1
|
Branco F, Cunha J, Mendes M, Sousa JJ, Vitorino C. 3D Bioprinting Models for Glioblastoma: From Scaffold Design to Therapeutic Application. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2501994. [PMID: 40116532 DOI: 10.1002/adma.202501994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Indexed: 03/23/2025]
Abstract
Conventional in vitro models fail to accurately mimic the tumor in vivo characteristics, being appointed as one of the causes of clinical attrition rate. Recent advances in 3D culture techniques, replicating essential physical and biochemical cues such as cell-cell and cell-extracellular matrix interactions, have led to the development of more realistic tumor models. Bioprinting has emerged to advance the creation of 3D in vitro models, providing enhanced flexibility, scalability, and reproducibility. This is crucial for the development of more effective drug treatments, and glioblastoma (GBM) is no exception. GBM, the most common and deadly brain cancer, remains a major challenge, with a median survival of only 15 months post-diagnosis. This review highlights the key components needed for 3D bioprinted GBM models. It encompasses an analysis of natural and synthetic biomaterials, along with crosslinking methods to improve structural integrity. Also, it critically evaluates current 3D bioprinted GBM models and their integration into GBM-on-a-chip platforms, which hold noteworthy potential for drug screening and personalized therapies. A versatile development framework grounded on Quality-by-Design principles is proposed to guide the design of bioprinting models. Future perspectives, including 4D bioprinting and machine learning approaches, are discussed, along with the current gaps to advance the field further.
Collapse
Affiliation(s)
- Francisco Branco
- Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, Coimbra, 3000-548, Portugal
| | - Joana Cunha
- Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, Coimbra, 3000-548, Portugal
| | - Maria Mendes
- Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, Coimbra, 3000-548, Portugal
- Coimbra Chemistry Centre, Institute of Molecular Sciences - IMS, Faculty of Sciences and Technology, University of Coimbra, Coimbra, 3004-535, Portugal
| | - João J Sousa
- Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, Coimbra, 3000-548, Portugal
- Coimbra Chemistry Centre, Institute of Molecular Sciences - IMS, Faculty of Sciences and Technology, University of Coimbra, Coimbra, 3004-535, Portugal
| | - Carla Vitorino
- Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, Coimbra, 3000-548, Portugal
- Coimbra Chemistry Centre, Institute of Molecular Sciences - IMS, Faculty of Sciences and Technology, University of Coimbra, Coimbra, 3004-535, Portugal
| |
Collapse
|
2
|
Awuah WA, Karkhanis S, Ben-Jaafar A, Kong JSH, Mannan KM, Nkrumah-Boateng PA, Tan JK, Dorcas AO, Shet V, Shah MH, Abdul-Rahman T, Atallah O. Recent advances in 3D printing applications for CNS tumours. Eur J Med Res 2025; 30:251. [PMID: 40189551 PMCID: PMC11974138 DOI: 10.1186/s40001-025-02483-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 03/19/2025] [Indexed: 04/09/2025] Open
Abstract
Three-dimensional printing (3DP) has emerged as a transformative technology in the field of central nervous system (CNS) tumours, offering innovative advancements in various aspects of diagnosis, treatment and education. By precisely replicating the microenvironment of CNS tumours, modelling tumour vascularisation, and capturing genetic heterogeneity, 3DP enables the development of targeted therapies and personalised treatment strategies. The technology has markedly enhanced preoperative planning and intraoperative guidance, providing highly accurate, patient-specific models that improve tumour localisation, facilitate tailored surgical planning, and offer superior visualisation of complex anatomical structures. Furthermore, 3DP has revolutionised education and training for neurosurgeons, trainees, and patients by delivering realistic simulations that enhance surgical skills and decision-making. Despite its transformative potential, the widespread adoption of 3DP faces challenges, including material biocompatibility issues, high costs, and technical limitations. Furthermore, the ethical and regulatory landscape for 3DP in clinical practice requires further development. This review concludes that while 3DP offers significant promise for advancing CNS tumour treatment, ongoing research is essential to address these challenges and optimising its clinical impact.
Collapse
Affiliation(s)
| | - Simran Karkhanis
- School of Medicine and Dentistry, University of Central Lancashire, Preston, UK
| | - Adam Ben-Jaafar
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Jonathan Sing Huk Kong
- School of Medicine, College of Medical & Veterinary Life Sciences, University of Glasgow, Glasgow, UK
| | - Krishitha Meenu Mannan
- School of Medicine, Dentistry & Biomedical Sciences, Queen'S University Belfast, Belfast, UK
| | | | - Joecelyn Kirani Tan
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | | | - Vallabh Shet
- Department of Internal Medicine, University of Connecticut New Britain Program, New Britain, CT, USA
| | - Muhammad Hamza Shah
- School of Medicine, Dentistry & Biomedical Sciences, Queen'S University Belfast, Belfast, UK
| | | | - Oday Atallah
- Department of Neurosurgery, Carl Von Ossietzky University Oldenburg, Oldenburg, Germany
| |
Collapse
|
3
|
del Rocío Aguilera-Marquez J, Manzanares-Guzmán A, García-Uriostegui L, Canales-Aguirre AA, Camacho-Villegas TA, Lugo-Fabres PH. Alginate-Gelatin Hydrogel Scaffold Model for Hypoxia Induction in Glioblastoma Embedded Spheroids. Gels 2025; 11:263. [PMID: 40277699 PMCID: PMC12026674 DOI: 10.3390/gels11040263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 03/24/2025] [Accepted: 03/25/2025] [Indexed: 04/26/2025] Open
Abstract
Glioblastoma (GBM) is a highly aggressive and malignant brain tumor, characterized by hypoxia in its microenvironment, which drives its growth and resistance to treatments. Hypoxia-inducible factor 1 (HIF-1) plays a central role in GBM progression by regulating cellular adaptation to low oxygen availability, promoting processes such as angiogenesis and cell invasion. However, studying and modeling GBM under hypoxic conditions is complex, especially due to the limitations of animal models. In this study, we developed a glioma spheroid model using an alginate-gelatin hydrogel scaffold, which enabled the simulation of hypoxic conditions within the tumor. The scaffold-based model demonstrated high reproducibility, facilitating the analysis of HIF-1α expression, a key protein in the hypoxic response of GBM. Furthermore, cell viability, the microstructural features of the encapsulated spheroids, and the water absorption rate of the hydrogel were assessed. Our findings validate the three-dimensional (3D) glioblastoma spheroids model as a valuable platform for studying hypoxia in GBM and evaluating new therapies. This approach could offer a more accessible and specific alternative for studying the tumor microenvironment and therapeutic resistance in GBM.
Collapse
Affiliation(s)
- Janette del Rocío Aguilera-Marquez
- Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara 44270, Mexico; (J.d.R.A.-M.); (A.M.-G.); (A.A.C.-A.); (T.A.C.-V.)
| | - Alejandro Manzanares-Guzmán
- Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara 44270, Mexico; (J.d.R.A.-M.); (A.M.-G.); (A.A.C.-A.); (T.A.C.-V.)
| | - Lorena García-Uriostegui
- SECIHTI-Secretaría de Ciencia, Humanidades, Tecnología e Innovación-Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara 44430, Mexico;
| | - Alejandro A. Canales-Aguirre
- Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara 44270, Mexico; (J.d.R.A.-M.); (A.M.-G.); (A.A.C.-A.); (T.A.C.-V.)
| | - Tanya A. Camacho-Villegas
- Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara 44270, Mexico; (J.d.R.A.-M.); (A.M.-G.); (A.A.C.-A.); (T.A.C.-V.)
| | - Pavel H. Lugo-Fabres
- SECIHTI-Secretaría de Ciencia, Humanidades, Tecnología e Innovación-Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara 44270, Mexico
| |
Collapse
|
4
|
Arciero I, Buonvino S, Palumbo V, Scimeca M, Melino S. A 3D-Printable Cell Array for In Vitro Breast Cancer Modeling. Int J Mol Sci 2024; 25:13068. [PMID: 39684779 DOI: 10.3390/ijms252313068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 11/29/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
Breast cancer is the most common cancer and the second leading cause of cancer-related death in women. In advanced stages of the disease, breast cancer can spread and metastasize to the bone, contributing to malignant progression. The roles of tissue stiffness and remodeling of the tumor microenvironment are relevant in influencing cancer progression and invasiveness, but they are still poorly understood. In this study, we aimed to investigate the effect of bone tissue stiffness on breast cancer cell behavior, using 3D cell-biomaterial systems to model the in vivo conditions. For this purpose, we developed a 3D-printable cell array, which is a tunable and reproducible platform on small scale, where each compartment could mimic the physiological cancer environment with a shape and rigidity close to bone tissue. In this system, we observed that in the highly metastatic breast cancer line MDA-MB-231, embedded in PEG-silk fibroin (PSF) hydrogel spheres in the array's cavities, increasing stiffness promotes trans-differentiation into osteoblast-like cells and the production of breast microcalcifications. Moreover, we also tested this 3D model as a platform to evaluate the cell response to the therapy, in particular, investigating the drug sensitivity of the cancer cells to chemotherapeutics, observing a decrease in drug resistance over time in the array.
Collapse
Affiliation(s)
- Ilaria Arciero
- Department of Chemical Sciences and Technologies, University of Rome "Tor Vergata", Via Della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Silvia Buonvino
- Departmental Faculty of Medicine, UniCamillus-Saint Camillus International University of Health Sciences, Via di Sant'Alessandro 8, 00131 Rome, Italy
| | - Valeria Palumbo
- Department of Experimental Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Manuel Scimeca
- Department of Experimental Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Sonia Melino
- Department of Experimental Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| |
Collapse
|
5
|
Cordeiro S, Oliveira BB, Valente R, Ferreira D, Luz A, Baptista PV, Fernandes AR. Breaking the mold: 3D cell cultures reshaping the future of cancer research. Front Cell Dev Biol 2024; 12:1507388. [PMID: 39659521 PMCID: PMC11628512 DOI: 10.3389/fcell.2024.1507388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 11/13/2024] [Indexed: 12/12/2024] Open
Abstract
Despite extensive efforts to unravel tumor behavior and develop anticancer therapies, most treatments fail when advanced to clinical trials. The main challenge in cancer research has been the absence of predictive cancer models, accurately mimicking the tumoral processes and response to treatments. The tumor microenvironment (TME) shows several human-specific physical and chemical properties, which cannot be fully recapitulated by the conventional 2D cell cultures or the in vivo animal models. These limitations have driven the development of novel in vitro cancer models, that get one step closer to the typical features of in vivo systems while showing better species relevance. This review introduces the main considerations required for developing and exploiting tumor spheroids and organoids as cancer models. We also detailed their applications in drug screening and personalized medicine. Further, we show the transition of these models into novel microfluidic platforms, for improved control over physiological parameters and high-throughput screening. 3D culture models have provided key insights into tumor biology, more closely resembling the in vivo TME and tumor characteristics, while enabling the development of more reliable and precise anticancer therapies.
Collapse
Affiliation(s)
- Sandra Cordeiro
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
- i4HB, Associate Laboratory – Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Beatriz B. Oliveira
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
- i4HB, Associate Laboratory – Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Ruben Valente
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
- i4HB, Associate Laboratory – Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Daniela Ferreira
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
- i4HB, Associate Laboratory – Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - André Luz
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
- i4HB, Associate Laboratory – Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Pedro V. Baptista
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
- i4HB, Associate Laboratory – Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Alexandra R. Fernandes
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
- i4HB, Associate Laboratory – Institute for Health and Bioeconomy, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| |
Collapse
|
6
|
Karuppusamy S, Wanigasekara J, Fitzpatrick S, Lyons H, Curtin J, Rajauria G, Tiwari BK, O’Donnell C. Investigation of Biological Activity of Fucoidan and Laminarin as Bioactive Polysaccharides from Irish Brown Macroalgae. Cells 2024; 13:1938. [PMID: 39682687 PMCID: PMC11640187 DOI: 10.3390/cells13231938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/17/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
This study aimed to investigate the biological activity of crude and purified laminarin and fucoidan samples extracted from Irish brown macroalgae species Laminaria digitata and Fucus vesiculosus. The antioxidant capacity of the samples was evaluated using the 2,2-diphenyl-1-picrylhydrazyl and ferric-reducing antioxidant power assays. The anti-inflammatory potential of the samples was analysed using the cyclooxygenases inhibition activity, and the antidiabetic activity was evaluated using a dipeptidyl peptidase-4 inhibitor screening assay. The cytotoxicity of the samples was measured using the Alamar Blue™ assay with different types of cancer cell lines. The crude laminarin and fucoidan samples exhibited higher antioxidant activity (p < 0.05) than the purified samples and commercial standards. Similarly, the crude extracts showed stronger anti-inflammatory and antidiabetic effects compared to the purified samples. Additionally, the crude laminarin and fucoidan samples showed higher cytotoxic activity. Specifically, as confirmed in the flow cytometry analysis, 3D tumour spheres using different cancer cell lines showed significantly higher resistance to bioactive compounds compared to 2D monolayer cells. The laminarin and fucoidan polysaccharide samples investigated are suitable for potential nutraceutical applications based on the biological activity values observed. Future research is necessary to purify the bioactive compounds investigated and improve their selectivity for targeted therapeutic uses in food and biomedical applications.
Collapse
Affiliation(s)
| | - Janith Wanigasekara
- School of Food Science and Environmental Health, College of Sciences and Health, Technological University Dublin, D01 K822 Dublin, Ireland; (J.W.); (J.C.)
| | - Stephen Fitzpatrick
- Nutramara Ltd., Beechgrove House Strand Street, V92 FH0K Tralee, Ireland; (S.F.); (H.L.)
| | - Henry Lyons
- Nutramara Ltd., Beechgrove House Strand Street, V92 FH0K Tralee, Ireland; (S.F.); (H.L.)
| | - James Curtin
- School of Food Science and Environmental Health, College of Sciences and Health, Technological University Dublin, D01 K822 Dublin, Ireland; (J.W.); (J.C.)
| | - Gaurav Rajauria
- School of Microbiology, School of Food and Nutritional Sciences, SUSFERM Centre for Fermentation and Bioprocess Engineering, University College Cork, T12 K8AF Cork, Ireland;
| | - Brijesh K. Tiwari
- Department of Food Chemistry and Technology, Teagasc Food Research Centre, D15 KN3K Dublin, Ireland;
| | - Colm O’Donnell
- School of Biosystems and Food Engineering, University College Dublin, D04 V1W8 Dublin, Ireland;
| |
Collapse
|
7
|
Zimina TM, Sitkov NO, Gareev KG, Mikhailova NV, Combs SE, Shevtsov MA. Hybrid-integrated devices for mimicking malignant brain tumors ("tumor-on-a-chip") for in vitro development of targeted drug delivery and personalized therapy approaches. Front Med (Lausanne) 2024; 11:1452298. [PMID: 39629230 PMCID: PMC11611596 DOI: 10.3389/fmed.2024.1452298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 10/14/2024] [Indexed: 12/07/2024] Open
Abstract
Acute and requiring attention problem of oncotheranostics is a necessity for the urgent development of operative and precise diagnostics methods, followed by efficient therapy, to significantly reduce disability and mortality of citizens. A perspective way to achieve efficient personalized treatment is to use methods for operative evaluation of the individual drug load, properties of specific tumors and the effectiveness of selected therapy, and other actual features of pathology. Among the vast diversity of tumor types-brain tumors are the most invasive and malignant in humans with poor survival after diagnosis. Among brain tumors glioblastoma shows exceptionally high mortality. More studies are urgently needed to understand the risk factors and improve therapy approaches. One of the actively developing approaches is the tumor-on-a-chip (ToC) concept. This review examines the achievements of recent years in the field of ToC system developments. The basics of microfluidic chips technologies are considered in the context of their applications in solving oncological problems. Then the basic principles of tumors cultivation are considered to evaluate the main challengers in implementation of microfluidic devices, for growing cell cultures and possibilities of their treatment and observation. The main achievements in the culture types diversity approaches and their advantages are being analyzed. The modeling of angiogenesis and blood-brain barrier (BBB) on a chip, being a principally important elements of the life system, were considered in detail. The most interesting examples and achievements in the field of tumor-on-a-chip developments have been presented.
Collapse
Affiliation(s)
- Tatiana M. Zimina
- Department of Micro and Nanoelectronics, St. Petersburg Electrotechnical University “LETI” (ETU), Saint Petersburg, Russia
| | - Nikita O. Sitkov
- Personalized Medicine Centre, Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - Kamil G. Gareev
- Personalized Medicine Centre, Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - Natalia V. Mikhailova
- Personalized Medicine Centre, Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - Stephanie E. Combs
- Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Maxim A. Shevtsov
- Personalized Medicine Centre, Almazov National Medical Research Centre, Saint Petersburg, Russia
- Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| |
Collapse
|
8
|
Kriuchkovskaia V, Eames EK, Riggins RB, Harley BA. Acquired Temozolomide Resistance Instructs Patterns of Glioblastoma Behavior in Gelatin Hydrogels. Adv Healthc Mater 2024; 13:e2400779. [PMID: 39030879 PMCID: PMC11518645 DOI: 10.1002/adhm.202400779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/26/2024] [Indexed: 07/22/2024]
Abstract
Acquired drug resistance in glioblastoma (GBM) presents a major clinical challenge and is a key factor contributing to abysmal prognosis, with less than 15 months median overall survival. Aggressive chemotherapy with the frontline therapeutic, temozolomide (TMZ), ultimately fails to kill residual highly invasive tumor cells after surgical resection and radiotherapy. Here, a 3D engineered model of acquired TMZ resistance is reported using two isogenically matched sets of GBM cell lines encapsulated in gelatin methacrylol hydrogels. Response of TMZ-resistant versus TMZ-sensitive GBM cell lines within the gelatin-based extracellular matrix platform is benchmarked and drug response at physiologically relevant TMZ concentrations is further validated. The changes in drug sensitivity, cell invasion, and matrix-remodeling cytokine production are shown as the result of acquired TMZ resistance. This platform lays the foundation for future investigations targeting key elements of the GBM tumor microenvironment to combat GBM's devastating impact by advancing the understanding of GBM progression and treatment response to guide the development of novel treatment strategies.
Collapse
Affiliation(s)
- Victoria Kriuchkovskaia
- Dept. Chemical and Biomolecular Engineering, University of Illinois Urbana Champaign, Urbana, IL 61801
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801
| | - Ela K. Eames
- Dept. Chemical and Biomolecular Engineering, University of Illinois Urbana Champaign, Urbana, IL 61801
| | - Rebecca B. Riggins
- Department of Oncology, Lombardi Comprehensive Cancer Center, University Medical Center, Washington, DC, 20007
| | - Brendan A.C. Harley
- Dept. Chemical and Biomolecular Engineering, University of Illinois Urbana Champaign, Urbana, IL 61801
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL 61801
| |
Collapse
|
9
|
Zhou Y, Wei X, Chen J, Xiong H, Sui D, Chen X, Yang W. A Three-Dimensional Electrochemiluminescence Sensor Integrated with Peptide Hydrogel for Detection of H 2O 2 Released from Different Subtypes of Breast Cancer Cells. Anal Chem 2024; 96:13464-13472. [PMID: 39120616 DOI: 10.1021/acs.analchem.4c01625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Breast cancer is a malignant tumor, with various subtypes showing different behaviors. Endogenous H2O2 is an important marker of tumor progression, which makes it important to study the relationship between breast cancer subtypes and H2O2 for pathogenesis and treatment strategies, but this has rarely been reported so far. In this work, we constructed a three-dimensional (3D) electrochemiluminescence (ECL) sensing platform for the detection of H2O2 released from two typical subtypes of breast cancer cells (MCF-7 cells for luminal A-type and MDA-MB-231 cells for three negative breast cancers, TNBCs). To adequately replicate the tumor microenvironment, the peptide hydrogel was introduced as a scaffold for 3D cell culture. The titanium foam (TF) was used as a 3D electrode to better match the 3D culture substrate. N-(4-Aminobutyl)-N-ethylisoluminol (ABEI) was selected as the ECL emitter and assembled into the peptide hydrogel by hydrogen bonding and π-stacking, which resulted in a stable and homogeneous distribution of ABEI along the hydrogel fibers. Furthermore, basic amino acids were introduced to provide alkaline microenvironment for ABEI. Therefore, ABEI exhibited high ECL efficiency, resulting in a high sensitivity with an ultralow detection limit of 0.023 nM (S/N = 3) for H2O2 of the proposed ECL biosensor. MCF-7 and MDA-MB-231 cells were cultured in a 3D peptide hydrogel/ABEI/TF electrode, respectively, and endogenous H2O2 was successfully monitored. A notably significant difference of H2O2 released between MDA-MB-231 cells and MCF-7 cells without stimulation but similar extra release with stimulation were observed. These findings may help understand the physiological mechanisms behind the various subtypes and reactive oxygen species (ROS)-related treatment for breast cancer.
Collapse
Affiliation(s)
- Yunfan Zhou
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xue Wei
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jun Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hanzhi Xiong
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Dandan Sui
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xu Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wensheng Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
10
|
Ozbek I, Saybasili H, Ulgen KO. Applications of 3D Bioprinting Technology to Brain Cells and Brain Tumor Models: Special Emphasis to Glioblastoma. ACS Biomater Sci Eng 2024; 10:2616-2635. [PMID: 38664996 PMCID: PMC11094688 DOI: 10.1021/acsbiomaterials.3c01569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 03/17/2024] [Accepted: 04/12/2024] [Indexed: 05/14/2024]
Abstract
Primary brain tumor is one of the most fatal diseases. The most malignant type among them, glioblastoma (GBM), has low survival rates. Standard treatments reduce the life quality of patients due to serious side effects. Tumor aggressiveness and the unique structure of the brain render the removal of tumors and the development of new therapies challenging. To elucidate the characteristics of brain tumors and examine their response to drugs, realistic systems that mimic the tumor environment and cellular crosstalk are desperately needed. In the past decade, 3D GBM models have been presented as excellent platforms as they allowed the investigation of the phenotypes of GBM and testing innovative therapeutic strategies. In that scope, 3D bioprinting technology offers utilities such as fabricating realistic 3D bioprinted structures in a layer-by-layer manner and precisely controlled deposition of materials and cells, and they can be integrated with other technologies like the microfluidics approach. This Review covers studies that investigated 3D bioprinted brain tumor models, especially GBM using 3D bioprinting techniques and essential parameters that affect the result and quality of the study like frequently used cells, the type and physical characteristics of hydrogel, bioprinting conditions, cross-linking methods, and characterization techniques.
Collapse
Affiliation(s)
- Ilkay
Irem Ozbek
- Department
of Chemical Engineering, Bogazici University, Istanbul 34342, Turkey
| | - Hale Saybasili
- Institute
of Biomedical Engineering, Bogazici University, Istanbul 34684, Turkey
| | - Kutlu O. Ulgen
- Department
of Chemical Engineering, Bogazici University, Istanbul 34342, Turkey
| |
Collapse
|
11
|
Park J, Koh I, Cha J, Oh Y, Shim JK, Kim H, Moon JH, Kim EH, Chang JH, Kim P, Kang SG. Comparison of Glioblastoma Cell Culture Platforms Based on Transcriptional Similarity with Paired Tissue. Pharmaceuticals (Basel) 2024; 17:529. [PMID: 38675489 PMCID: PMC11054899 DOI: 10.3390/ph17040529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
No standardized in vitro cell culture models for glioblastoma (GBM) have yet been established, excluding the traditional two-dimensional culture. GBM tumorspheres (TSs) have been highlighted as a good model platform for testing drug effects and characterizing specific features of GBM, but a detailed evaluation of their suitability and comparative performance is lacking. Here, we isolated GBM TSs and extracellular matrices (ECM) from tissues obtained from newly diagnosed IDH1 wild-type GBM patients and cultured GBM TSs on five different culture platforms: (1) ordinary TS culture liquid media (LM), (2) collagen-based three-dimensional (3D) matrix, (3) patient typical ECM-based 3D matrix, (4) patient tumor ECM-based 3D matrix, and (5) mouse brain. For evaluation, we obtained transcriptome data from all cultured GBM TSs using microarrays. The LM platform exhibited the most similar transcriptional program to paired tissues based on GBM genes, stemness- and invasiveness-related genes, transcription factor activity, and canonical signaling pathways. GBM TSs can be cultured via an easy-to-handle and cost- and time-efficient LM platform while preserving the transcriptional program of the originating tissues without supplementing the ECM or embedding it into the mouse brain. In addition to applications in basic cancer research, GBM TSs cultured in LM may also serve as patient avatars in drug screening and pre-clinical evaluation of targeted therapy and as standardized and clinically relevant models for precision medicine.
Collapse
Affiliation(s)
- Junseong Park
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (J.P.); (Y.O.); (J.-K.S.); (J.H.M.); (E.H.K.); (J.H.C.)
- Cancer Evolution Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Ilkyoo Koh
- Department of Bio and Brain Engineering, KAIST, Daejeon 34141, Republic of Korea; (I.K.); (J.C.); (H.K.)
| | - Junghwa Cha
- Department of Bio and Brain Engineering, KAIST, Daejeon 34141, Republic of Korea; (I.K.); (J.C.); (H.K.)
| | - Yoojung Oh
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (J.P.); (Y.O.); (J.-K.S.); (J.H.M.); (E.H.K.); (J.H.C.)
- Brain Tumor Translational Research Laboratory, Severance Biomedical Research Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Jin-Kyoung Shim
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (J.P.); (Y.O.); (J.-K.S.); (J.H.M.); (E.H.K.); (J.H.C.)
- Brain Tumor Translational Research Laboratory, Severance Biomedical Research Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Hyejin Kim
- Department of Bio and Brain Engineering, KAIST, Daejeon 34141, Republic of Korea; (I.K.); (J.C.); (H.K.)
| | - Ju Hyung Moon
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (J.P.); (Y.O.); (J.-K.S.); (J.H.M.); (E.H.K.); (J.H.C.)
- Brain Tumor Translational Research Laboratory, Severance Biomedical Research Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Eui Hyun Kim
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (J.P.); (Y.O.); (J.-K.S.); (J.H.M.); (E.H.K.); (J.H.C.)
- Brain Tumor Translational Research Laboratory, Severance Biomedical Research Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Jong Hee Chang
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (J.P.); (Y.O.); (J.-K.S.); (J.H.M.); (E.H.K.); (J.H.C.)
| | - Pilnam Kim
- Department of Bio and Brain Engineering, KAIST, Daejeon 34141, Republic of Korea; (I.K.); (J.C.); (H.K.)
- KAIST Institute for Health Science and Technology, KAIST, Daejeon 34141, Republic of Korea
| | - Seok-Gu Kang
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; (J.P.); (Y.O.); (J.-K.S.); (J.H.M.); (E.H.K.); (J.H.C.)
- Brain Tumor Translational Research Laboratory, Severance Biomedical Research Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Department of Medical Science, Yonsei University Graduate School, Seoul 03722, Republic of Korea
| |
Collapse
|
12
|
Purshouse K, Bulbeck HJ, Rooney AG, Noble KE, Carruthers RD, Thompson G, Hamerlik P, Yap C, Kurian KM, Jefferies SJ, Lopez JS, Jenkinson MD, Hanemann CO, Stead LF. Adult brain tumour research in 2024: Status, challenges and recommendations. Neuropathol Appl Neurobiol 2024; 50:e12979. [PMID: 38605644 DOI: 10.1111/nan.12979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/13/2024]
Abstract
In 2015, a groundswell of brain tumour patient, carer and charity activism compelled the UK Minister for Life Sciences to form a brain tumour research task and finish group. This resulted, in 2018, with the UK government pledging £20m of funding, to be paralleled with £25m from Cancer Research UK, specifically for neuro-oncology research over the subsequent 5 years. Herein, we review if and how the adult brain tumour research landscape in the United Kingdom has changed over that time and what challenges and bottlenecks remain. We have identified seven universal brain tumour research priorities and three cross-cutting themes, which span the research spectrum from bench to bedside and back again. We discuss the status, challenges and recommendations for each one, specific to the United Kingdom.
Collapse
Affiliation(s)
- Karin Purshouse
- Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, UK
| | | | - Alasdair G Rooney
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK
| | | | | | - Gerard Thompson
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK
- Department of Clinical Neurosciences, NHS Lothian, Edinburgh, UK
| | - Petra Hamerlik
- Division of Cancer Sciences, University of Manchester, Manchester, UK
| | | | - Kathreena M Kurian
- Bristol Brain Tumour Research Centre, Bristol Medical School, University of Bristol, Bristol, UK
| | | | - Juanita S Lopez
- Royal Marsden NHS Foundation Trust and the Institute of Cancer Research, Sutton, UK
| | | | | | - Lucy F Stead
- Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| |
Collapse
|
13
|
Chiavelli C, Prapa M, Rovesti G, Silingardi M, Neri G, Pugliese G, Trudu L, Dall'Ora M, Golinelli G, Grisendi G, Vinet J, Bestagno M, Spano C, Papapietro RV, Depenni R, Di Emidio K, Pasetto A, Nascimento Silva D, Feletti A, Berlucchi S, Iaccarino C, Pavesi G, Dominici M. Autologous anti-GD2 CAR T cells efficiently target primary human glioblastoma. NPJ Precis Oncol 2024; 8:26. [PMID: 38302615 PMCID: PMC10834575 DOI: 10.1038/s41698-024-00506-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 01/05/2024] [Indexed: 02/03/2024] Open
Abstract
Glioblastoma (GBM) remains a deadly tumor. Treatment with chemo-radiotherapy and corticosteroids is known to impair the functionality of lymphocytes, potentially compromising the development of autologous CAR T cell therapies. We here generated pre-clinical investigations of autologous anti-GD2 CAR T cells tested against 2D and 3D models of GBM primary cells. We detected a robust antitumor effect, highlighting the feasibility of developing an autologous anti-GD2 CAR T cell-based therapy for GBM patients.
Collapse
Affiliation(s)
- Chiara Chiavelli
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Malvina Prapa
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Giulia Rovesti
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Modena, Italy
- Department of Oncology and Hematology, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Marco Silingardi
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Modena, Italy
| | - Giovanni Neri
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Modena, Italy
| | - Giuseppe Pugliese
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
- Department of Oncology and Hematology, University-Hospital of Modena and Reggio Emilia, Modena, Italy
- Leucid Bio Ltd., Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK
| | - Lucia Trudu
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Modena, Italy
- Department of Oncology and Hematology, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | | | - Giulia Golinelli
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
- Center for Cellular Immunotherapies, Perelman School of Medicine, and Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA, USA
| | - Giulia Grisendi
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Jonathan Vinet
- Centro Interdipartimentale Grandi Strumenti (CIGS), University of Modena and Reggio Emilia, Modena, Italy
| | - Marco Bestagno
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Carlotta Spano
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Roberto Vito Papapietro
- Department of Oncology and Hematology, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Roberta Depenni
- Department of Oncology and Hematology, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Katia Di Emidio
- Department of Oncology and Hematology, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Anna Pasetto
- Section for Cell Therapy, Radiumhospitalet, Oslo University Hospital, Oslo, Norway
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Alberto Feletti
- Department of Neurosciences, Biomedicine and Movement Sciences, Neurosurgery Unit, University of Verona, Verona, Italy
| | - Silvia Berlucchi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia - Division of Neurosurgery, Department of Neurosciences, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Corrado Iaccarino
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia - Division of Neurosurgery, Department of Neurosciences, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Giacomo Pavesi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia - Division of Neurosurgery, Department of Neurosciences, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Massimo Dominici
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy.
- Department of Oncology and Hematology, University-Hospital of Modena and Reggio Emilia, Modena, Italy.
| |
Collapse
|
14
|
Wang W, Ou Z, Huang X, Wang J, Li Q, Wen M, Zheng L. Microbiota and glioma: a new perspective from association to clinical translation. Gut Microbes 2024; 16:2394166. [PMID: 39185670 DOI: 10.1080/19490976.2024.2394166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/10/2024] [Accepted: 08/14/2024] [Indexed: 08/27/2024] Open
Abstract
Gliomas pose a significant challenge in oncology due to their malignant nature, aggressive growth, frequent recurrence, and complications posed by the blood-brain barrier. Emerging research has revealed the critical role of gut microbiota in influencing health and disease, indicating its possible impact on glioma pathogenesis and treatment responsiveness. This review focused on existing evidence and hypotheses on the relationship between microbiota and glioma from progression to invasion. By discussing possible mechanisms through which microbiota may affect glioma biology, this paper offers new avenues for targeted therapies and precision medicine in oncology.
Collapse
Affiliation(s)
- Wenhui Wang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zihao Ou
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xixin Huang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jingyu Wang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qianbei Li
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Minghui Wen
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lei Zheng
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
15
|
Kriuchkovskaia V, Eames EK, Riggins RB, Harley BAC. Acquired temozolomide resistance instructs patterns of glioblastoma behavior in gelatin hydrogels. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.14.567115. [PMID: 38014332 PMCID: PMC10680767 DOI: 10.1101/2023.11.14.567115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Acquired drug resistance in glioblastoma (GBM) presents a major clinical challenge and is a key factor contributing to abysmal prognosis, with less than 15 months median overall survival. Aggressive chemotherapy with the frontline therapeutic, temozolomide (TMZ), ultimately fails to kill residual highly invasive tumor cells after surgical resection and radiotherapy. Here, we report a three-dimensional (3D) engineered model of acquired TMZ resistance using two isogenically-matched sets of GBM cell lines encapsulated in gelatin methacrylol hydrogels. We benchmark response of TMZ-resistant vs. TMZ-sensitive GBM cell lines within the gelatin-based extracellular matrix platform and further validate drug response at physiologically relevant TMZ concentrations. We show changes in drug sensitivity, cell invasion, and matrix-remodeling cytokine production as the result of acquired TMZ resistance. This platform lays the foundation for future investigations targeting key elements of the GBM tumor microenvironment to combat GBM's devastating impact by advancing our understanding of GBM progression and treatment response to guide the development of novel treatment strategies. Teaser A hydrogel model to investigate the impact of acquired drug resistance on functional response in glioblastoma.
Collapse
|
16
|
van Niekerk A, Wrzesinski K, Steyn D, Gouws C. A Novel NCI-H69AR Drug-Resistant Small-Cell Lung Cancer Mini-Tumor Model for Anti-Cancer Treatment Screening. Cells 2023; 12:1980. [PMID: 37566059 PMCID: PMC10416941 DOI: 10.3390/cells12151980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/12/2023] Open
Abstract
Small-cell lung cancer is a fast-growing carcinoma with a poor prognosis and a high level of relapse due to multi-drug resistance (MDR). Genetic mutations that lead to the overexpression of efflux transporter proteins can contribute to MDR. In vitro cancer models play a tremendous role in chemotherapy development and the screening of possible anti-cancer molecules. Low-cost and simple in vitro models are normally used. Traditional two-dimensional (2D) models have numerous shortcomings when considering the physiological resemblance of an in vivo setting. Three-dimensional (3D) models aim to bridge the gap between conventional 2D models and the in vivo setting. Some of the advantages of functional 3D spheroids include better representation of the in vivo physiology and tumor characteristics when compared to traditional 2D cultures. During this study, an NCI-H69AR drug-resistant mini-tumor model (MRP1 hyperexpressive) was developed by making use of a rotating clinostat bioreactor system (ClinoStar®; CelVivo ApS, Odense, Denmark). Spheroid growth and viability were assessed over a 25-day period to determine the ideal experimental period with mature and metabolically stable constructs. The applicability of this model for anti-cancer research was evaluated through treatment with irinotecan, paclitaxel and cisplatin for 96 h, followed by a 96 h recovery period. Parameters measured included planar surface area measurements, estimated glucose consumption, soluble protein content, intracellular adenosine triphosphate levels, extracellular adenylate kinase levels, histology and efflux transporter gene expression. The established functional spheroid model proved viable and stable during the treatment period, with retained relative hyperexpression of the MRP1 efflux transporter gene but increased expression of the P-gp transporter gene compared to the cells cultured in 2D. As expected, treatment with the abovementioned anti-cancer drugs at clinical doses (100 mg/m2 irinotecan, 80 mg/m2 paclitaxel and 75 mg/m2 cisplatin) had minimal impact on the drug-resistant mini-tumors, and the functional spheroid models were able to recover following the removal of treatment.
Collapse
Affiliation(s)
- Alandi van Niekerk
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen™), North-West University, Potchefstroom 2520, South Africa; (A.v.N.); (K.W.); (D.S.)
| | - Krzysztof Wrzesinski
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen™), North-West University, Potchefstroom 2520, South Africa; (A.v.N.); (K.W.); (D.S.)
- CelVivo ApS, 5491 Blommenslyst, Denmark
| | - Dewald Steyn
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen™), North-West University, Potchefstroom 2520, South Africa; (A.v.N.); (K.W.); (D.S.)
| | - Chrisna Gouws
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen™), North-West University, Potchefstroom 2520, South Africa; (A.v.N.); (K.W.); (D.S.)
| |
Collapse
|
17
|
Rani AQ, Nurmemet D, Liffick J, Khan A, Mitchell D, Li J, Zhao B, Liu X. Conditional Cell Reprogramming and Air-Liquid Interface Modeling Life Cycle of Oncogenic Viruses (HPV and EBV) in Epithelial Cells and Virus-Associated Human Carcinomas. Viruses 2023; 15:1388. [PMID: 37376685 DOI: 10.3390/v15061388] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/11/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Several oncogenic viruses are associated with approximately 20% of human cancers. Experimental models are crucial for studying the pathogenicity and biological aspects of oncogenic viruses and their potential mechanisms in tumorigenesis. Current cell models have considerable limitations such as: their low yield, genetic and epigenetic modification, and reduction in tumor heterogeneity during long propagation. Cancer cell lines are limited and not appropriate for studying the viral life cycle, for example, natural viral life cycles of HPV and EBV, and their persistence and latency in epithelial cells are poorly understood, since these processes are highly related to epithelial differentiation. Therefore, there is an urgent need of reliable human physiological cell models to study viral life cycle and cancer initiation. Conditional cell reprogramming (CCR) is a rapid and robust cell culture system, where the cells can be established from minimally invasive or noninvasive specimens and their lineage functions preserved during the long-term culture. These CR cells retain their ability to differentiate at air-liquid interface (ALI). Here, we recapitulated the applications of CR and ALI approaches in modeling host-virus interactions and viral-mediated tumorigenesis.
Collapse
Affiliation(s)
- Abdul Qawee Rani
- Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
| | - Dilber Nurmemet
- Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
| | - Joseph Liffick
- Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
| | - Anam Khan
- Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
| | - Darrion Mitchell
- Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
- Department of Radiation Oncology, Wexner Medical Center, Ohio State University, Columbus, OH 43210, USA
| | - Jenny Li
- Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
| | - Bo Zhao
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Xuefeng Liu
- Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
- Departments of Pathology, Urology and Radiation Oncology, Wexner Medical Center, Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
18
|
A Simple 3D Cell Culture Method for Studying the Interactions between Human Mesenchymal Stromal/Stem Cells and Patients Derived Glioblastoma. Cancers (Basel) 2023; 15:cancers15041304. [PMID: 36831643 PMCID: PMC9954562 DOI: 10.3390/cancers15041304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/09/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
We have developed a 3D biosphere model using patient-derived cells (PDCs) from glioblastoma (GBM), the major form of primary brain tumors in adult, plus cancer-activated fibroblasts (CAFs), obtained by culturing mesenchymal stem cells with GBM conditioned media. The effect of MSC/CAFs on the proliferation, cell-cell interactions, and response to treatment of PDCs was evaluated. Proliferation in the presence of CAFs was statistically lower but the spheroids formed within the 3D-biosphere were larger. A treatment for 5 days with Temozolomide (TMZ) and irradiation, the standard therapy for GBM, had a marked effect on cell number in monocultures compared to co-cultures and influenced cancer stem cells composition, similar to that observed in GBM patients. Mathematical analyses of spheroids growth and morphology confirm the similarity with GBM patients. We, thus, provide a simple and reproducible method to obtain 3D cultures from patient-derived biopsies and co-cultures with MSC with a near 100% success. This method provides the basis for relevant in vitro functional models for a better comprehension of the role of tumor microenvironment and, for precision and/or personalized medicine, potentially to predict the response to treatments for each GBM patient.
Collapse
|