1
|
Wu F, Zhang S, Li H, Liu P, Su H, Zhang Y, Brooks BW, You J. Toxicokinetics Explain Differential Freshwater Ecotoxicity of Nanoencapsulated Imidacloprid Compared to Its Conventional Active Ingredient. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:9548-9558. [PMID: 38778038 DOI: 10.1021/acs.est.4c00065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Agricultural applications of nanotechnologies necessitate addressing safety concerns associated with nanopesticides, yet research has not adequately elucidated potential environmental risks between nanopesticides and their conventional counterparts. To address this gap, we investigated the risk of nanopesticides by comparing the ecotoxicity of nanoencapsulated imidacloprid (nano-IMI) with its active ingredient to nontarget freshwater organisms (embryonic Danio rerio, Daphnia magna, and Chironomus kiinensis). Nano-IMI elicited approximately 5 times higher toxicity than IMI to zebrafish embryos with and without chorion, while no significant difference was observed between the two invertebrates. Toxicokinetics further explained the differential toxicity patterns of the two IMI analogues. One-compartmental two-phase toxicokinetic modeling showed that nano-IMI exhibited significantly slower elimination and subsequently higher bioaccumulation potential than IMI in zebrafish embryos (dechorinated), while no disparity in toxicokinetics was observed between nano-IMI and IMI in D. magna and C. kiinensis. A two-compartmental toxicokinetic model successfully simulated the slow elimination of IMI from C. kiinensis and confirmed that both analogues of IMI reached toxicologically relevant targets at similar levels. Although nanopesticides exhibit comparable or elevated toxicity, future work is of utmost importance to properly understand the life cycle risks from production to end-of-life exposures, which helps establish optimal management measures before their widespread applications.
Collapse
Affiliation(s)
- Fan Wu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Shaoqiong Zhang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Huizhen Li
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Peipei Liu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Hang Su
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Yueyang Zhang
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta 11455, Canada
| | - Bryan W Brooks
- Department of Environmental Science, Institute of Biomedical Studies, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, Texas 76798, United States
| | - Jing You
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| |
Collapse
|
2
|
Mona C, Salomé MM, Judit K, José-María N, Eric B, María-Luisa FC. Considerations for bioaccumulation studies in fish with nanomaterials. CHEMOSPHERE 2023; 312:137299. [PMID: 36410504 DOI: 10.1016/j.chemosphere.2022.137299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 11/10/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Nanomaterials (NMs) pose challenges in performing bioaccumulation studies in fish and in regulatory interpretation of results. Therefore, a clear guidance is needed to obtain reliable, reproducible and comparable results. By analysing all the available literature, we aim in this manuscript to identify the critical aspects that should be addressed in these type of studies. Seventy-eight studies from a total of 67 published articles were identified in which a variety of approaches were used: aqueous exposure (49 studies), dietary exposure (19), and pre-exposed animals for trophic transfer studies (10). The NMs tested included TiO2, Zn, ZnO, Cu, CuO, Ag, Au, CeO2, Fe2O3, Fe3O4, Se, CdS, CdSe/ZnS-QDs, CdTe/ZnS-QDs, graphene, fullerenol and MWCNTs. In general, there is a scarcity of bioaccumulation studies for the different NMs. In particular, studies that use the dietary exposure route are lacking. TiO2 NMs are the most studied for bioaccumulation potential in fish (20%), whereas very few data were available for CuO, FeO and carbon-based NMs. Different information gaps were identified in these studies that hamper overall conclusions to be made on the bioaccumulation potential of NMs. The main critical issues related to NM testing for bioaccumulation include: maintenance of stable exposure concentrations, the influence of feeding regimen on uptake and elimination, the use of appropriate feed spiking methodologies, the potential need for testing different concentrations, and the reporting of bioaccumulation endpoints (BCF/BMF). Each of these issues needs further guidance to allow proper use and reporting of NM bioaccumulation data for regulatory purposes.
Collapse
Affiliation(s)
- Connolly Mona
- Department of Environment and Agronomy, National Institute for Agriculture and Food Science and Technology (INIA), Spanish National Research Council (CSIC), Carretera de la Coruña km 7,5, 28040 Madrid, Spain
| | - Martínez-Morcillo Salomé
- Department of Environment and Agronomy, National Institute for Agriculture and Food Science and Technology (INIA), Spanish National Research Council (CSIC), Carretera de la Coruña km 7,5, 28040 Madrid, Spain
| | - Kalman Judit
- Department of Environment and Agronomy, National Institute for Agriculture and Food Science and Technology (INIA), Spanish National Research Council (CSIC), Carretera de la Coruña km 7,5, 28040 Madrid, Spain
| | - Navas José-María
- Department of Environment and Agronomy, National Institute for Agriculture and Food Science and Technology (INIA), Spanish National Research Council (CSIC), Carretera de la Coruña km 7,5, 28040 Madrid, Spain
| | - Bleeker Eric
- National Institute for Public Health and the Environment (RIVM), P.O. Box 13720 BA Bilthoven, the Netherlands
| | - Fernández-Cruz María-Luisa
- Department of Environment and Agronomy, National Institute for Agriculture and Food Science and Technology (INIA), Spanish National Research Council (CSIC), Carretera de la Coruña km 7,5, 28040 Madrid, Spain.
| |
Collapse
|
3
|
Bosch S, Botha TL, Wepener V. Influence of different functionalized CdTe quantum dots on the accumulation of metals, developmental toxicity and respiration in different development stages of the zebrafish ( Danio rerio). FRONTIERS IN TOXICOLOGY 2023; 5:1176172. [PMID: 37200940 PMCID: PMC10185758 DOI: 10.3389/ftox.2023.1176172] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/11/2023] [Indexed: 05/20/2023] Open
Abstract
Introduction: The bioaccumulation and differential effects of cadmium tellurium quantum dot (CdTe QDs) nanomaterials with different functional groups are poorly understood in aquatic organisms. This study aimed to investigate the metal uptake, developmental effects, and respiratory effects of CdTe QDs with different functional groups (COOH, NH3, and PEG) on zebrafish embryos. Methods: Zebrafish embryos were exposed to carboxylate (COOH), ammonia (NH3), and polyethylene glycol (PEG) functionalized CdTe QDs at nominal concentrations of 0.5, 2, 4, 6, and 20 mg QDs/L. The materials were characterized in E3 exposure media and the metal uptake, developmental effects, and respiratory effects of zebrafish embryos were recorded. Results: The total Cd or Te concentrations in the larvae could not be explained by the metal concentrations or dissolution of the materials in the exposure media. The metal uptake in the larvae was not dose-dependent, except for the QD-PEG treatment. The QD-NH3 treatment caused respiration inhibition at the highest exposure concentration and hatching delays and severe malformations at low concentrations. The toxicities observed at low concentrations were attributed to particles crossing the pores in the chorion, and toxicities at higher concentrations were linked to the aggregation of particle agglomerates to the surface of the chorion impairing respiration. Developmental defects were recorded following exposure to all three functional groups, but the QD-NH3 group had the most severe response. The LC50 values for embryo development of QD-COOH and QD-PEG groups were higher than 20 mg/L, and the LC50 of the QD-NH3 group was 20 mg/L. Discussion: The results of this study suggest that CdTe QDs with different functional groups have differential effects on zebrafish embryos. The QD-NH3 treatment caused the most severe effects, including respiration inhibition and developmental defects. These findings provide valuable information for understanding the effects of CdTe QDs on aquatic organisms and highlight the need for further investigation.
Collapse
Affiliation(s)
- Suanne Bosch
- Water Research Group, School of Biological Sciences, North-West University, Potchefstroom, South Africa
- *Correspondence: Suanne Bosch,
| | - Tarryn Lee Botha
- Water Research Group, School of Biological Sciences, North-West University, Potchefstroom, South Africa
- Department of Zoology, University of Johannesburg, Johannesburg, South Africa
| | - Victor Wepener
- Water Research Group, School of Biological Sciences, North-West University, Potchefstroom, South Africa
| |
Collapse
|
4
|
Lu B, Wang J, Scheepers PTJ, Hendriks AJ, Nolte TM. Generic prediction of exocytosis rate constants by size-based surface energies of nanoparticles and cells. Sci Rep 2022; 12:17813. [PMID: 36280701 PMCID: PMC9592603 DOI: 10.1038/s41598-022-20761-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/19/2022] [Indexed: 01/19/2023] Open
Abstract
Nanotechnology brings benefits in fields such as biomedicine but nanoparticles (NPs) may also have adverse health effects. The effects of surface-modified NPs at the cellular level have major implications for both medicine and toxicology. Semi-empirical and mechanism-based models aid to understand the cellular transport of various NPs and its implications for quantitatively biological exposure while avoiding large-scale experiments. We hypothesized relationships between NPs-cellular elimination, surface functionality and elimination pathways by cells. Surface free energy components were used to characterize the transport of NPs onto membranes and with lipid vesicles, covering both influences by size and hydrophobicity of NPs. The model was built based on properties of neutral NPs and cells, defining Van de Waals forces, electrostatic forces and Lewis acid-base (polar) interactions between NPs and vesicles as well as between vesicles and cell membranes. We yielded a generic model for estimating exocytosis rate constants of various neutral NPs by cells based on the vesicle-transported exocytosis pathways. Our results indicate that most models are well fitted (R2 ranging from 0.61 to 0.98) and may provide good predictions of exocytosis rate constants for NPs with differing surface functionalities (prediction errors are within 2 times for macrophages). Exocytosis rates differ between cancerous cells with metastatic potential and non-cancerous cells. Our model provides a reference for cellular elimination of NPs, and intends for medical applications and risk assessment.
Collapse
Affiliation(s)
- Bingqing Lu
- grid.5590.90000000122931605Department of Environmental Science, Institute for Biological and Environmental Sciences, Radboud University Nijmegen, 6500 GL Nijmegen, The Netherlands
| | - Jiaqi Wang
- grid.5590.90000000122931605Department of Environmental Science, Institute for Biological and Environmental Sciences, Radboud University Nijmegen, 6500 GL Nijmegen, The Netherlands
| | - Paul T. J. Scheepers
- grid.5590.90000000122931605Department of Toxicology, Radboud University Nijmegen, 6500 GL Nijmegen, The Netherlands
| | - A. Jan Hendriks
- grid.5590.90000000122931605Department of Environmental Science, Institute for Biological and Environmental Sciences, Radboud University Nijmegen, 6500 GL Nijmegen, The Netherlands
| | - Tom M. Nolte
- grid.5590.90000000122931605Department of Environmental Science, Institute for Biological and Environmental Sciences, Radboud University Nijmegen, 6500 GL Nijmegen, The Netherlands
| |
Collapse
|