1
|
López-Chicón P, Rodríguez Martínez JI, Castells-Sala C, Lopez-Puerto L, Ruiz-Ponsell L, Fariñas O, Vilarrodona A. Pericardium decellularization in a one-day, two-step protocol. Mol Cell Biochem 2025; 480:1819-1829. [PMID: 39251464 PMCID: PMC11842532 DOI: 10.1007/s11010-024-05086-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/01/2024] [Indexed: 09/11/2024]
Abstract
Scaffolds used in tissue engineering can be obtained from synthetic or natural materials, always focusing the effort on mimicking the extracellular matrix of human native tissue. In this study, a decellularization process is used to obtain an acellular, biocompatible non-cytotoxic human pericardium graft as a bio-substitute. An enzymatic and hypertonic method was used to decellularize the pericardium. Histological analyses were performed to determine the absence of cells and ensure the integrity of the extracellular matrix (ECM). In order to measure the effect of the decellularization process on the tissue's biological and mechanical properties, residual genetic content and ECM biomolecules (collagen, elastin, and glycosaminoglycan) were quantified and the tissue's tensile strength was tested. Preservation of the biomolecules, a residual genetic content below 50 ng/mg dry tissue, and maintenance of the histological structure provided evidence for the efficacy of the decellularization process, while preserving the ECM. Moreover, the acellular tissue retains its mechanical properties, as shown by the biomechanical tests. Our group has shown that the acellular pericardial matrix obtained through the super-fast decellularization protocol developed recently retains the desired biomechanical and structural properties, suggesting that it is suitable for a broad range of clinical indications.
Collapse
Affiliation(s)
- P López-Chicón
- Barcelona Tissue Bank, Banc de Sang i Teixits (BST, GenCAT), Passeig Taulat 116, 08005, Barcelona, Spain
- Biomedical Research Institute (IIB-Sant Pau; SGR1113), Barcelona, Spain
| | - J I Rodríguez Martínez
- Barcelona Tissue Bank, Banc de Sang i Teixits (BST, GenCAT), Passeig Taulat 116, 08005, Barcelona, Spain
- Biomedical Research Institute (IIB-Sant Pau; SGR1113), Barcelona, Spain
| | - C Castells-Sala
- Barcelona Tissue Bank, Banc de Sang i Teixits (BST, GenCAT), Passeig Taulat 116, 08005, Barcelona, Spain.
- Biomedical Research Institute (IIB-Sant Pau; SGR1113), Barcelona, Spain.
| | - L Lopez-Puerto
- Barcelona Tissue Bank, Banc de Sang i Teixits (BST, GenCAT), Passeig Taulat 116, 08005, Barcelona, Spain
- Vall Hebron Institute of Research (VHIR), Barcelona, Spain
| | - L Ruiz-Ponsell
- Barcelona Tissue Bank, Banc de Sang i Teixits (BST, GenCAT), Passeig Taulat 116, 08005, Barcelona, Spain
- Biomedical Research Institute (IIB-Sant Pau; SGR1113), Barcelona, Spain
| | - O Fariñas
- Barcelona Tissue Bank, Banc de Sang i Teixits (BST, GenCAT), Passeig Taulat 116, 08005, Barcelona, Spain
- Biomedical Research Institute (IIB-Sant Pau; SGR1113), Barcelona, Spain
| | - A Vilarrodona
- Barcelona Tissue Bank, Banc de Sang i Teixits (BST, GenCAT), Passeig Taulat 116, 08005, Barcelona, Spain
- Vall Hebron Institute of Research (VHIR), Barcelona, Spain
| |
Collapse
|
2
|
Rodríguez Martínez JI, Castells-Sala C, Baptista Piteira AR, Montagner G, Trojan D, Martinez-Legazpi P, Acosta Ocampo A, Fernández-Santos ME, Bermejo J, Jashari R, Pérez ML, Agustí E, Tabera J, Vilarrodona A. Advancing Heart Valve Replacement: Risk Mitigation of Decellularized Pulmonary Valve Preparation for Its Implementation in Public Tissue Banks. Ther Clin Risk Manag 2025; 21:209-228. [PMID: 40035073 PMCID: PMC11873323 DOI: 10.2147/tcrm.s486508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 12/05/2024] [Indexed: 03/05/2025] Open
Abstract
Purpose Cryopreserved homografts for valve replacement surgeries face a major problem regarding their durability after implantation and decellularized pulmonary heart valves have raised as potential new generation substitute for these surgeries. The present study aims to document the work performed for the safe implementation in public tissue banks of a new decellularization method for human pulmonary heart valves, based on previous risk evaluation. Methods After assessing new preparation method associated risks, using EuroGTP-II methodologies, an extensive array of in vitro studies were defined to validate the new technique, mitigate the risks and provide quality and safety data. Results Initial evaluation of risks using EuroGTP II tool, showed Final Risk Score of 23 (high risk), and four studies were devised to mitigate identified risks: (i) tissue structure integrity; (ii) cell content; (iii) microbiological safety; and (iv) cytotoxicity evaluation in final tissue preparation. Protein quantification, mechanical properties, and histological evaluation indicated no tissue damage, reducing implant failure probability, while cellular content removal demonstrated a 99% DNA removal and microbiological control ensured contamination absence. Moreover, in vitro results showed no cytotoxicity. Risk re-evaluation indicated a risk reduction to moderate risk (Final Risk Score = 10), suggesting that further evidence for safe clinical use would be needed at pre-clinical in vivo evaluation to mitigate remaining risks. Conclusions The studies performed and reviewed bibliography were able to significantly reduce the original level of risk associated with the clinical application of this homograft's preparation. However, additional in vivo studies and tissue stability tests are still necessary to address the remaining risks associated with reagents' effect on extracellular matrix and storage conditions, which could influence implant failure, before the clinical evaluation procedures can be implemented to determine the efficacy and safety of the new decellularized heart valves.
Collapse
Affiliation(s)
- Jose Ignacio Rodríguez Martínez
- Barcelona Tissue Bank, Banc de Sang i Teixits (BST), Barcelona, Spain
- Biomedical Research Institute (IIB-Sant Pau; SGR1113), Barcelona, Spain
| | - Cristina Castells-Sala
- Barcelona Tissue Bank, Banc de Sang i Teixits (BST), Barcelona, Spain
- Biomedical Research Institute (IIB-Sant Pau; SGR1113), Barcelona, Spain
| | - Ana Rita Baptista Piteira
- Barcelona Tissue Bank, Banc de Sang i Teixits (BST), Barcelona, Spain
- Biomedical Research Institute (IIB-Sant Pau; SGR1113), Barcelona, Spain
| | | | | | - Pablo Martinez-Legazpi
- Department of Mathematical Physics and Fluids, Universidad Nacional de Educación a Distancia, UNED, Madrid, Spain
- Centre for Biomedical Research in Cardiovascular Disease Network (CIBER-CV) and Red de Investigación Cooperativa Orientada a Resultados En Salud (RICORS) TERAV, from the Instituto de Salud Carlos III, Madrid, Spain
| | - Alejandra Acosta Ocampo
- Centre for Biomedical Research in Cardiovascular Disease Network (CIBER-CV) and Red de Investigación Cooperativa Orientada a Resultados En Salud (RICORS) TERAV, from the Instituto de Salud Carlos III, Madrid, Spain
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Gregorio Marañón Health Research Institute (Iisgm), Madrid, Spain
| | - Maria Eugenia Fernández-Santos
- Centre for Biomedical Research in Cardiovascular Disease Network (CIBER-CV) and Red de Investigación Cooperativa Orientada a Resultados En Salud (RICORS) TERAV, from the Instituto de Salud Carlos III, Madrid, Spain
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Gregorio Marañón Health Research Institute (Iisgm), Madrid, Spain
| | - Javier Bermejo
- Centre for Biomedical Research in Cardiovascular Disease Network (CIBER-CV) and Red de Investigación Cooperativa Orientada a Resultados En Salud (RICORS) TERAV, from the Instituto de Salud Carlos III, Madrid, Spain
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Gregorio Marañón Health Research Institute (Iisgm), Madrid, Spain
- Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Ramadan Jashari
- European Homograft Bank (EHB) Cliniques Universitaires, Saint-Luc, Bruxelles
| | - Maria Luisa Pérez
- Barcelona Tissue Bank, Banc de Sang i Teixits (BST), Barcelona, Spain
- Vall Hebron Institute of Research (VHIR), Barcelona, Spain
| | - Elba Agustí
- Barcelona Tissue Bank, Banc de Sang i Teixits (BST), Barcelona, Spain
- Vall Hebron Institute of Research (VHIR), Barcelona, Spain
| | - Jaime Tabera
- Barcelona Tissue Bank, Banc de Sang i Teixits (BST), Barcelona, Spain
- Biomedical Research Institute (IIB-Sant Pau; SGR1113), Barcelona, Spain
| | - Anna Vilarrodona
- Barcelona Tissue Bank, Banc de Sang i Teixits (BST), Barcelona, Spain
- Vall Hebron Institute of Research (VHIR), Barcelona, Spain
| |
Collapse
|
3
|
Seyihoglu B, Orhan I, Okudur N, Aygun HK, Bhupal M, Yavuz Y, Can A. 20 years of treating ischemic cardiomyopathy with mesenchymal stromal cells: a meta-analysis and systematic review. Cytotherapy 2024; 26:1443-1457. [PMID: 39078351 DOI: 10.1016/j.jcyt.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 06/17/2024] [Accepted: 07/01/2024] [Indexed: 07/31/2024]
Abstract
This meta-analysis and systematic review compiles comparative data from 2004 to 2024, investigating the safety and efficacy of mesenchymal stem/stromal cells (MSCs) derived from various tissues for the treatment of ischemic cardiomyopathy (ICM) and associated heart failure. In addition, this review highlights the limitations of these interventions and provides valuable insights for future therapeutic approaches. Relevant articles were retrieved from the PubMed® database using targeted keywords. Our inclusion criteria included clinical trials with patients over 18 years of age, case reports and pilot studies. Animal experiments, in vitro studies, correlational and longitudinal studies, and study designs and protocols were excluded. Forty-nine original articles resulted in follow-up reports of 45 trials. MSCs from bone marrow, umbilical cord and adipose tissue were moderately well tolerated. Of the 1408 participants who received MSCs, 33 trials (67.3%) reported the occurrence of death or serious adverse events. These events resulted in 80 deaths (52% of reported cases) following MSC administration. Importantly, 41.3% of these deaths (n = 33) were not considered to be related to the intervention itself, while 40% of these deaths had no reported cause. As the primary outcome, the mean increase in left ventricular ejection fraction (LVEF) from baseline was 5.75% (95% CI: 3.38% -8.11%, p < 0.0001, I2 = 90,9%) in the randomized controlled trials only (n = 24) within the treatment groups and 3.19% (95% CI: 1.63% to 4.75%, p < 0.0001, I2 = 74,17%) in the control groups after the intervention. When the above results were compared using the standardized mean difference (SDM), a significance in favor of the treatment group was also found (SDM = 0.41; 95% CI: 0.19-0.64, p < 0.001, I2 = 71%). Although improvements were also seen in the control groups, 33.3% (n = 15) of the studies showed no significant difference between the control and treatment groups. The 6-minute walking test (6MWT) and New York Heart Association (NYHA) class scores, used for assessing exercise tolerance and quality of life (QoL), respectively, further supported the improvements in the treatment group. These improvements were noted as 62.5% (n = 10) for the 6MWT and 54.5% (n = 12) for the NYHA class scores. According to the risk of bias analysis, 4 trials were of good quality (11.8%), 15 were of fair quality (44.1%), and 15 were of poor quality (44.1%). Major limitations of these studies included small sample size, diagnostic challenges/lack, uncertain cell dosage and potential bias in patient selection. Despite the ongoing debate surrounding cell administration for ICM, there are supporting signs of improved clinical and laboratory outcomes, as well as improved QoL in the MSC-treated groups. However, it is important to recognize the limitations of each study, highlighting the need for larger, controlled trials to validate these findings.
Collapse
Affiliation(s)
| | - Inci Orhan
- Ankara University School of Medicine, Sihhiye, Ankara, Türkiye
| | - Nil Okudur
- Ankara University School of Medicine, Sihhiye, Ankara, Türkiye
| | | | - Melissa Bhupal
- Ankara University School of Medicine, Sihhiye, Ankara, Türkiye
| | - Yasemin Yavuz
- Department of Biostatistics, Ankara University School of Medicine, Sihhiye, Ankara 06410, Türkiye
| | - Alp Can
- Department of Histology and Embryology Laboratory for Stem Cells and Reproductive Cell Biology, Ankara University School of Medicine, Sihhiye, Ankara 06410, Türkiye.
| |
Collapse
|
4
|
Capella-Monsonís H, Crum RJ, Hussey GS, Badylak SF. Advances, challenges, and future directions in the clinical translation of ECM biomaterials for regenerative medicine applications. Adv Drug Deliv Rev 2024; 211:115347. [PMID: 38844005 DOI: 10.1016/j.addr.2024.115347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 06/11/2024]
Abstract
Extracellular Matrix (ECM) scaffolds and biomaterials have been widely used for decades across a variety of diverse clinical applications and have been implanted in millions of patients worldwide. ECM-based biomaterials have been especially successful in soft tissue repair applications but their utility in other clinical applications such as for regeneration of bone or neural tissue is less well understood. The beneficial healing outcome with the use of ECM biomaterials is the result of their biocompatibility, their biophysical properties and their ability to modify cell behavior after injury. As a consequence of successful clinical outcomes, there has been motivation for the development of next-generation formulations of ECM materials ranging from hydrogels, bioinks, powders, to whole organ or tissue scaffolds. The continued development of novel ECM formulations as well as active research interest in these materials ensures a wealth of possibilities for future clinical translation and innovation in regenerative medicine. The clinical translation of next generation formulations ECM scaffolds faces predictable challenges such as manufacturing, manageable regulatory pathways, surgical implantation, and the cost required to address these challenges. The current status of ECM-based biomaterials, including clinical translation, novel formulations and therapies currently under development, and the challenges that limit clinical translation of ECM biomaterials are reviewed herein.
Collapse
Affiliation(s)
- Héctor Capella-Monsonís
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA 15219, USA; Department of Surgery, School of Medicine, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA 15213, USA; Viscus Biologics LLC, 2603 Miles Road, Cleveland, OH 44128, USA
| | - Raphael J Crum
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA 15219, USA; Department of Surgery, School of Medicine, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA 15213, USA
| | - George S Hussey
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA 15219, USA; Department of Pathology, School of Medicine, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA 15213, USA
| | - Stephen F Badylak
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA 15219, USA; Department of Surgery, School of Medicine, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA 15213, USA; Department of Bioengineering, University of Pittsburgh, 3700 O'Hara Street, Pittsburgh, PA 15261, USA.
| |
Collapse
|
5
|
Liu T, Hao Y, Zhang Z, Zhou H, Peng S, Zhang D, Li K, Chen Y, Chen M. Advanced Cardiac Patches for the Treatment of Myocardial Infarction. Circulation 2024; 149:2002-2020. [PMID: 38885303 PMCID: PMC11191561 DOI: 10.1161/circulationaha.123.067097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Myocardial infarction is a cardiovascular disease characterized by a high incidence rate and mortality. It leads to various cardiac pathophysiological changes, including ischemia/reperfusion injury, inflammation, fibrosis, and ventricular remodeling, which ultimately result in heart failure and pose a significant threat to global health. Although clinical reperfusion therapies and conventional pharmacological interventions improve emergency survival rates and short-term prognoses, they are still limited in providing long-lasting improvements in cardiac function or reversing pathological progression. Recently, cardiac patches have gained considerable attention as a promising therapy for myocardial infarction. These patches consist of scaffolds or loaded therapeutic agents that provide mechanical reinforcement, synchronous electrical conduction, and localized delivery within the infarct zone to promote cardiac restoration. This review elucidates the pathophysiological progression from myocardial infarction to heart failure, highlighting therapeutic targets and various cardiac patches. The review considers the primary scaffold materials, including synthetic, natural, and conductive materials, and the prevalent fabrication techniques and optimal properties of the patch, as well as advanced delivery strategies. Last, the current limitations and prospects of cardiac patch research are considered, with the goal of shedding light on innovative products poised for clinical application.
Collapse
Affiliation(s)
- Tailuo Liu
- Laboratory of Cardiac Structure and Function, Institute of Cardiovascular Diseases (T.L., Y.H., H.Z., S.P., D.Z., Y.C., M.C.), West China Hospital, Sichuan University, Chengdu, PR China
- Department of Cardiology (T.L., S.P., D.Z., M.C.), West China Hospital, Sichuan University, Chengdu, PR China
- Medicine and Engineering Interdisciplinary Research Laboratory of Nursing & Materials, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, PR China (T.L., K.L., Y.C.)
| | - Ying Hao
- Laboratory of Cardiac Structure and Function, Institute of Cardiovascular Diseases (T.L., Y.H., H.Z., S.P., D.Z., Y.C., M.C.), West China Hospital, Sichuan University, Chengdu, PR China
| | - Zixuan Zhang
- West China School of Public Health/West China Fourth Hospital, Sichuan University, Chengdu, PR China (Z.Z.)
| | - Hao Zhou
- Laboratory of Cardiac Structure and Function, Institute of Cardiovascular Diseases (T.L., Y.H., H.Z., S.P., D.Z., Y.C., M.C.), West China Hospital, Sichuan University, Chengdu, PR China
| | - Shiqin Peng
- Department of Cardiology (T.L., S.P., D.Z., M.C.), West China Hospital, Sichuan University, Chengdu, PR China
| | - Dingyi Zhang
- Department of Cardiology (T.L., S.P., D.Z., M.C.), West China Hospital, Sichuan University, Chengdu, PR China
| | - Ka Li
- Medicine and Engineering Interdisciplinary Research Laboratory of Nursing & Materials, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, PR China (T.L., K.L., Y.C.)
| | - Yuwen Chen
- Medicine and Engineering Interdisciplinary Research Laboratory of Nursing & Materials, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, PR China (T.L., K.L., Y.C.)
| | - Mao Chen
- Department of Cardiology (T.L., S.P., D.Z., M.C.), West China Hospital, Sichuan University, Chengdu, PR China
| |
Collapse
|
6
|
Bayes-Genis A, Gastelurrutia P, Monguió-Tortajada M, Cámara ML, Prat-Vidal C, Cediel G, Rodríguez-Gómez L, Teis A, Revuelta-López E, Ferrer-Curriu G, Roura S, Gálvez-Montón C, Bisbal F, Vives J, Vilarrodona A, Muñoz-Guijosa C, Querol S. Implantation of a double allogeneic human engineered tissue graft on damaged heart: insights from the PERISCOPE phase I clinical trial. EBioMedicine 2024; 102:105060. [PMID: 38490102 PMCID: PMC10955661 DOI: 10.1016/j.ebiom.2024.105060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/17/2024] Open
Abstract
BACKGROUND In preclinical studies, the use of double allogeneic grafts has shown promising results in promoting tissue revascularization, reducing infarct size, preventing adverse remodelling and fibrosis, and ultimately enhancing cardiac function. Building upon these findings, the safety of PeriCord, an engineered tissue graft consisting of a decellularised pericardial matrix and umbilical cord Wharton's jelly mesenchymal stromal cells, was evaluated in the PERISCOPE Phase I clinical trial (NCT03798353), marking its first application in human subjects. METHODS This was a double-blind, single-centre trial that enrolled patients with non-acute myocardial infarction eligible for surgical revascularization. Seven patients were implanted with PeriCord while five served as controls. FINDINGS Patients who received PeriCord showed no adverse effects during post-operative phase and one-year follow-up. No significant changes in secondary outcomes, such as quality of life or cardiac function, were found in patients who received PeriCord. However, PeriCord did modulate the kinetics of circulating monocytes involved in post-infarction myocardial repair towards non-classical inflammation-resolving macrophages, as well as levels of monocyte chemoattractants and the prognostic marker Meteorin-like in plasma following treatment. INTERPRETATION In summary, the PeriCord graft has exhibited a safe profile and notable immunomodulatory properties. Nevertheless, further research is required to fully unlock its potential as a platform for managing inflammatory-related pathologies. FUNDING This work was supported in part by grants from MICINN (SAF2017-84324-C2-1-R); Instituto de Salud Carlos III (ICI19/00039 and Red RICORS-TERAV RD21/0017/0022, and CIBER Cardiovascular CB16/11/00403) as a part of the Plan Nacional de I + D + I, and co-funded by ISCIII-Subdirección General de Evaluación y el Fondo Europeo de Desarrollo Regional (FEDER) and AGAUR (2021-SGR-01437).
Collapse
Affiliation(s)
- Antoni Bayes-Genis
- Heart Institute and Heart Failure Unit (iCor), Germans Trias i Pujol University Hospital (HUGTiP), Badalona, Spain; CIBER Cardiovascular, Instituto de Salud Carlos III, Madrid, Spain; Department of Medicine, Autonomous University of Barcelona, Barcelona, Spain; ICREC Research Program, Germans Trias i Pujol Health Science Research Institute (IGTP), Spain.
| | - Paloma Gastelurrutia
- Heart Institute and Heart Failure Unit (iCor), Germans Trias i Pujol University Hospital (HUGTiP), Badalona, Spain; CIBER Cardiovascular, Instituto de Salud Carlos III, Madrid, Spain; ICREC Research Program, Germans Trias i Pujol Health Science Research Institute (IGTP), Spain
| | - Marta Monguió-Tortajada
- Heart Institute and Heart Failure Unit (iCor), Germans Trias i Pujol University Hospital (HUGTiP), Badalona, Spain; ICREC Research Program, Germans Trias i Pujol Health Science Research Institute (IGTP), Spain
| | - Maria Luisa Cámara
- Heart Institute and Heart Failure Unit (iCor), Germans Trias i Pujol University Hospital (HUGTiP), Badalona, Spain
| | | | - German Cediel
- Heart Institute and Heart Failure Unit (iCor), Germans Trias i Pujol University Hospital (HUGTiP), Badalona, Spain; CIBER Cardiovascular, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Albert Teis
- Heart Institute and Heart Failure Unit (iCor), Germans Trias i Pujol University Hospital (HUGTiP), Badalona, Spain
| | - Elena Revuelta-López
- Heart Institute and Heart Failure Unit (iCor), Germans Trias i Pujol University Hospital (HUGTiP), Badalona, Spain; CIBER Cardiovascular, Instituto de Salud Carlos III, Madrid, Spain; ICREC Research Program, Germans Trias i Pujol Health Science Research Institute (IGTP), Spain
| | | | - Santiago Roura
- Heart Institute and Heart Failure Unit (iCor), Germans Trias i Pujol University Hospital (HUGTiP), Badalona, Spain; CIBER Cardiovascular, Instituto de Salud Carlos III, Madrid, Spain; ICREC Research Program, Germans Trias i Pujol Health Science Research Institute (IGTP), Spain; Faculty of Medicine, University of Vic-Central University of Catalonia (UVic-UCC), Victoria, Spain
| | - Carolina Gálvez-Montón
- Heart Institute and Heart Failure Unit (iCor), Germans Trias i Pujol University Hospital (HUGTiP), Badalona, Spain; CIBER Cardiovascular, Instituto de Salud Carlos III, Madrid, Spain; ICREC Research Program, Germans Trias i Pujol Health Science Research Institute (IGTP), Spain
| | - Felipe Bisbal
- Heart Institute and Heart Failure Unit (iCor), Germans Trias i Pujol University Hospital (HUGTiP), Badalona, Spain; CIBER Cardiovascular, Instituto de Salud Carlos III, Madrid, Spain
| | - Joaquim Vives
- Department of Medicine, Autonomous University of Barcelona, Barcelona, Spain; Cell Therapy Service, Banc de Sang i Teixits (BST), Barcelona, Spain; Vall d'Hebron Institute of Research (VHIR), Autonomous University of Barcelona, Barcelona, Spain
| | - Anna Vilarrodona
- Barcelona Tissue Bank (BTB), Banc de Sang i Teixits (BST), Barcelona, Spain
| | - Christian Muñoz-Guijosa
- Heart Institute and Heart Failure Unit (iCor), Germans Trias i Pujol University Hospital (HUGTiP), Badalona, Spain; CIBER Cardiovascular, Instituto de Salud Carlos III, Madrid, Spain
| | - Sergi Querol
- Cell Therapy Service, Banc de Sang i Teixits (BST), Barcelona, Spain.
| |
Collapse
|
7
|
Bakinowska E, Kiełbowski K, Boboryko D, Bratborska AW, Olejnik-Wojciechowska J, Rusiński M, Pawlik A. The Role of Stem Cells in the Treatment of Cardiovascular Diseases. Int J Mol Sci 2024; 25:3901. [PMID: 38612710 PMCID: PMC11011548 DOI: 10.3390/ijms25073901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death and include several vascular and cardiac disorders, such as atherosclerosis, coronary artery disease, cardiomyopathies, and heart failure. Multiple treatment strategies exist for CVDs, but there is a need for regenerative treatment of damaged heart. Stem cells are a broad variety of cells with a great differentiation potential that have regenerative and immunomodulatory properties. Multiple studies have evaluated the efficacy of stem cells in CVDs, such as mesenchymal stem cells and induced pluripotent stem cell-derived cardiomyocytes. These studies have demonstrated that stem cells can improve the left ventricle ejection fraction, reduce fibrosis, and decrease infarct size. Other studies have investigated potential methods to improve the survival, engraftment, and functionality of stem cells in the treatment of CVDs. The aim of the present review is to summarize the current evidence on the role of stem cells in the treatment of CVDs, and how to improve their efficacy.
Collapse
Affiliation(s)
- Estera Bakinowska
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (E.B.); (K.K.); (D.B.); (J.O.-W.); (M.R.)
| | - Kajetan Kiełbowski
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (E.B.); (K.K.); (D.B.); (J.O.-W.); (M.R.)
| | - Dominika Boboryko
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (E.B.); (K.K.); (D.B.); (J.O.-W.); (M.R.)
| | | | - Joanna Olejnik-Wojciechowska
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (E.B.); (K.K.); (D.B.); (J.O.-W.); (M.R.)
| | - Marcin Rusiński
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (E.B.); (K.K.); (D.B.); (J.O.-W.); (M.R.)
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (E.B.); (K.K.); (D.B.); (J.O.-W.); (M.R.)
| |
Collapse
|
8
|
Delgadillo J, Kerkelä E, Waters A, Akker EVD, Lechanteur C, Baudoux E, Gardiner N, De Vos J, Vives J. A management model in blood, tissue and cell establishments to ensure rapid and sustainable patient access to advanced therapy medicinal products in Europe. Cytotherapy 2023; 25:1259-1264. [PMID: 37737767 DOI: 10.1016/j.jcyt.2023.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/02/2023] [Accepted: 08/02/2023] [Indexed: 09/23/2023]
Abstract
Blood, tissue and cell establishments (BTCs) stand out in the management of donor selection, procurement and processing of all types of substances of human origin (SoHO). In the last decades, the framework created around BTCs, including hospitals and national health system networks, and their links to research, development and innovation organizations and agencies have spurred their involvement in the study of groundbreaking advanced therapy medicinal products (ATMP). To further improve strategic synergies in the development of ATMPs, it will be required to promote intra- and inter-European collaborations by creating an international network involving BTCs and major stakeholders (i.e., research organizations, hospitals, universities, patient associations, public agencies). This vision is already shared with the European Blood Alliance, the association of non-profit blood establishments, with 26 member states throughout the European Union and European Free Trade Association states. Herein we present and analyze the "BTC for ATMP Development And Manufacture" (BADAM) model, an ethically responsible business model based on the values and missions of BTCs and their commitment to health equity, patient access and education (based on voluntary donation of SoHO to address unmet clinical needs, while contributing to training professionals and scientific literacy of our Society).
Collapse
Affiliation(s)
- Joaquín Delgadillo
- Banc de Sang i Teixits (BST), Edifici Dr. Frederic Duran i Jordà, Barcelona, Spain; Transfusion Medicine Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - Erja Kerkelä
- Finnish Red Cross Blood Service, Vantaa, Finland
| | - Allison Waters
- Irish Blood Transfusion Service, National Blood Centre, Dublin, Ireland
| | - Emile van den Akker
- Department of Hematopoiesis and Sanquin Research, Landsteiner Laboratory, Department of Molecular Hematology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Chantal Lechanteur
- University of Liège, Laboratory of Cell and Gene Therapy LTCG, Liège, Belgium
| | - Etienne Baudoux
- University of Liège, Laboratory of Cell and Gene Therapy LTCG, Liège, Belgium
| | - Nicola Gardiner
- Cryobiology Laboratory Stem Cell Facility, St. James's Hospital, Dublin, Ireland
| | - John De Vos
- Département d'ingénierie Cellulaire et Tissulaire, Unité de Thérapie Cellulaire, Hôpital Saint-Eloi, Montpellier, France
| | - Joaquim Vives
- Banc de Sang i Teixits (BST), Edifici Dr. Frederic Duran i Jordà, Barcelona, Spain; Musculoskeletal Tissue Engineering Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain; Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain.
| |
Collapse
|
9
|
Sanz-Fraile H, Herranz-Diez C, Ulldemolins A, Falcones B, Almendros I, Gavara N, Sunyer R, Farré R, Otero J. Characterization of Bioinks Prepared via Gelifying Extracellular Matrix from Decellularized Porcine Myocardia. Gels 2023; 9:745. [PMID: 37754426 PMCID: PMC10530680 DOI: 10.3390/gels9090745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/01/2023] [Accepted: 09/08/2023] [Indexed: 09/28/2023] Open
Abstract
Since the emergence of 3D bioprinting technology, both synthetic and natural materials have been used to develop bioinks for producing cell-laden cardiac grafts. To this end, extracellular-matrix (ECM)-derived hydrogels can be used to develop scaffolds that closely mimic the complex 3D environments for cell culture. This study presents a novel cardiac bioink based on hydrogels exclusively derived from decellularized porcine myocardium loaded with human-bone-marrow-derived mesenchymal stromal cells. Hence, the hydrogel can be used to develop cell-laden cardiac patches without the need to add other biomaterials or use additional crosslinkers. The scaffold ultrastructure and mechanical properties of the bioink were characterized to optimize its production, specifically focusing on the matrix enzymatic digestion time. The cells were cultured in 3D within the developed hydrogels to assess their response. The results indicate that the hydrogels fostered inter-cell and cell-matrix crosstalk after 1 week of culture. In conclusion, the bioink developed and presented in this study holds great potential for developing cell-laden customized patches for cardiac repair.
Collapse
Affiliation(s)
- Héctor Sanz-Fraile
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain; (H.S.-F.); (C.H.-D.); (A.U.); (B.F.); (I.A.); (N.G.); (R.S.); (R.F.)
| | - Carolina Herranz-Diez
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain; (H.S.-F.); (C.H.-D.); (A.U.); (B.F.); (I.A.); (N.G.); (R.S.); (R.F.)
| | - Anna Ulldemolins
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain; (H.S.-F.); (C.H.-D.); (A.U.); (B.F.); (I.A.); (N.G.); (R.S.); (R.F.)
| | - Bryan Falcones
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain; (H.S.-F.); (C.H.-D.); (A.U.); (B.F.); (I.A.); (N.G.); (R.S.); (R.F.)
| | - Isaac Almendros
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain; (H.S.-F.); (C.H.-D.); (A.U.); (B.F.); (I.A.); (N.G.); (R.S.); (R.F.)
- CIBER de Enfermedades Respiratorias, 28029 Madrid, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, 08036 Barcelona, Spain
| | - Núria Gavara
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain; (H.S.-F.); (C.H.-D.); (A.U.); (B.F.); (I.A.); (N.G.); (R.S.); (R.F.)
- The Institute for Bioengineering of Catalonia (IBEC), 08028 Barcelona, Spain
- The Barcelona Institute of Science and Technology (BIST), 08036 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain
| | - Raimon Sunyer
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain; (H.S.-F.); (C.H.-D.); (A.U.); (B.F.); (I.A.); (N.G.); (R.S.); (R.F.)
- Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, 28029 Madrid, Spain
| | - Ramon Farré
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain; (H.S.-F.); (C.H.-D.); (A.U.); (B.F.); (I.A.); (N.G.); (R.S.); (R.F.)
- CIBER de Enfermedades Respiratorias, 28029 Madrid, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, 08036 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain
| | - Jorge Otero
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain; (H.S.-F.); (C.H.-D.); (A.U.); (B.F.); (I.A.); (N.G.); (R.S.); (R.F.)
- CIBER de Enfermedades Respiratorias, 28029 Madrid, Spain
- The Institute for Bioengineering of Catalonia (IBEC), 08028 Barcelona, Spain
- The Barcelona Institute of Science and Technology (BIST), 08036 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
10
|
Gil-Cabrerizo P, Scaccheti I, Garbayo E, Blanco-Prieto MJ. Cardiac tissue engineering for myocardial infarction treatment. Eur J Pharm Sci 2023; 185:106439. [PMID: 37003408 DOI: 10.1016/j.ejps.2023.106439] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/26/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
Myocardial infarction is one of the major causes of morbidity and mortality worldwide. Current treatments can relieve the symptoms of myocardial ischemia but cannot repair the necrotic myocardial tissue. Novel therapeutic strategies based on cellular therapy, extracellular vesicles, non-coding RNAs and growth factors have been designed to restore cardiac function while inducing cardiomyocyte cycle re-entry, ensuring angiogenesis and cardioprotection, and preventing ventricular remodeling. However, they face low stability, cell engraftment issues or enzymatic degradation in vivo, and it is thus essential to combine them with biomaterial-based delivery systems. Microcarriers, nanocarriers, cardiac patches and injectable hydrogels have yielded promising results in preclinical studies, some of which are currently being tested in clinical trials. In this review, we cover the recent advances made in cellular and acellular therapies used for cardiac repair after MI. We present current trends in cardiac tissue engineering related to the use of microcarriers, nanocarriers, cardiac patches and injectable hydrogels as biomaterial-based delivery systems for biologics. Finally, we discuss some of the most crucial aspects that should be addressed in order to advance towards the clinical translation of cardiac tissue engineering approaches.
Collapse
Affiliation(s)
- Paula Gil-Cabrerizo
- Department of Pharmaceutical Technology and Chemistry, Faculty of Pharmacy and Nutrition, University of Navarra, Pamplona, C/Irunlarrea 1, E-31080, Spain.; Navarra Institute for Health Research, IdiSNA, Pamplona, C/Irunlarrea 3, E-31008 Pamplona, Spain
| | - Ilaria Scaccheti
- Department of Pharmaceutical Technology and Chemistry, Faculty of Pharmacy and Nutrition, University of Navarra, Pamplona, C/Irunlarrea 1, E-31080, Spain
| | - Elisa Garbayo
- Department of Pharmaceutical Technology and Chemistry, Faculty of Pharmacy and Nutrition, University of Navarra, Pamplona, C/Irunlarrea 1, E-31080, Spain.; Navarra Institute for Health Research, IdiSNA, Pamplona, C/Irunlarrea 3, E-31008 Pamplona, Spain..
| | - María J Blanco-Prieto
- Department of Pharmaceutical Technology and Chemistry, Faculty of Pharmacy and Nutrition, University of Navarra, Pamplona, C/Irunlarrea 1, E-31080, Spain.; Navarra Institute for Health Research, IdiSNA, Pamplona, C/Irunlarrea 3, E-31008 Pamplona, Spain..
| |
Collapse
|
11
|
Shao R, Li J, Wang L, Li X, Shu C. Progress in the application of patch materials in cardiovascular surgery. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2023; 48:285-293. [PMID: 36999476 PMCID: PMC10930349 DOI: 10.11817/j.issn.1672-7347.2023.220560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Indexed: 04/01/2023]
Abstract
The cardiovascular patch, served as artificial graft materials to replace heart or vascular tissue defect, is still playing a key role in cardiovascular surgeries. The defects of traditional cardiovascular patch materials may determine its unsatisfactory long-term effect or fatal complications after surgery. Recent studies on many new materials (such as tissue engineered materials, three-dimensional printed materials, etc) are being developed. Patch materials have been widely used in clinical procedures of cardiovascular surgeries such as angioplasty, cardiac atrioventricular wall or atrioventricular septum repair, and valve replacement. The clinical demand for better cardiovascular patch materials is still urgent. However, the cardiovascular patch materials need to adapt to normal coagulation mechanism and durability, promote short-term endothelialization after surgery, and inhibit long-term postoperative intimal hyperplasia, its research and development process is relatively complicated. Understanding the characteristics of various cardiovascular patch materials and their application in cardiovascular surgeries is important for the selection of new clinical surgical materials and the development of cardiovascular patch materials.
Collapse
Affiliation(s)
- Rubing Shao
- Department of Vascular Surgery, Second Xiangya Hospital, Central South University, Changsha 410011.
- Institute of Vascular Diseases, Central South University, Changsha 410011.
| | - Jiehua Li
- Department of Vascular Surgery, Second Xiangya Hospital, Central South University, Changsha 410011
- Institute of Vascular Diseases, Central South University, Changsha 410011
| | - Lunchang Wang
- Department of Vascular Surgery, Second Xiangya Hospital, Central South University, Changsha 410011
- Institute of Vascular Diseases, Central South University, Changsha 410011
| | - Xin Li
- Department of Vascular Surgery, Second Xiangya Hospital, Central South University, Changsha 410011.
- Institute of Vascular Diseases, Central South University, Changsha 410011.
| | - Chang Shu
- Department of Vascular Surgery, Second Xiangya Hospital, Central South University, Changsha 410011.
- Institute of Vascular Diseases, Central South University, Changsha 410011.
- Vascular Surgery Center, Fuwai Hospital, Chinese Academy of Medical Sciences & National Center for Cardiovascular Diseases, Beijing 100037, China.
| |
Collapse
|
12
|
Li Y, Zhou M, Zheng W, Yang J, Jiang N. Scaffold-based tissue engineering strategies for soft-hard interface regeneration. Regen Biomater 2022; 10:rbac091. [PMID: 36683751 PMCID: PMC9847541 DOI: 10.1093/rb/rbac091] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/22/2022] [Accepted: 10/26/2022] [Indexed: 11/13/2022] Open
Abstract
Repairing injured tendon or ligament attachments to bones (enthesis) remains costly and challenging. Despite superb surgical management, the disorganized enthesis newly formed after surgery accounts for high recurrence rates after operations. Tissue engineering offers efficient alternatives to promote healing and regeneration of the specialized enthesis tissue. Load-transmitting functions thus can be restored with appropriate biomaterials and engineering strategies. Interestingly, recent studies have focused more on microstructure especially the arrangement of fibers since Rossetti successfully demonstrated the variability of fiber underspecific external force. In this review, we provide an important update on the current strategies for scaffold-based tissue engineering of enthesis when natural structure and properties are equally emphasized. We firstly described compositions, structures and features of natural enthesis with their special mechanical properties highlighted. Stimuli for growth, development and healing of enthesis widely used in popular strategies are systematically summarized. We discuss the fabrication of engineering scaffolds from the aspects of biomaterials, techniques and design strategies and comprehensively evaluate the advantages and disadvantages of each strategy. At last, this review pinpoints the remaining challenges and research directions to make breakthroughs in further studies.
Collapse
Affiliation(s)
| | | | - Wenzhuo Zheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | | | - Nan Jiang
- Correspondence address. E-mail: (N.J.); (J.Y.)
| |
Collapse
|
13
|
Roacho-Pérez JA, Garza-Treviño EN, Moncada-Saucedo NK, Carriquiry-Chequer PA, Valencia-Gómez LE, Matthews ER, Gómez-Flores V, Simental-Mendía M, Delgado-Gonzalez P, Delgado-Gallegos JL, Padilla-Rivas GR, Islas JF. Artificial Scaffolds in Cardiac Tissue Engineering. Life (Basel) 2022; 12:1117. [PMID: 35892919 PMCID: PMC9331725 DOI: 10.3390/life12081117] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/08/2022] [Accepted: 07/22/2022] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular diseases are a leading cause of death worldwide. Current treatments directed at heart repair have several disadvantages, such as a lack of donors for heart transplantation or non-bioactive inert materials for replacing damaged tissue. Because of the natural lack of regeneration of cardiomyocytes, new treatment strategies involve stimulating heart tissue regeneration. The basic three elements of cardiac tissue engineering (cells, growth factors, and scaffolds) are described in this review, with a highlight on the role of artificial scaffolds. Scaffolds for cardiac tissue engineering are tridimensional porous structures that imitate the extracellular heart matrix, with the ability to promote cell adhesion, migration, differentiation, and proliferation. In the heart, there is an important requirement to provide scaffold cellular attachment, but scaffolds also need to permit mechanical contractility and electrical conductivity. For researchers working in cardiac tissue engineering, there is an important need to choose an adequate artificial scaffold biofabrication technique, as well as the ideal biocompatible biodegradable biomaterial for scaffold construction. Finally, there are many suitable options for researchers to obtain scaffolds that promote cell-electrical interactions and tissue repair, reaching the goal of cardiac tissue engineering.
Collapse
Affiliation(s)
- Jorge A. Roacho-Pérez
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico; (J.A.R.-P.); (E.N.G.-T.); (P.A.C.-C.); (P.D.-G.); (J.L.D.-G.); (G.R.P.-R.)
| | - Elsa N. Garza-Treviño
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico; (J.A.R.-P.); (E.N.G.-T.); (P.A.C.-C.); (P.D.-G.); (J.L.D.-G.); (G.R.P.-R.)
| | - Nidia K. Moncada-Saucedo
- Servicio de Hematología, University Hospital “Dr. José Eleuterio González”, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico;
| | - Pablo A. Carriquiry-Chequer
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico; (J.A.R.-P.); (E.N.G.-T.); (P.A.C.-C.); (P.D.-G.); (J.L.D.-G.); (G.R.P.-R.)
| | - Laura E. Valencia-Gómez
- Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez 32310, Mexico; (L.E.V.-G.); (V.G.-F.)
| | - Elizabeth Renee Matthews
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA;
| | - Víctor Gómez-Flores
- Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez 32310, Mexico; (L.E.V.-G.); (V.G.-F.)
| | - Mario Simental-Mendía
- Orthopedic Trauma Service, University Hospital “Dr. José Eleuterio González”, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico;
| | - Paulina Delgado-Gonzalez
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico; (J.A.R.-P.); (E.N.G.-T.); (P.A.C.-C.); (P.D.-G.); (J.L.D.-G.); (G.R.P.-R.)
| | - Juan Luis Delgado-Gallegos
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico; (J.A.R.-P.); (E.N.G.-T.); (P.A.C.-C.); (P.D.-G.); (J.L.D.-G.); (G.R.P.-R.)
| | - Gerardo R. Padilla-Rivas
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico; (J.A.R.-P.); (E.N.G.-T.); (P.A.C.-C.); (P.D.-G.); (J.L.D.-G.); (G.R.P.-R.)
| | - Jose Francisco Islas
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico; (J.A.R.-P.); (E.N.G.-T.); (P.A.C.-C.); (P.D.-G.); (J.L.D.-G.); (G.R.P.-R.)
| |
Collapse
|
14
|
Preclinical Development of a Therapy for Chronic Traumatic Spinal Cord Injury in Rats Using Human Wharton's Jelly Mesenchymal Stromal Cells: Proof of Concept and Regulatory Compliance. Cells 2022; 11:cells11142153. [PMID: 35883596 PMCID: PMC9319990 DOI: 10.3390/cells11142153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 11/17/2022] Open
Abstract
(1) Background: the use of Mesenchymal Stromal Cells (MSC) in emerging therapies for spinal cord injury (SCI) hold the potential to improve functional recovery. However, the development of cell-based medicines is challenging and preclinical studies addressing quality, safety and efficacy must be conducted prior to clinical testing; (2) Methods: herein we present (i) the characterization of the quality attributes of MSC from the Wharton’s jelly (WJ) of the umbilical cord, (ii) safety of intrathecal infusion in a 3-month subchronic toxicity assessment study, and (iii) efficacy in a rat SCI model by controlled impaction (100 kdynes) after single (day 7 post-injury) and repeated dose of 1 × 106 MSC,WJ (days 7 and 14 post-injury) with 70-day monitoring by electrophysiological testing, motor function assessment and histology evaluation; (3) Results: no toxicity associated to MSC,WJ infusion was observed. Regarding efficacy, recovery of locomotion was promoted at early time points. Persistence of MSC,WJ was detected early after administration (day 2 post-injection) but not at days 14 and 63 post-injection. (4) Conclusions: the safety profile and signs of efficacy substantiate the suitability of the presented data for inclusion in the Investigational Medicinal Product Dossier for further consideration by the competent Regulatory Authority to proceed with clinical trials.
Collapse
|
15
|
Monguió-Tortajada M, Prat-Vidal C, Martínez-Falguera D, Teis A, Soler-Botija C, Courageux Y, Munizaga-Larroudé M, Moron-Font M, Bayes-Genis A, Borràs FE, Roura S, Gálvez-Montón C. Acellular cardiac scaffolds enriched with MSC-derived extracellular vesicles limit ventricular remodelling and exert local and systemic immunomodulation in a myocardial infarction porcine model. Theranostics 2022; 12:4656-4670. [PMID: 35832072 PMCID: PMC9254233 DOI: 10.7150/thno.72289] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/13/2022] [Indexed: 11/05/2022] Open
Abstract
Rationale: Extracellular vesicles (EVs) from mesenchymal stromal cell (MSC) are a potential therapy for cardiac healing after myocardial infarction (MI). Nevertheless, neither their efficient administration nor therapeutic mechanisms are fully elucidated. Here, we evaluate the preclinical efficacy of a tissue engineering approach to locally deliver porcine cardiac adipose tissue MSC-EV (cATMSC-EV) in an acute MI pig model. Methods: After MI by permanent ligation of the coronary artery, pigs (n = 24) were randomized to Untreated or treated groups with a decellularised pericardial scaffold filled with peptide hydrogel and cATMSC-EV purified by size exclusion chromatography (EV-Treated group) or buffer (Control group), placed over the post-infarcted myocardium. Results: After 30 days, cardiac MRI showed an improved cardiac function in EV-Treated animals, with significantly higher right ventricle ejection fraction (+20.8% in EV-Treated; p = 0.026), and less ventricle dilatation, indicating less myocardial remodelling. Scar size was reduced, with less fibrosis in the distal myocardium (-42.6% Col I in EV-Treated vs Untreated; p = 0.03), a 2-fold increase in vascular density (EV-Treated; p = 0.019) and less CCL2 transcription in the infarct core. EV-treated animals had less macrophage infiltration in the infarct core (-31.7% of CD163+ cells/field in EV-Treated; p = 0.026), but 5.8 times more expressing anti-inflammatory CD73 (p = 0.015). Systemically, locally delivered cATMSC-EV also triggered a systemic effect, doubling the circulating IL-1ra (p = 0.01), and reducing the PBMC rush 2d post-MI, the TNFα and GM-CSF levels at 30d post-MI, and modulating the CD73+ and CCR2+ monocyte populations, related to immunomodulation and fibrosis modulation. Conclusions: These results highlight the potential of cATMSC-EV in modulating hallmarks of ischemic injury for cardiac repair after MI.
Collapse
Affiliation(s)
- Marta Monguió-Tortajada
- ICREC Research Program, Health Science Research Institute Germans Trias i Pujol (IGTP), Can Ruti Campus, Badalona, Spain
- Heart Institute (iCor), Cardiology Department, Germans Trias i Pujol University Hospital, Badalona, Spain
| | - Cristina Prat-Vidal
- ICREC Research Program, Health Science Research Institute Germans Trias i Pujol (IGTP), Can Ruti Campus, Badalona, Spain
- Cell Therapy Service, Banc de Sang i Teixits (BST), Barcelona, Spain
| | - Daina Martínez-Falguera
- ICREC Research Program, Health Science Research Institute Germans Trias i Pujol (IGTP), Can Ruti Campus, Badalona, Spain
- Faculty of Medicine, Universitat de Barcelona (UB), Barcelona, Spain
| | - Albert Teis
- Heart Institute (iCor), Cardiology Department, Germans Trias i Pujol University Hospital, Badalona, Spain
| | - Carolina Soler-Botija
- ICREC Research Program, Health Science Research Institute Germans Trias i Pujol (IGTP), Can Ruti Campus, Badalona, Spain
- CIBERCV, Instituto de Salud Carlos III, Madrid, Spain
| | - Yvan Courageux
- ICREC Research Program, Health Science Research Institute Germans Trias i Pujol (IGTP), Can Ruti Campus, Badalona, Spain
- Department of Biochemistry, Molecular Biology and Biomedicine, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Micaela Munizaga-Larroudé
- ICREC Research Program, Health Science Research Institute Germans Trias i Pujol (IGTP), Can Ruti Campus, Badalona, Spain
| | - Miriam Moron-Font
- REMAR-IVECAT Group, Health Science Research Institute Germans Trias i Pujol and Nephrology Service, Germans Trias i Pujol University Hospital, Can Ruti Campus, Badalona, Spain
| | - Antoni Bayes-Genis
- ICREC Research Program, Health Science Research Institute Germans Trias i Pujol (IGTP), Can Ruti Campus, Badalona, Spain
- Heart Institute (iCor), Cardiology Department, Germans Trias i Pujol University Hospital, Badalona, Spain
- CIBERCV, Instituto de Salud Carlos III, Madrid, Spain
- Department of Medicine, UAB, Barcelona, Spain
| | - Francesc E. Borràs
- REMAR-IVECAT Group, Health Science Research Institute Germans Trias i Pujol and Nephrology Service, Germans Trias i Pujol University Hospital, Can Ruti Campus, Badalona, Spain
- Department of Cell Biology, Physiology and Immunology, Universitat de Barcelona, Spain
| | - Santiago Roura
- ICREC Research Program, Health Science Research Institute Germans Trias i Pujol (IGTP), Can Ruti Campus, Badalona, Spain
- Heart Institute (iCor), Cardiology Department, Germans Trias i Pujol University Hospital, Badalona, Spain
- CIBERCV, Instituto de Salud Carlos III, Madrid, Spain
- Faculty of Medicine, University of Vic-Central University of Catalonia (UVic-UCC), Vic, Barcelona 08500, Spain
- Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, L´Hospitalet de Llobregat, Spain
| | - Carolina Gálvez-Montón
- ICREC Research Program, Health Science Research Institute Germans Trias i Pujol (IGTP), Can Ruti Campus, Badalona, Spain
- Heart Institute (iCor), Cardiology Department, Germans Trias i Pujol University Hospital, Badalona, Spain
- CIBERCV, Instituto de Salud Carlos III, Madrid, Spain
- Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, L´Hospitalet de Llobregat, Spain
| |
Collapse
|
16
|
Tannenbaum SE, Reubinoff BE. Advances in hPSC expansion towards therapeutic entities: A review. Cell Prolif 2022; 55:e13247. [PMID: 35638399 PMCID: PMC9357360 DOI: 10.1111/cpr.13247] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 04/12/2022] [Accepted: 04/18/2022] [Indexed: 12/24/2022] Open
Abstract
For use in regenerative medicine, large‐scale manufacturing of human pluripotent stem cells (hPSCs) under current good manufacturing practice (cGMPs) is required. Much progress has been made since culturing under static two‐dimensional (2D) conditions on feeders, including feeder‐free cultures, conditioned and xeno‐free media, and three‐dimensional (3D) dynamic suspension expansion. With the advent of horizontal‐blade and vertical‐wheel bioreactors, scale‐out for large‐scale production of differentiated hPSCs became possible; control of aggregate size, shear stress, fluid hydrodynamics, batch‐feeding strategies, and other process parameters became a reality. Moving from substantially manipulated processes (i.e., 2D) to more automated ones allows easer compliance to current good manufacturing practices (cGMPs), and thus easier regulatory approval. Here, we review the current advances in the field of hPSC culturing, advantages, and challenges in bioreactor use, and regulatory areas of concern with respect to these advances. Manufacturing trends to reduce risk and streamline large‐scale manufacturing will bring about easier, faster regulatory approval for clinical applications.
Collapse
Affiliation(s)
- Shelly E Tannenbaum
- The Hadassah Human Embryonic Stem Cell Research Center, The Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Benjamin E Reubinoff
- The Hadassah Human Embryonic Stem Cell Research Center, The Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Medical Center, Jerusalem, Israel.,Department of Obstetrics and Gynecology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
17
|
Gonzalez-Vilchis RA, Piedra-Ramirez A, Patiño-Morales CC, Sanchez-Gomez C, Beltran-Vargas NE. Sources, Characteristics, and Therapeutic Applications of Mesenchymal Cells in Tissue Engineering. Tissue Eng Regen Med 2022; 19:325-361. [PMID: 35092596 PMCID: PMC8971271 DOI: 10.1007/s13770-021-00417-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/24/2021] [Accepted: 12/05/2021] [Indexed: 01/31/2023] Open
Abstract
Tissue engineering (TE) is a therapeutic option within regenerative medicine that allows to mimic the original cell environment and functional organization of the cell types necessary for the recovery or regeneration of damaged tissue using cell sources, scaffolds, and bioreactors. Among the cell sources, the utilization of mesenchymal cells (MSCs) has gained great interest because these multipotent cells are capable of differentiating into diverse tissues, in addition to their self-renewal capacity to maintain their cell population, thus representing a therapeutic alternative for those diseases that can only be controlled with palliative treatments. This review aimed to summarize the state of the art of the main sources of MSCs as well as particular characteristics of each subtype and applications of MSCs in TE in seven different areas (neural, osseous, epithelial, cartilage, osteochondral, muscle, and cardiac) with a systemic revision of advances made in the last 10 years. It was observed that bone marrow-derived MSCs are the principal type of MSCs used in TE, and the most commonly employed techniques for MSCs characterization are immunodetection techniques. Moreover, the utilization of natural biomaterials is higher (41.96%) than that of synthetic biomaterials (18.75%) for the construction of the scaffolds in which cells are seeded. Further, this review shows alternatives of MSCs derived from other tissues and diverse strategies that can improve this area of regenerative medicine.
Collapse
Affiliation(s)
- Rosa Angelica Gonzalez-Vilchis
- Molecular Biology Undergraduate Program, Natural Science and Engineering Division, Cuajimalpa Unit, Autonomous Metropolitan University, 05340, CDMX, Mexico
| | - Angelica Piedra-Ramirez
- Molecular Biology Undergraduate Program, Natural Science and Engineering Division, Cuajimalpa Unit, Autonomous Metropolitan University, 05340, CDMX, Mexico
| | - Carlos Cesar Patiño-Morales
- Research Laboratory of Developmental Biology and Experimental Teratogenesis, Children's Hospital of Mexico Federico Gomez, 06720, CDMX, Mexico
| | - Concepcion Sanchez-Gomez
- Research Laboratory of Developmental Biology and Experimental Teratogenesis, Children's Hospital of Mexico Federico Gomez, 06720, CDMX, Mexico
| | - Nohra E Beltran-Vargas
- Department of Processes and Technology, Natural Science and Engineering Division, Cuajimalpa Unit, Autonomous Metropolitan University, Cuajimalpa. Vasco de Quiroga 4871. Cuajimalpa de Morelos, 05348, CDMX, Mexico.
| |
Collapse
|
18
|
Reuten R, Mayorca-Guiliani AE, Erler JT. Matritecture: Mapping the extracellular matrix architecture during health and disease. Matrix Biol Plus 2022; 14:100102. [PMID: 35243299 PMCID: PMC8861423 DOI: 10.1016/j.mbplus.2022.100102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 01/24/2022] [Accepted: 01/28/2022] [Indexed: 11/20/2022] Open
Abstract
All cells in multicellular organisms are housed in the extracellular matrix (ECM), an acellular edifice built up by more than a thousand proteins and glycans. Cells engage in a reciprocal relationship with the ECM; they build, inhabit, maintain, and remodel the ECM, while, in turn, the ECM regulates their behavior. The homeostatic balance of cell-ECM interactions can be lost, due to ageing, irritants or diseases, which results in aberrant cell behavior. The ECM can suppress or promote disease progression, depending on the information relayed to cells. Instructions come in the form of biochemical (e.g., composition), biophysical (e.g., stiffness), and topographical (e.g., structure) cues. While advances have been made in many areas, we only have a very limited grasp of ECM topography. A detailed atlas deciphering the spatiotemporal arrangement of all ECM proteins is lacking. We feel that such an extracellular matrix architecture (matritecture) atlas should be a priority goal for ECM research. In this commentary, we will discuss the need to resolve the spatiotemporal matritecture to identify potential disease triggers and therapeutic targets and present strategies to address this goal. Such a detailed matritecture atlas will not only identify disease-specific ECM structures but may also guide future strategies to restructure disease-related ECM patterns reverting to a normal pattern.
Collapse
|
19
|
A 3D Mathematical Model of Coupled Stem Cell-Nutrient Dynamics in Myocardial Regeneration Therapy. J Theor Biol 2022; 537:111023. [PMID: 35041851 DOI: 10.1016/j.jtbi.2022.111023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 11/04/2021] [Accepted: 01/09/2022] [Indexed: 11/23/2022]
Abstract
Stem cell therapy is a promising treatment for the regeneration of myocardial tissue injured by an ischemic event. Mathematical modeling of myocardial regeneration via stem cell therapy is a challenging task, since the mechanisms underlying the processes involved in the treatment are not yet fully understood. Many aspects must be accounted for, such as the spread of stem cells and nutrients, chemoattraction, cell proliferation, stages of cell maturation, differentiation, angiogenesis, stochastic effects, just to name a few. In this paper we propose a 3D mathematical model with a free boundary that aims to provide a qualitative description of some main aspects of the stem cell regenerative therapy in a simplified scenario. The paper mainly focuses on the description of the shrinking of the necrotic core during treatment. The stem cell and nutrients dynamics are described through coupled reaction-diffusion problems. Proliferation, chemoattraction, tissue regeneration and nutrient consumption are included in the model.
Collapse
|
20
|
Wharton's Jelly Mesenchymal Stromal Cells and Derived Extracellular Vesicles as Post-Myocardial Infarction Therapeutic Toolkit: An Experienced View. Pharmaceutics 2021; 13:pharmaceutics13091336. [PMID: 34575412 PMCID: PMC8471243 DOI: 10.3390/pharmaceutics13091336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/18/2021] [Accepted: 08/23/2021] [Indexed: 12/18/2022] Open
Abstract
Outstanding progress has been achieved in developing therapeutic options for reasonably alleviating symptoms and prolonging the lifespan of patients suffering from myocardial infarction (MI). Current treatments, however, only partially address the functional recovery of post-infarcted myocardium, which is in fact the major goal for effective primary care. In this context, we largely investigated novel cell and TE tissue engineering therapeutic approaches for cardiac repair, particularly using multipotent mesenchymal stromal cells (MSC) and natural extracellular matrices, from pre-clinical studies to clinical application. A further step in this field is offered by MSC-derived extracellular vesicles (EV), which are naturally released nanosized lipid bilayer-delimited particles with a key role in cell-to-cell communication. Herein, in this review, we further describe and discuss the rationale, outcomes and challenges of our evidence-based therapy approaches using Wharton's jelly MSC and derived EV in post-MI management.
Collapse
|
21
|
Our Journey Through Advanced Therapies to Reduce Post-Infarct Scarring. Stem Cell Rev Rep 2021; 17:1928-1930. [PMID: 34021471 PMCID: PMC8553692 DOI: 10.1007/s12015-021-10190-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2021] [Indexed: 02/04/2023]
|
22
|
García-Muñoz E, Vives J. Towards the standardization of methods of tissue processing for the isolation of mesenchymal stromal cells for clinical use. Cytotechnology 2021; 73:513-522. [PMID: 33994662 PMCID: PMC8109215 DOI: 10.1007/s10616-021-00474-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/04/2021] [Indexed: 12/11/2022] Open
Abstract
Multipotent mesenchymal stromal cells (MSCs) are currently the most extensively studied type of adult stem cells in advanced stages of development in the field of regenerative medicine. The biological properties of MSCs have generated great hope for their therapeutic use in degenerative and autoimmune conditions that, at present, lack effective treatment options. Over the last decades, MSCs have been typically obtained from adult bone marrow, but the extraction process is highly invasive and the quality and numbers of isolated cells is drastically influenced by patient age, medication and associated comorbidities. Therefore, there is currently an open discussion on the convenience of allogeneic over autologous treatments, despite potential disadvantages such as rejection by the host. This shift to the allogeneic setting entails the need for high production of MSCs to ensure availability of sufficient cell numbers for transplantation, and therefore making the search for alternative tissue sources of highly proliferative MSC cultures with low levels of senescence occurrence, which is one of the greatest current challenges in the scale up of therapeutic cell bioprocessing. Herein we (i) present the main isolation protocols of MSCs from bone marrow, adipose tissue and Wharton’s jelly of the umbilical cord; and (ii) compare their qualities from a bioprocess standpoint, addressing both quality and regulatory aspects, in view of their anticipated clinical use.
Collapse
Affiliation(s)
- Elisabeth García-Muñoz
- Banc de Sang iTeixits, Edifici Dr. Frederic Duran i Jordà, Passeig Taulat, 116, 08005 Barcelona, Spain
| | - Joaquim Vives
- Banc de Sang iTeixits, Edifici Dr. Frederic Duran i Jordà, Passeig Taulat, 116, 08005 Barcelona, Spain.,Musculoskeletal Tissue Engineering Group, Vall D'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Passeig de la Vall d'Hebron 129-139, 08035 Barcelona, Spain.,Departament de Medicina, Universitat Autònoma de Barcelona, Passeig de la Vall d'Hebron 129-139, 08035 Barcelona, Spain
| |
Collapse
|
23
|
Ratri MC, Brilian AI, Setiawati A, Nguyen HT, Soum V, Shin K. Recent Advances in Regenerative Tissue Fabrication: Tools, Materials, and Microenvironment in Hierarchical Aspects. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202000088] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Monica Cahyaning Ratri
- Department of Chemistry and Institute of Biological Interfaces Sogang University Seoul 04107 Republic of Korea
- Department of Chemistry Education Sanata Dharma University Yogyakarta 55281 Indonesia
| | - Albertus Ivan Brilian
- Department of Chemistry and Institute of Biological Interfaces Sogang University Seoul 04107 Republic of Korea
| | - Agustina Setiawati
- Department of Chemistry and Institute of Biological Interfaces Sogang University Seoul 04107 Republic of Korea
- Department of Life Science Sogang University Seoul 04107 Republic of Korea
- Faculty of Pharmacy Sanata Dharma University Yogyakarta 55281 Indonesia
| | - Huong Thanh Nguyen
- Department of Chemistry and Institute of Biological Interfaces Sogang University Seoul 04107 Republic of Korea
| | - Veasna Soum
- Department of Chemistry and Institute of Biological Interfaces Sogang University Seoul 04107 Republic of Korea
| | - Kwanwoo Shin
- Department of Chemistry and Institute of Biological Interfaces Sogang University Seoul 04107 Republic of Korea
| |
Collapse
|
24
|
Querol S, Rubinstein P, Madrigal A. The wider perspective: cord blood banks and their future prospects. Br J Haematol 2021; 195:507-517. [PMID: 33877692 DOI: 10.1111/bjh.17468] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Over the past three decades, cord blood transplantation (CBT) has established its role as an alternative allograft stem cell source. But the future of stored CB units should be to extend their use in updated transplant approaches and develop new CB applications. Thus, CBT will require a coordinated, multicentric, review of transplantation methods and an upgrade and realignment of banking resources and operations. Significant improvements have already been proposed to support the clinical perspective including definition of the cellular threshold for engraftment, development of transplantation methods for adult patients, engraftment acceleration with single cell expansion and homing technologies, personalised protocols to improve efficacy, use of adoptive cell therapy to mitigate delayed immune reconstitution, and further enhancement of the graft-versus-leukaemia effect using advanced therapies. The role of CB banks in improving transplantation results are also critical by optimizing the collection, processing, storage and characterization of CB units, and improving reproducibility, efficiency and cost of banking. But future developments beyond transplantation are needed. This implies the extension from transplantation banks to banks that support cell therapy, regenerative medicine and specialized transfusion medicine. This new "CB banking 2.0" concept will require promotion of international scientific and technical collaborations between bank specialists, clinical investigators and transplant physicians.
Collapse
Affiliation(s)
- Sergio Querol
- Cell Therapy Services and Cord Blood Bank, Catalan Blood and Tissue Bank, Barcelona, Spain
| | | | | |
Collapse
|
25
|
Bayes-Genis A. The CONCERT-HF trial: a sweet and sour symphony. Eur J Heart Fail 2021; 23:675-676. [PMID: 33840139 DOI: 10.1002/ejhf.2188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 04/07/2021] [Indexed: 11/09/2022] Open
Affiliation(s)
- Antoni Bayes-Genis
- Heart Institute, Hospital Universitari Germans Trias i Pujol, Badalona, Spain.,Department of Medicine, Autonomous University of Barcelona, Barcelona, Spain.,CIBERCV, Madrid, Spain
| |
Collapse
|
26
|
Monguió-Tortajada M, Prat-Vidal C, Moron-Font M, Clos-Sansalvador M, Calle A, Gastelurrutia P, Cserkoova A, Morancho A, Ramírez MÁ, Rosell A, Bayes-Genis A, Gálvez-Montón C, Borràs FE, Roura S. Local administration of porcine immunomodulatory, chemotactic and angiogenic extracellular vesicles using engineered cardiac scaffolds for myocardial infarction. Bioact Mater 2021; 6:3314-3327. [PMID: 33778207 PMCID: PMC7973387 DOI: 10.1016/j.bioactmat.2021.02.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 02/06/2023] Open
Abstract
The administration of extracellular vesicles (EV) from mesenchymal stromal cells (MSC) is a promising cell-free nanotherapy for tissue repair after myocardial infarction (MI). However, the optimal EV delivery strategy remains undetermined. Here, we designed a novel MSC-EV delivery, using 3D scaffolds engineered from decellularised cardiac tissue as a cell-free product for cardiac repair. EV from porcine cardiac adipose tissue-derived MSC (cATMSC) were purified by size exclusion chromatography (SEC), functionally analysed and loaded to scaffolds. cATMSC-EV markedly reduced polyclonal proliferation and pro-inflammatory cytokines production (IFNγ, TNFα, IL12p40) of allogeneic PBMC. Moreover, cATMSC-EV recruited outgrowth endothelial cells (OEC) and allogeneic MSC, and promoted angiogenesis. Fluorescently labelled cATMSC-EV were mixed with peptide hydrogel, and were successfully retained in decellularised scaffolds. Then, cATMSC-EV-embedded pericardial scaffolds were administered in vivo over the ischemic myocardium in a pig model of MI. Six days from implantation, the engineered scaffold efficiently integrated into the post-infarcted myocardium. cATMSC-EV were detected within the construct and MI core, and promoted an increase in vascular density and reduction in macrophage and T cell infiltration within the damaged myocardium. The confined administration of multifunctional MSC-EV within an engineered pericardial scaffold ensures local EV dosage and release, and generates a vascularised bioactive niche for cell recruitment, engraftment and modulation of short-term post-ischemic inflammation.
Collapse
Affiliation(s)
- Marta Monguió-Tortajada
- ICREC Research Program, Health Science Research Institute Germans Trias i Pujol (IGTP), Can Ruti Campus, Badalona, Spain.,REMAR-IVECAT Group, Health Science Research Institute Germans Trias i Pujol (IGTP), Can Ruti Campus, Badalona, Spain.,Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain.,CIBERCV, Instituto de Salud Carlos III, Madrid, Spain
| | - Cristina Prat-Vidal
- ICREC Research Program, Health Science Research Institute Germans Trias i Pujol (IGTP), Can Ruti Campus, Badalona, Spain.,CIBERCV, Instituto de Salud Carlos III, Madrid, Spain.,Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, L'Hospitalet de Llobregat, Spain
| | - Miriam Moron-Font
- REMAR-IVECAT Group, Health Science Research Institute Germans Trias i Pujol (IGTP), Can Ruti Campus, Badalona, Spain
| | - Marta Clos-Sansalvador
- REMAR-IVECAT Group, Health Science Research Institute Germans Trias i Pujol (IGTP), Can Ruti Campus, Badalona, Spain.,Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Alexandra Calle
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Paloma Gastelurrutia
- ICREC Research Program, Health Science Research Institute Germans Trias i Pujol (IGTP), Can Ruti Campus, Badalona, Spain.,CIBERCV, Instituto de Salud Carlos III, Madrid, Spain.,Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, L'Hospitalet de Llobregat, Spain
| | - Adriana Cserkoova
- ICREC Research Program, Health Science Research Institute Germans Trias i Pujol (IGTP), Can Ruti Campus, Badalona, Spain
| | - Anna Morancho
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute (VHIR), UAB, Barcelona, Spain
| | - Miguel Ángel Ramírez
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Anna Rosell
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute (VHIR), UAB, Barcelona, Spain
| | - Antoni Bayes-Genis
- ICREC Research Program, Health Science Research Institute Germans Trias i Pujol (IGTP), Can Ruti Campus, Badalona, Spain.,CIBERCV, Instituto de Salud Carlos III, Madrid, Spain.,Cardiology Service, Germans Trias i Pujol University Hospital, Badalona, Spain.,Department of Medicine, UAB, Barcelona, Spain
| | - Carolina Gálvez-Montón
- ICREC Research Program, Health Science Research Institute Germans Trias i Pujol (IGTP), Can Ruti Campus, Badalona, Spain.,CIBERCV, Instituto de Salud Carlos III, Madrid, Spain
| | - Francesc E Borràs
- REMAR-IVECAT Group, Health Science Research Institute Germans Trias i Pujol (IGTP), Can Ruti Campus, Badalona, Spain.,Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain.,Nephrology Service, Germans Trias i Pujol University Hospital, Badalona, Spain
| | - Santiago Roura
- ICREC Research Program, Health Science Research Institute Germans Trias i Pujol (IGTP), Can Ruti Campus, Badalona, Spain.,CIBERCV, Instituto de Salud Carlos III, Madrid, Spain.,Faculty of Medicine, University of Vic-Central University of Catalonia (UVic-UCC), Vic, Barcelona, 08500, Spain
| |
Collapse
|
27
|
Estimation of manufacturing development costs of cell-based therapies: a feasibility study. Cytotherapy 2021; 23:730-739. [PMID: 33593688 DOI: 10.1016/j.jcyt.2020.12.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 11/23/2022]
Abstract
BACKGROUND AIMS Cell-based therapies (CBTs) provide opportunities to treat rare and high-burden diseases. Manufacturing development of these innovative products is said to be complex and costly. However, little research is available providing insight into resource use and cost drivers. Therefore, this study aimed to assess the feasibility of estimating the cost of manufacturing development of two cell-based therapy case studies using a CBT cost framework specifically designed for small-scale cell-based therapies. METHODS A retrospective costing study was conducted in which the cost of developing an adoptive immunotherapy of Epstein-Barr virus-specific cytotoxic T lymphocytes (CTLs) and a pluripotent stem cell (PSC) master cell bank was estimated. Manufacturing development was defined as products advancing from technology readiness level 3 to 6. The study was conducted in a Scottish facility. Development steps were recreated via developer focus groups. Data were collected from facility administrative and financial records and developer interviews. RESULTS Application of the manufacturing cost framework to retrospectively estimate the manufacturing design cost of two case studies in one Scottish facility appeared feasible. Manufacturing development cost was estimated at £1,201,016 for CTLs and £494,456 for PSCs. Most costs were accrued in the facility domain (56% and 51%), followed by personnel (20% and 32%), materials (19% and 15%) and equipment (4% and 2%). CONCLUSIONS Based on this study, it seems feasible to retrospectively estimate resources consumed in manufacturing development of cell-based therapies. This fosters inclusion of cost in the formulation and dissemination of best practices to facilitate early and sustainable patient access and inform future cost-conscious manufacturing design decisions.
Collapse
|
28
|
Gastelurrutia P, Prat-Vidal C, Vives J, Coll R, Bayes-Genis A, Gálvez-Montón C. Transitioning From Preclinical Evidence to Advanced Therapy Medicinal Product: A Spanish Experience. Front Cardiovasc Med 2021; 8:604434. [PMID: 33614746 PMCID: PMC7890001 DOI: 10.3389/fcvm.2021.604434] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 01/04/2021] [Indexed: 12/28/2022] Open
Abstract
A systematic and ordered product development program, in compliance with current quality and regulatory standards, increases the likelihood of yielding a successful advanced therapy medicinal product (ATMP) for clinical use as safe and effective therapy. As this is a novel field, little accurate information is available regarding the steps to be followed, and the information to be produced to support the development and use of an ATMP. Notably, successful clinical translation can be somewhat cumbersome for academic researchers. In this article, we have provided a summary of the available information, supported by our experience in Spain throughout the development of an ATMP for myocardial infarction, from the pre-clinical stage to phase I clinical trial approval.
Collapse
Affiliation(s)
- Paloma Gastelurrutia
- Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, L'Hospitalet de Llobregat, Spain.,Insuficiencia Cardíaca y Regeneración Cardíaca Research Program, Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Badalona, Spain.,Centro de Investigación Biomédica en Red Cardiovascular, Instituto de Salud Carlos III, Madrid, Spain
| | - Cristina Prat-Vidal
- Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, L'Hospitalet de Llobregat, Spain.,Insuficiencia Cardíaca y Regeneración Cardíaca Research Program, Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Badalona, Spain.,Centro de Investigación Biomédica en Red Cardiovascular, Instituto de Salud Carlos III, Madrid, Spain
| | - Joaquim Vives
- Servei de Teràpia Cel·lular, Banc de Sang i Teixits, Barcelona, Spain.,Musculoskeletal Tissue Engineering Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.,Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ruth Coll
- Servei de Teràpia Cel·lular, Banc de Sang i Teixits, Barcelona, Spain
| | - Antoni Bayes-Genis
- Insuficiencia Cardíaca y Regeneración Cardíaca Research Program, Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Badalona, Spain.,Centro de Investigación Biomédica en Red Cardiovascular, Instituto de Salud Carlos III, Madrid, Spain.,Hospital Universitari Germans Trias i Pujol, Badalona, Spain.,Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Carolina Gálvez-Montón
- Insuficiencia Cardíaca y Regeneración Cardíaca Research Program, Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Badalona, Spain.,Centro de Investigación Biomédica en Red Cardiovascular, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
29
|
Ramallo M, Carreras-Sánchez I, López-Fernández A, Vélez R, Aguirre M, Feldman S, Vives J. Advances in translational orthopaedic research with species-specific multipotent mesenchymal stromal cells derived from the umbilical cord. Histol Histopathol 2020; 36:19-30. [PMID: 32914860 DOI: 10.14670/hh-18-249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Compliance with current regulations for the development of innovative medicines require the testing of candidate therapies in relevant translational animal models prior to human use. This poses a great challenge when the drug is composed of cells, not only because of the living nature of the active ingredient but also due to its human origin, which can subsequently lead to a xenogeneic response in the animals. Although immunosuppression is a plausible solution, this is not suitable for large animals and may also influence the results of the study by altering mechanisms of action that are, in fact, poorly understood. For this reason, a number of procedures have been developed to isolate homologous species-specific cell types to address preclinical pharmacodynamics, pharmacokinetics and toxicology. In this work, we present and discuss advances in the methodologies for derivation of multipotent Mesenchymal Stromal Cells derived from the umbilical cord, in general, and Wharton's jelly, in particular, from medium to large animals of interest in orthopaedics research, as well as current and potential applications in studies addressing proof of concept and preclinical regulatory aspects.
Collapse
Affiliation(s)
- Melina Ramallo
- School of Medicine, LABOATEM, - Osteoarticular Biology, Tissue Engineering and Emerging Therapies Laboratory, Biological Chemistry Cat., School of Medicine, National Rosario University, Rosario, Argentina
| | | | - Alba López-Fernández
- Servei de Teràpia Cellular, Banc de Sang i Teixits, Barcelona, Spain.,Musculoskeletal Tissue Engineering Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Roberto Vélez
- Musculoskeletal Tissue Engineering Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.,Orthopedic Surgery Department, Hospital Universitari Vall d'Hebron, Barcelona, Spain.
| | - Màrius Aguirre
- Musculoskeletal Tissue Engineering Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.,Orthopedic Surgery Department, Hospital Universitari Vall d'Hebron, Barcelona, Spain.
| | - Sara Feldman
- School of Medicine, LABOATEM, - Osteoarticular Biology, Tissue Engineering and Emerging Therapies Laboratory, Biological Chemistry Cat., School of Medicine, National Rosario University, Argentina.,Researh Council of the Rosario National University, (CIUNR) and CONICET, Rosario, Argentina.
| | - Joaquim Vives
- Servei de Teràpia Cellular, Banc de Sang i Teixits, Barcelona, Spain.,Musculoskeletal Tissue Engineering Group, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.,Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain.
| |
Collapse
|
30
|
Human Platelet Lysate Supports Efficient Expansion and Stability of Wharton's Jelly Mesenchymal Stromal Cells via Active Uptake and Release of Soluble Regenerative Factors. Int J Mol Sci 2020; 21:ijms21176284. [PMID: 32877987 PMCID: PMC7503902 DOI: 10.3390/ijms21176284] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/22/2020] [Accepted: 08/24/2020] [Indexed: 12/31/2022] Open
Abstract
Manufacturing of mesenchymal stromal cell (MSC)-based therapies for regenerative medicine requires the use of suitable supply of growth factors that enhance proliferation, cell stability and potency during cell expansion. Human blood derivatives such as human platelet lysate (hPL) have emerged as a feasible alternative for cell growth supplement. Nevertheless, composition and functional characterization of hPL in the context of cell manufacturing is still under investigation, particularly regarding the content and function of pro-survival and pro-regenerative factors. We performed comparative analyses of hPL, human serum (hS) and fetal bovine serum (FBS) stability and potency to support Wharton’s jelly (WJ) MSC production. We demonstrated that hPL displayed low inter-batch variation and unique secretome profile that was not present in hS and FBS. Importantly, hPL-derived factors including PDGF family, EGF, TGF-alpha, angiogenin and RANTES were actively taken up by WJ-MSC to support efficient expansion. Moreover, hPL but not hS or FBS induced secretion of osteoprotegerin, HGF, IL-6 and GRO-alpha by WJ-MSC during the expansion phase. Thus, hPL is a suitable source of factors supporting viability, stability and potency of WJ-MSC and therefore constitutes an essential raw material that in combination with WJ-MSC introduces a great opportunity for the generation of potent regenerative medicine products.
Collapse
|