
Collapse
|
21
|
Hawash M, Jaradat N, Eid AM, Abubaker A, Mufleh O, Al-Hroub Q, Sobuh S. Synthesis of novel isoxazole-carboxamide derivatives as promising agents for melanoma and targeted nano-emulgel conjugate for improved cellular permeability. BMC Chem 2022; 16:47. [PMID: 35751124 PMCID: PMC9229817 DOI: 10.1186/s13065-022-00839-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/07/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Cancer is one of the most dangerous and widespread diseases in the world today and it has risen to the position of the leading cause of death around the globe in the last few decades. Due to the inherent resistance of many types of cancer to conventional radiotherapy and chemotherapy, it is vital to develop innovative anticancer medications. Recently, a strategy based on nanotechnology has been used to improve the effectiveness of both old and new cancer drugs. OBJECTIVES The present study aimed to design and synthesize a series of phenyl-isoxazole-Carboxamide derivatives, evaluate their anticancer properties, and improve the permeability of potent compounds into cancer cells by using a nano-emulgel strategy. METHODS The coupling reaction of aniline derivatives and isoxazole-Carboxylic acid was used to synthesize a series of isoxazole-Carboxamide derivatives. IR, HRMS, 1H-NMR, and 13C-NMR spectroscopy techniques, characterized all the synthesized compounds. The in-vitro cytotoxic evaluation was performed by using the MTS assay against seven cancer cell lines, including hepatocellular carcinoma (Hep3B and HepG2), cervical adenocarcinoma (HeLa), breast carcinoma (MCF-7), melanoma (B16F1), colorectal adenocarcinoma (Caco-2), and colon adenocarcinoma (Colo205), as well as human hepatic stellate (LX-2) in addition to the normal cell line (Hek293T). A nano-emulgel was developed for the most potent compound, using a self-emulsifying technique. RESULTS All synthesized compounds were found to have potent to moderate activities against B16F1, Colo205, and HepG2 cancer cell lines. The results revealed that the 2a compound has broad spectrum activity against B16F1, Colo205, HepG2, and HeLa cancer cell lines with an IC50 range of 7.55-40.85 µM. Moreover, compound 2e was the most active compound against B16F1 with an IC50 of 0.079 µM compared with Dox (IC50 = 0.056 µM). Nanoemulgel was used to increase the potency of the 2e molecule against this cancer cell line, and the IC50 was reduced to 0.039 µM. The antifibrotic activities were investigated against the LX-2 cell line, and it was found that our synthesized molecules showed better antifibrotic activities at 1 µM than 5-FU, and the cell viability values were 67 and 95%, respectively. CONCLUSION This study suggests that a 2e nano-formalized compound is a potential and promising anti-melanoma agent.
Collapse
Affiliation(s)
- Mohammed Hawash
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, 00970, Palestine.
| | - Nidal Jaradat
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, 00970, Palestine
| | - Ahmad M Eid
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, 00970, Palestine
| | - Ahmad Abubaker
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, 00970, Palestine
| | - Ola Mufleh
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, 00970, Palestine
| | - Qusay Al-Hroub
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, 00970, Palestine
| | - Shorooq Sobuh
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, 00970, Palestine
| |
Collapse
|
22
|
Fomina LV, Aslanyan SA, Gumeniuk KV, Fomin OO, Trutyak I. PERFECT BIOPSY METHODS FOR THE DIAGNOSIS OF MALIGNANT MELANOCYTIC SKIN NEOPLASMS (A LITERATURE REVIEW). BULLETIN OF PROBLEMS BIOLOGY AND MEDICINE 2022. [DOI: 10.29254/2077-4214-2022-4-167-92-98] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
| | | | | | - O. O. Fomin
- National Pirogov Memorial Medical University
| | - I.R. Trutyak
- Danylo Halytsky Lviv National Medical University
| |
Collapse
|
23
|
Tinajero-Díaz E, Salado-Leza D, Gonzalez C, Martínez Velázquez M, López Z, Bravo-Madrigal J, Knauth P, Flores-Hernández FY, Herrera-Rodríguez SE, Navarro RE, Cabrera-Wrooman A, Krötzsch E, Carvajal ZYG, Hernández-Gutiérrez R. Green Metallic Nanoparticles for Cancer Therapy: Evaluation Models and Cancer Applications. Pharmaceutics 2021; 13:1719. [PMID: 34684012 PMCID: PMC8537602 DOI: 10.3390/pharmaceutics13101719] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/29/2021] [Accepted: 10/05/2021] [Indexed: 12/15/2022] Open
Abstract
Metal-based nanoparticles are widely used to deliver bioactive molecules and drugs to improve cancer therapy. Several research works have highlighted the synthesis of gold and silver nanoparticles by green chemistry, using biological entities to minimize the use of solvents and control their physicochemical and biological properties. Recent advances in evaluating the anticancer effect of green biogenic Au and Ag nanoparticles are mainly focused on the use of conventional 2D cell culture and in vivo murine models that allow determination of the half-maximal inhibitory concentration, a critical parameter to move forward clinical trials. However, the interaction between nanoparticles and the tumor microenvironment is not yet fully understood. Therefore, it is necessary to develop more human-like evaluation models or to improve the existing ones for a better understanding of the molecular bases of cancer. This review provides recent advances in biosynthesized Au and Ag nanoparticles for seven of the most common and relevant cancers and their biological assessment. In addition, it provides a general idea of the in silico, in vitro, ex vivo, and in vivo models used for the anticancer evaluation of green biogenic metal-based nanoparticles.
Collapse
Affiliation(s)
- Ernesto Tinajero-Díaz
- Departament d’Enginyeria Química, Universitat Politècnica de Catalunya, ETSEIB, Diagonal 647, 08028 Barcelona, Spain;
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Av. Normalistas 800, Col. Colinas de La Normal, Guadalajara 44270, Mexico; (M.M.V.); (J.B.-M.); (F.Y.F.-H.); (S.E.H.-R.)
| | - Daniela Salado-Leza
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava, Zona Universitaria, San Luis Potosí 78210, Mexico; (D.S.-L.); (C.G.)
- Cátedras CONACyT, México City 03940, Mexico
| | - Carmen Gonzalez
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava, Zona Universitaria, San Luis Potosí 78210, Mexico; (D.S.-L.); (C.G.)
| | - Moisés Martínez Velázquez
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Av. Normalistas 800, Col. Colinas de La Normal, Guadalajara 44270, Mexico; (M.M.V.); (J.B.-M.); (F.Y.F.-H.); (S.E.H.-R.)
| | - Zaira López
- Centro Universitario de la Ciénega, Cell Biology Laboratory, Universidad de Guadalajara, Av. Universidad 1115, Ocotlán 47810, Mexico; (Z.L.); (P.K.)
| | - Jorge Bravo-Madrigal
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Av. Normalistas 800, Col. Colinas de La Normal, Guadalajara 44270, Mexico; (M.M.V.); (J.B.-M.); (F.Y.F.-H.); (S.E.H.-R.)
| | - Peter Knauth
- Centro Universitario de la Ciénega, Cell Biology Laboratory, Universidad de Guadalajara, Av. Universidad 1115, Ocotlán 47810, Mexico; (Z.L.); (P.K.)
| | - Flor Y. Flores-Hernández
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Av. Normalistas 800, Col. Colinas de La Normal, Guadalajara 44270, Mexico; (M.M.V.); (J.B.-M.); (F.Y.F.-H.); (S.E.H.-R.)
| | - Sara Elisa Herrera-Rodríguez
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Av. Normalistas 800, Col. Colinas de La Normal, Guadalajara 44270, Mexico; (M.M.V.); (J.B.-M.); (F.Y.F.-H.); (S.E.H.-R.)
| | - Rosa E. Navarro
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, México City 04510, Mexico;
| | - Alejandro Cabrera-Wrooman
- Centro Nacional de Investigación y Atención de Quemados, Laboratory of Connective Tissue, Instituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibarra”, México City 14389, Mexico; (A.C.-W.); (E.K.)
| | - Edgar Krötzsch
- Centro Nacional de Investigación y Atención de Quemados, Laboratory of Connective Tissue, Instituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibarra”, México City 14389, Mexico; (A.C.-W.); (E.K.)
| | - Zaira Y. García Carvajal
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Av. Normalistas 800, Col. Colinas de La Normal, Guadalajara 44270, Mexico; (M.M.V.); (J.B.-M.); (F.Y.F.-H.); (S.E.H.-R.)
| | - Rodolfo Hernández-Gutiérrez
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Av. Normalistas 800, Col. Colinas de La Normal, Guadalajara 44270, Mexico; (M.M.V.); (J.B.-M.); (F.Y.F.-H.); (S.E.H.-R.)
| |
Collapse
|
24
|
Ciardo S, Pezzini C, Guida S, Del Duca E, Ungar J, Guttman-Yassky E, Manfredini M, Farnetani F, Longo C, Pellacani G. A plea for standardization of confocal microscopy and optical coherence tomography parameters to evaluate physiological and para-physiological skin conditions in cosmetic science. Exp Dermatol 2021; 30:911-922. [PMID: 33884663 DOI: 10.1111/exd.14359] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/17/2021] [Accepted: 04/07/2021] [Indexed: 12/11/2022]
Abstract
Non-invasive reflectance confocal microscopy (RCM) and optical coherence tomography (OCT) have been extended to the dermo-cosmetic field, for skin pathophysiology understanding and therapeutics monitoring. However, standardized methodology and parameters to interpret structures and changes in these settings are still lacking. Present study aimed to propose a validated standard methodology and a list of defined parameters for objective non-pathological skin assessments in the cosmetically sensitive cheekbone area of the face. OCT and RCM quantitative, semi-quantitative and qualitative features were considered for assessments. Validation process included 50 sets of images divided into two age groups. Inter-rater reliability was explored to assess the influence of the proposed methodology. Quantitative OCT parameters of "epidermal thickness," "density and attenuation coefficients" and "vascular density" were considered and calculated. Severity scales were developed for semi-quantitative OCT features of "disruption of collagen" and "vascular asset," while extent scales were produced for semi-quantitative RCM "irregular honeycomb," "mottled pigmentation" and "polycyclic papillary contours." Qualitative assessment was obtained for RCM type of collagen, and comparison between age groups was performed for all features considered. Severity visual scales assistance proved excellent inter-rater agreement across all semi-quantitative and qualitative domains. The assistance of shareable software systems allows for objective OCT quantitative parameters measurement. The use of standard reference scales, within a defined assessment methodology, offers high inter-rater reliability and thus reproducibility for semi-quantitative and qualitative OCT and RCM parameters. Taken together, our results may represent a starting point for a standardized application of RCM and OCT in dermo-cosmetic research and practice.
Collapse
Affiliation(s)
- Silvana Ciardo
- Dermatology Unit, University of Modena and Reggio Emilia, Modena, Italy
| | - Claudia Pezzini
- Dermatology Unit, University of Modena and Reggio Emilia, Modena, Italy
| | - Stefania Guida
- Dermatology Unit, University of Modena and Reggio Emilia, Modena, Italy
| | - Ester Del Duca
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Dermatology, University Magna Graecia, Catanzaro, Italy
| | - Jonathan Ungar
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Emma Guttman-Yassky
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Marco Manfredini
- Dermatology Unit, University of Modena and Reggio Emilia, Modena, Italy
| | | | - Caterina Longo
- Dermatology Unit, University of Modena and Reggio Emilia, Modena, Italy.,Centro Oncologico ad Alta Tecnologia Diagnostica, Azienda Unità Sanitaria Locale - IRCCS, Reggio Emilia, Italy
| | - Giovanni Pellacani
- Dermatology Unit, University of Modena and Reggio Emilia, Modena, Italy.,Dermatology Clinic, Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
25
|
Pavel TI, Chircov C, Rădulescu M, Grumezescu AM. Regenerative Wound Dressings for Skin Cancer. Cancers (Basel) 2020; 12:cancers12102954. [PMID: 33066077 PMCID: PMC7601961 DOI: 10.3390/cancers12102954] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/09/2020] [Accepted: 10/11/2020] [Indexed: 12/12/2022] Open
Abstract
Skin cancer is considered the most prevalent cancer type globally, with a continuously increasing prevalence and mortality growth rate. Additionally, the high risk of recurrence makes skin cancer treatment among the most expensive of all cancers, with average costs estimated to double within 5 years. Although tumor excision is the most effective approach among the available strategies, surgical interventions could be disfiguring, requiring additional skin grafts for covering the defects. In this context, post-surgery management should involve the application of wound dressings for promoting skin regeneration and preventing tumor recurrence and microbial infections, which still represents a considerable clinical challenge. Therefore, this paper aims to provide an up-to-date overview regarding the current status of regenerative wound dressings for skin cancer therapy. Specifically, the recent discoveries in natural biocompounds as anti-cancer agents for skin cancer treatment and the most intensively studied biomaterials for bioactive wound dressing development will be described.
Collapse
Affiliation(s)
- Teodor Iulian Pavel
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, RO-060042 Bucharest, Romania; (T.I.P.); (C.C.); (A.M.G.)
| | - Cristina Chircov
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, RO-060042 Bucharest, Romania; (T.I.P.); (C.C.); (A.M.G.)
| | - Marius Rădulescu
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1–7 Polizu Street, 011061 Bucharest, Romania
- Correspondence: ; Tel.: +40-21-402-3997
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, RO-060042 Bucharest, Romania; (T.I.P.); (C.C.); (A.M.G.)
| |
Collapse
|
26
|
Malik S, Andleeb F, Ullah H. Multimodal imaging of skin lesions by using methylene blue as cancer biomarker. Microsc Res Tech 2020; 83:1594-1603. [PMID: 32797704 DOI: 10.1002/jemt.23555] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 05/17/2020] [Accepted: 07/03/2020] [Indexed: 11/07/2022]
Abstract
This study aimed the optical imaging of malignant and normal skin tissues with multimodal wide-field fluorescence polarization imaging (WF) technique, by using methylene blue as fluorescence dye. We present optical imaging of skin tissues by different techniques, including reflectance, fluorescence, and polarization imaging for early detection of skin cancer. We collected the reflectance confocal images at 390 and 500 nm. For wide-field fluorescence images, specimens were stimulated at 640 nm and images were collected between 670 and 710 nm. The correlation of the regarded optical modalities with histopathology (H&E), their potentials, capabilities, and limitations to detect skin lesions are discussed. The advantages of multimodal imaging of skin tissues are analyzed to divulge possibilities for precise tumor boundary detection and their classification for malignant and nonmalignant skin tissues. Prior to imaging, the cells were stained in aqueous MB (a dye approved by FDA).
Collapse
Affiliation(s)
- Sadia Malik
- Biophotonics Imaging Techniques Laboratory, Department of Physics, The Islamia University of Bahawalpur, Bahawalpur, Pakistan.,Department of Physics, Govt Sadiq College Women University, Bahawalpur, Pakistan
| | - Farah Andleeb
- Biophotonics Imaging Techniques Laboratory, Department of Physics, The Islamia University of Bahawalpur, Bahawalpur, Pakistan.,Department of Physics, Govt Sadiq College Women University, Bahawalpur, Pakistan
| | - Hafeez Ullah
- Biophotonics Imaging Techniques Laboratory, Department of Physics, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| |
Collapse
|
27
|
|