1
|
Wang X, Tan Z, Shi S, Zhang S, Yang S, Zhang X, Gao P, Zhang Y. Preparation of Cellulose-Grafted Acrylic Acid Stabilized Jujube Branch Biochar-Supported Nano Zero-Valent Iron Composite for Cr(VI) Removal from Water. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:441. [PMID: 40137614 PMCID: PMC11944448 DOI: 10.3390/nano15060441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/12/2025] [Accepted: 03/12/2025] [Indexed: 03/29/2025]
Abstract
A stabilized biochar (BC)-nano-scale zero-valent iron (nZVI) composite (BC-nZVI@Cell-g-PAA) was prepared using cellulose-grafted polyacrylic acid (Cell-g-PAA) as the raw material through in situ polymerization and liquid-phase reduction methods for the remediation of hexavalent chromium (Cr(VI))-contaminated water. BC-nZVI@Cell-g-PAA was characterized by XRD, FT-IR, SEM, BET, TEM, and XPS. According to the batch experiments, under optimized conditions (Cr(VI) concentration of 50 mg/L, pH = 3, and dosage of 2 g/L), the BC-nZVI@Cell-g-PAA composite achieved maximum Cr(VI) removal efficiency (99.69%) within 120 min. Notably, BC, as a carrier, achieved a high dispersion of nZVI through its porous structure, effectively preventing particle agglomeration and improving reaction activity. Simultaneously, the functional groups on the surface of Cell-g-PAA provided excellent protection for nZVI, significantly suppressing its oxidative deactivation. Furthermore, the composite effectively reduced Cr(VI) to insoluble trivalent chromium(Cr(III)) species and stabilized them on its surface through immobilization. The synergistic effects of physical adsorption and chemical reduction greatly contributed to the removal efficiency of Cr(VI). Remarkably, the composite exhibited excellent reusability with a removal efficiency of 62.4% after five cycles, demonstrating its potential as a promising material for remediating Cr(VI)-contaminated water. In conclusion, the BC-nZVI@Cell-g-PAA composite not only demonstrated remarkable efficiency in Cr(VI) removal but also showcased its potential for practical applications in environmental remediation, as evidenced by its sustained performance over multiple reuse cycles. Moreover, Cr(VI), a toxic and carcinogenic substance, poses significant risks to aquatic ecosystems and human health, underscoring the importance of developing effective methods for its removal from contaminated water.
Collapse
Affiliation(s)
- Xiaoxue Wang
- School of Chemistry and Chemical Engineering, Yulin University, No. 51 Chongwen Road, Yulin 719000, China
| | - Zhe Tan
- School of Chemistry and Chemical Engineering, Yulin University, No. 51 Chongwen Road, Yulin 719000, China
| | - Shuang Shi
- School of Chemistry and Chemical Engineering, Yulin University, No. 51 Chongwen Road, Yulin 719000, China
| | - Shanyuan Zhang
- School of Chemistry and Chemical Engineering, Yulin University, No. 51 Chongwen Road, Yulin 719000, China
| | - Shuang Yang
- School of Chemistry and Chemical Engineering, Yulin University, No. 51 Chongwen Road, Yulin 719000, China
| | - Xingyu Zhang
- School of Materials Science and Engineering, Xi’an University of Technology, No. 5 Jinhua South Road, Beilin District, Xi’an 710048, China
| | - Pingqiang Gao
- School of Chemistry and Chemical Engineering, Yulin University, No. 51 Chongwen Road, Yulin 719000, China
- Yulin Engineering Research Center of Coal Chemical Wastewater, Yulin University, No. 51 Chongwen Road, Yulin 719000, China
| | - Yan Zhang
- School of Chemistry and Chemical Engineering, Yulin University, No. 51 Chongwen Road, Yulin 719000, China
| |
Collapse
|
2
|
Duan Y, Liu F, Liu X, Li M. Removal of Cr(VI) by glutaraldehyde-crosslinked chitosan encapsulating microscale zero-valent iron: Synthesis, mechanism, and longevity. J Environ Sci (China) 2024; 142:115-128. [PMID: 38527878 DOI: 10.1016/j.jes.2023.07.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/04/2023] [Accepted: 07/04/2023] [Indexed: 03/27/2024]
Abstract
Microscale zero-valent iron (mZVI) has shown great potential for groundwater Cr(VI) remediation. However, low Cr(VI) removal capacity caused by passivation restricted the wide use of mZVI. We prepared mZVI/GCS by encapsulating mZVI in a porous glutaraldehyde-crosslinked chitosan matrix, and the formation of the passivation layer was alleviated by reducing the contact between zero-valent iron particles. The average pore diameter of mZVI/GCS was 8.775 nm, which confirmed the mesoporous characteristic of this material. Results of batch experiments demonstrated that mZVI/GCS exhibited high Cr(VI) removal efficiency in a wide range of pH (2-10) and temperature (5-35°C). Common groundwater coexisting ions slightly affected mZVI/GCS. The material showed great reusability, and the average Cr(VI) removal efficiency was 90.41% during eight cycles. In this study, we also conducted kinetics and isotherms analysis. Pseudo-second-order model was the most matched kinetics model. The Cr(VI) adsorption process was fitted by both Langmuir and Freundlich isotherms models, and the maximum Langmuir adsorption capacity of mZVI/GCS reached 243.63 mg/g, which is higher than the adsorption capacities of materials reported in most of the previous studies. Notably, the column capacity for Cr(VI) removal of a mZVI/GCS-packed column was 6.4 times higher than that of a mZVI-packed column in a 50-day experiment. Therefore, mZVI/GCS with a porous structure effectively relieved passivation problems of mZVI and showed practical application prospects as groundwater Cr(VI) remediation material with practical application prospects.
Collapse
Affiliation(s)
- Yijun Duan
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Fang Liu
- Transportation Institute of Inner Mongolia University, Hohhot 010070, China
| | - Xiang Liu
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Miao Li
- School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
3
|
Lin CW, Chen FY, Liu SH, Ma CY. Optimized combination of zero-valent iron and oxygen-releasing biochar as cathodes of microbial fuel cells to enhance copper migration in sediment. Bioelectrochemistry 2024; 158:108699. [PMID: 38574450 DOI: 10.1016/j.bioelechem.2024.108699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/29/2024] [Accepted: 03/29/2024] [Indexed: 04/06/2024]
Abstract
Membrane-less single-medium sediment microbial fuel cells (single-SMFC) can remove Cu2+ from sediment through electromigration. However, the high mass transfer resistance of the sediment and amount of oxygen at the cathode of the SMFC limit its Cu2+ removal ability. Therefore, this study used an oxygen-releasing bead (ORB) for slow oxygen release to increase oxygen at the SMFC cathode and improve the mass transfer property of the sediment. Resultantly, the copper removal efficiency of SMFC increased significantly. Response surface methodology was used to optimize the nano zero-valent iron (nZVI)-modified biochar as the catalyst to enhance the ability of the modified ORB (ORBm) to remove Cu2+ and slow release of O2. The maximum Cu2+ removal (95 %) and the slowest O2 release rate (0.41 mg O2/d·g ORBm) were obtained when the CaO2 content and ratio of nZVI-modified biochar to unmodified biochar were 0.99 g and 4.95, respectively. When the optimized ORBm was placed at the single-SMFC cathode, the voltage output and copper removal increased by 4.6 and 2.1 times, respectively, compared with the system without ORBm. This shows that the ORBm can improve the migration of Cu2+ in the sediment, providing a promising remediation method for Cu-contaminated sediments.
Collapse
Affiliation(s)
- Chi-Wen Lin
- Department of Safety, Health and Environmental Engineering, National Yunlin University of Science and Technology, Yunlin 64002, Taiwan, ROC; Graduate School of Engineering Science and Technology, National Yunlin University of Science and Technology, Yunlin 64002, Taiwan, ROC
| | - Fung-Yu Chen
- Department of Safety, Health and Environmental Engineering, National Yunlin University of Science and Technology, Yunlin 64002, Taiwan, ROC
| | - Shu-Hui Liu
- Department of Safety, Health and Environmental Engineering, National Yunlin University of Science and Technology, Yunlin 64002, Taiwan, ROC.
| | - Chih-Yu Ma
- Center for Low-temperature Plasma Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
4
|
Liu M, Chen G, Xu L, He Z, Ye Y. Environmental remediation approaches by nanoscale zero valent iron (nZVI) based on its reductivity: a review. RSC Adv 2024; 14:21118-21138. [PMID: 38966811 PMCID: PMC11223516 DOI: 10.1039/d4ra02789b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/27/2024] [Indexed: 07/06/2024] Open
Abstract
The fast rise of organic and metallic pollution has brought significant risks to human health and the ecological environment. Consequently, the remediation of wastewater is in extremely urgent demand and has received increasing attention. Nanoscale zero valent iron (nZVI) possesses a high specific surface area and distinctive reactive interfaces, which offer plentiful active sites for the reduction, oxidation, and adsorption of contaminants. Given these abundant functionalities of nZVI, it has undergone significant and extensive studies on environmental remediation, linking to various mechanisms, such as reduction, oxidation, surface complexation, and coprecipitation, which have shown great promise for application in wastewater treatment. Among these functionalities of nZVI, reductivity is particularly important and widely adopted in dehalogenation, and reduction of nitrate, nitro compounds, and metal ions. The following review comprises a short survey of the most recent reports on the applications of nZVI based on its reductivity. It contains five sections, an introduction to the theme, chemical reduction applications, electrolysis-assisted reduction applications, bacterium-assisted reduction applications, and conclusions about the reported research with perspectives for future developments. Review and elaboration of the recent reductivity-dependent applications of nZVI may not only facilitate the development of more effective and sustainable nZVI materials and the protocols for comprehensive utilization of nZVI, but may also promote the exploration of innovative remediation approaches based on its reductivity.
Collapse
Affiliation(s)
- Mingyue Liu
- School of Pharmaceutical and Chemical Engineering, Taizhou University Taizhou 318000 Zhejiang Province China
| | - Gang Chen
- School of Pharmaceutical and Chemical Engineering, Taizhou University Taizhou 318000 Zhejiang Province China
| | - Linli Xu
- School of Pharmaceutical and Chemical Engineering, Taizhou University Taizhou 318000 Zhejiang Province China
| | - Zhicai He
- School of Pharmaceutical and Chemical Engineering, Taizhou University Taizhou 318000 Zhejiang Province China
| | - Yuyuan Ye
- School of Pharmaceutical and Chemical Engineering, Taizhou University Taizhou 318000 Zhejiang Province China
| |
Collapse
|
5
|
Xue W, Shi X, Guo J, Wen S, Lin W, He Q, Gao Y, Wang R, Xu Y. Affecting factors and mechanism of removing antibiotics and antibiotic resistance genes by nano zero-valent iron (nZVI) and modified nZVI: A critical review. WATER RESEARCH 2024; 253:121309. [PMID: 38367381 DOI: 10.1016/j.watres.2024.121309] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/08/2024] [Accepted: 02/11/2024] [Indexed: 02/19/2024]
Abstract
Antibiotics and antibiotic resistance genetic pollution have become a global environmental and health concern recently, with frequent detection in various environmental media. Therefore, finding ways to control antibiotics and antibiotic resistance genes (ARGs) is urgently needed. Nano zero-valent iron (nZVI) has shown a positive effect on antibiotics degradation and restraining ARGs, making it a promising solution for controlling antibiotics and ARGs. However, given the current increasingly fragmented research focus and results, a comprehensive review is still lacking. In this work, we first introduce the origin and transmission of antibiotics and ARGs in various environmental media, and then discuss the affecting factors during the degradation of antibiotics and the control of ARGs by nZVI and modified nZVI, including pH, nZVI dose, and oxidant concentration, etc. Then, the mechanisms of antibiotic and ARGs removal promoted by nZVI are also summarized. In general, the mechanism of antibiotic degradation by nZVI mainly includes adsorption and reduction, while promoting the biodegradation of antibiotics by affecting the microbial community. nZVI can also be combined with persulfates to degrade antibiotics through advanced oxidation processes. For the control of ARGs, nZVI not only changes the microbial community structure, but also affects the proliferation of ARGs through affecting the fate of mobile genetic elements (MGEs). Finally, some new ideas on the application of nZVI in the treatment of antibiotic resistance are proposed. This paper provides a reference for research and application in this field.
Collapse
Affiliation(s)
- Wenjing Xue
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225009, PR China
| | - Xiaoyu Shi
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225009, PR China
| | - Jiaming Guo
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225009, PR China
| | - Siqi Wen
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225009, PR China
| | - Weilong Lin
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225009, PR China
| | - Qi He
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225009, PR China
| | - Yang Gao
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, PR China
| | - Rongzhong Wang
- School of Resource & Environment and Safety Engineering, University of South China, Heng yang 421001, PR China
| | - Yiqun Xu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225009, PR China.
| |
Collapse
|
6
|
Wang B, Zhao C, Feng Q, Lee X, Zhang X, Wang S, Chen M. Biochar supported nanoscale zerovalent iron-calcium alginate composite for simultaneous removal of Mn(II) and Cr(VI) from wastewater: Sorption performance and mechanisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123148. [PMID: 38104766 DOI: 10.1016/j.envpol.2023.123148] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Heavy metal pollution in water caused by industrial activities has become a global environmental issue. Among them, manganese mining and smelting activities have caused the combined pollution of Cr(VI) and Mn(II) in water, posing a serious ecotoxicological risk to ecological environments and human health. To efficiently remove Cr(VI) and Mn(II) from wastewater, a novel biochar supported nanoscale zerovalent iron-calcium alginate composite (CA/nZVI/RSBC) was synthesized by liquid-phase reduction and calcium alginate embedding methods. The adsorption performance and mechanisms of Cr(VI) and Mn(II) by CA/nZVI/RSBC were investigated. The maximum adsorption capacities of Cr(VI) and Mn(II) onto CA/nZVI/RSBC fitted by the Langmuir model were 5.38 and 39.78 mg/g, respectively, which were much higher than the pristine biochar. The iron release from CA/nZVI/RSBC was comparatively lower than that of nZVI/RSBC. Mn(II) presence enhanced the reduction of Cr(VI) by CA/nZVI/RSBC. The results of XRD, XPS, and site energy distribution analysis indicated that redox was the predominant mechanism of Cr(VI) adsorption, while electrostatic attraction dominated Mn(II) adsorption. This study provides a novel alternative way for the simultaneous removal of Cr(VI) and Mn(II) in wastewater.
Collapse
Affiliation(s)
- Bing Wang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou, 550025, China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang, Guizhou, 550025, China.
| | - Chenxi Zhao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, Guizhou, 550081, China
| | - Qianwei Feng
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Xinqing Lee
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, Guizhou, 550081, China
| | - Xueyang Zhang
- School of Environmental Engineering, Jiangsu Key Laboratory of Industrial Pollution Control and Resource Reuse, Xuzhou University of Technology, Xuzhou, Jiangsu, 221018, China
| | - Shengsen Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225127, China
| | - Miao Chen
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou, 550025, China
| |
Collapse
|
7
|
Hayat M, Bukhari SAR, Ashraf MI, Hayat S. Zero-valent Iron Nanoparticles: Biogenic Synthesis and their Medical Applications; Existing Challenges and Future Prospects. Curr Pharm Biotechnol 2024; 25:1362-1376. [PMID: 37303179 DOI: 10.2174/1389201024666230609102243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/29/2023] [Accepted: 05/08/2023] [Indexed: 06/13/2023]
Abstract
OBJECTIVES In the last decade, nanobiotechnology is emerging as a keen prudence area owing to its widespread applications in the medical field. In this context, zero-valent iron nanoparticles (nZVI) have garnered tremendous attention attributed to their cheap, non-toxic, excellent paramagnetic nature, extremely reactive surface, and dual oxidation state that makes them excellent antioxidants and free-radical scavengers. Facile biogenic synthesis, in which a biological source is used as a template for the synthesis of NPs, is presumably dominant among other physical and chemical synthetic procedures. The purpose of this review is to elucidate plant-mediated synthesis of nZVI, although they have been successfully fabricated by microbes and other biological entities (such as starch, chitosan, alginate, cashew nut shell, etc.) as well. METHODS The methodology of the study involved keyword searches of electronic databases, including ScienceDirect, NCBI, and Google Scholar (2008-2023). Search terms of the review included 'biogenic synthesis of nZVI', 'plant-mediated synthesis of nZVI', 'medical applications of nZVI', and 'Recent advancements and future prospects of nZVI'. RESULTS Various articles were identified and reviewed for biogenic fabrication of stable nZVI with the vast majority of studies reporting positive findings. The resultant nanomaterial found great interest for biomedical purposes such as their use as biocompatible anticancer, antimicrobial, antioxidant, and albumin binding agents that have not been adequately accessed in previous studies. CONCLUSION This review shows that there are potential cost savings applications to be made when using biogenic nZVI for medical purposes. However, the encountering challenges concluded later, along with the prospects for sustainable future development.
Collapse
Affiliation(s)
- Minahil Hayat
- Department of Biotechnology, University of Sargodha, Sargodha, Pakistan
| | | | | | - Sumreen Hayat
- Institute of Microbiology, Government College University Faisalabad, Pakistan
| |
Collapse
|
8
|
Tan X, Yang J, Shaaban M, Cai Y, Wang B, Peng QA. Cr(VI) removal from wastewater using nano zero-valent iron and chromium-reducing bacteria. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:113323-113334. [PMID: 37848784 DOI: 10.1007/s11356-023-30292-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 10/02/2023] [Indexed: 10/19/2023]
Abstract
Significant global efforts are currently underway to alleviate the presence of toxic metals in water bodies, aiming to encourage a sustainable environment. Nevertheless, the scientific community has yet to methodically inspect the performance and mechanisms underlying the interaction between nanomaterials and microorganisms in this context. Therefore, this study seeks to address this knowledge gap by developing a novel system that integrates nano zero-valent iron (nZVI) with chromium-reducing bacteria (CrRB) to efficiently remove Cr(VI) from water sources. The combined use of RBC600 and CrRB resulted in a Cr(VI) removal rate of 77.73%, displaying a substantial improvement of 17.61% compared to the use of CrRB alone. The efficacy of Cr(VI) elimination was observed to be affected by several factors within the system, such as the pH value, the quantity of nZVI added, the degree of CrRB inoculation, and the initial concentration of Cr(VI) at the onset of the experiment. When the pH was adjusted to 5, the complete removal of 200 mg/L Cr(VI) was achieved within 36 h. Increasing the dosage of nZVI to above 2 g/L resulted in the complete elimination of Cr(VI) from the solution within 72 h. This can be attributed to the availability of more reaction sites for the reduction of Cr(VI), facilitated by the higher nZVI dose. Additionally, the increased dose of nZVI allowed for the dissolution of more reactive Fe(II) ions. The characterization analysis, high-throughput sequencing, and fluorescence quantitative PCR results have established that CrRB and its extracellular polymer effectively reduce and complex Cr(VI). This process facilitated the dissolution of the passivated layer on the surface of nZVI, thus significantly enhancing the efficiency of nZVI in responding to Cr(VI). Additionally, the presence of nZVI created a favorable living environment for CrRB, resulting in increased richness and diversity within the CrRB community. These findings provide valuable preliminary insights into the mechanism underlying Cr(VI) elimination by the synergistic interaction between nZVI and CrRB. Therefore, this study establishes a solid theoretical foundations for the application of nano-bio synergy in the remediation of Cr(VI).
Collapse
Affiliation(s)
- Xiangpeng Tan
- School of Environmental Engineering, Wuhan Textile University, Wuhan, 430073, People's Republic of China
| | - Jianwei Yang
- School of Environmental Engineering, Wuhan Textile University, Wuhan, 430073, People's Republic of China
| | - Muhammad Shaaban
- College of Agriculture, Henan University of Science and Technology, Luoyang, China
| | - Yajun Cai
- School of Environmental Engineering, Wuhan Textile University, Wuhan, 430073, People's Republic of China
| | - Buyun Wang
- School of Environmental Engineering, Wuhan Textile University, Wuhan, 430073, People's Republic of China
| | - Qi-An Peng
- School of Environmental Engineering, Wuhan Textile University, Wuhan, 430073, People's Republic of China.
- Engineering Research Center for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan, People's Republic of China.
| |
Collapse
|
9
|
Ganie ZA, Khandelwal N, Choudhary A, Darbha GK. Clean water production from plastic and heavy metal contaminated waters using redox-sensitive iron nanoparticle-loaded biochar. ENVIRONMENTAL RESEARCH 2023; 235:116605. [PMID: 37437871 DOI: 10.1016/j.envres.2023.116605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/24/2023] [Accepted: 07/08/2023] [Indexed: 07/14/2023]
Abstract
The unceasing release of tiny plastics (microplastics and nanoplastics) and their additives, like metal ions, into the aquatic systems from industries and other sources is a globally escalating problem. Their combined toxic effects and human health hazard are already proven; hence, their remediation is requisite. This study utilised the nano-zerovalent iron-loaded sugarcane bagasse-derived biochar (nZVI-SBC) for simultaneous removal of Nanoplastics (NPs) of different functionality and size along with metal ions (Ni2+, Cd2+, AsO43-, and CrO42-). Batch and column experiments were conducted, and the results showed an efficient removal of contaminants with maximum sorption of carboxylate-modified NPs of size 500 nm (qmax = 90.3 mg/g) among all three NPs types. Significant removal was observed in Cd2+ in case of cations and CrO42- in case of anions with qmax = 44.0 and 87.8 mg/g, respectively. Kinetics and the isotherm modelling better fitted the pseudo-second-order kinetic model and Sips isotherm model, respectively for both NPs and metal ions. The designed material worked well in pH range of 4-8, ionic strength 1-20 mM and in complex aqueous matrices, with >90% removal. FTIR, zeta potential and the imaging analysis of the reaction precipitates confirmed the electrostatic attraction, pore retention and complexation as the potential mechanisms for removing NPs, whereas, XPS studies confirmed the reduction co-precipitation and surface complexation as the possible mechanism for removing metal ions. High values of attachment efficiency factor calculated from colloidal filtration theory (CFT) validated the experimental results and justified the high sorption of carboxylate modified 500 nm NPs particles. The synthesized material successfully removed both NPs of varying size and functionality and metal ions simultaneously with significant efficacy in complex environmental samples proving the broad applicability of material in realistic environmental conditions and different types of water treatment processes.
Collapse
Affiliation(s)
- Zahid Ahmad Ganie
- Environmental Nanoscience Laboratory, Department of Earth Sciences, Indian Institute of Science Education and Research- Kolkata, Mohanpur, West Bengal, 741246, India
| | - Nitin Khandelwal
- Environmental Nanoscience Laboratory, Department of Earth Sciences, Indian Institute of Science Education and Research- Kolkata, Mohanpur, West Bengal, 741246, India
| | - Aniket Choudhary
- Environmental Nanoscience Laboratory, Department of Earth Sciences, Indian Institute of Science Education and Research- Kolkata, Mohanpur, West Bengal, 741246, India
| | - Gopala Krishna Darbha
- Environmental Nanoscience Laboratory, Department of Earth Sciences, Indian Institute of Science Education and Research- Kolkata, Mohanpur, West Bengal, 741246, India; Centre for Climate and Environmental Studies, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, 741246, India.
| |
Collapse
|
10
|
Lin Z, Liu F, Zheng C, Zhu A, Ma X, Peng Y, He C. Fabricating Amorphous Zero-Valent Iron for Cr(VI) Efficient Reduction: Unveiling the Effect of Ethylenediamine on Physicochemical Properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:4026-4036. [PMID: 36877598 DOI: 10.1021/acs.langmuir.2c03378] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Amorphous zero-valent iron (AZVI) has attracted wide attention due to its high-efficiency reduction ability. However, the effect of different EDA/Fe(II) molar ratios on the physicochemical properties of the synthesized AZVI requires further investigation. Herein, series of AZVI samples were prepared by changing the molar ratio of EDA/Fe(II) to 1/1 (AZVI@1), 2/1 (AZVI@2), 3/1 (AZVI@3), and 4/1 (AZVI@4). When the EDA/Fe(II) ratio increased from 0/1 to 3/1, the Fe0 proportion on the AZVI surface increased from 26.0 to 35.2% and the reducing ability was enhanced. As for AZVI@4, the surface was severely oxidized to form a large amount of Fe3O4, and the Fe0 content was only 74.0%. Moreover, the removal ability of Cr(VI) was in the order AZVI@3 > AZVI@2 > AZVI@1 > AZVI@4. The isothermal titration calorimetry results revealed that the increase of the molar ratio of EDA/Fe(II) would lead to the stronger complexation of EDA with Fe(II), which resulted in the gradual decrease of the yield of AZVI@1 to AZVI@4 and the gradual deterioration of water pollution after the synthesis. Therefore, based on the evaluation of all indicators, AZVI@2 was the optimal material, not only because its yield was as high as 88.7% and the secondary water pollution level was low, but most importantly, the removal efficiency of Cr(VI) by AZVI@2 was excellent. Furthermore, the actual Cr(VI) wastewater with the concentration of 14.80 mg/L was treated with AZVI@2, and the removal rate of 97.0% was achieved after only a 30 min reaction. This work clarified the effect of different ratios of EDA/Fe(II) on the physicochemical properties of AZVI, which provided insights for guiding the reasonable synthesis of AZVI and is also conducive to investigating the reaction mechanism of AZVI in Cr(VI) remediation.
Collapse
Affiliation(s)
- Zishen Lin
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P.R. China
| | - Fobang Liu
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P.R. China
| | - Chunli Zheng
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P.R. China
- Key Laboratory of Thermo-Fluid Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, P.R. China
| | - Aibin Zhu
- Institute of Robotics & Intelligent Systems, Xi'an Jiaotong University, Xi'an 710049, P.R. China
| | - Xiaowei Ma
- Shaanxi Mining Industry and Trade Co., Ltd., Xi'an 710000, P.R. China
| | - Yuanzhe Peng
- Shaanxi Mining Industry and Trade Co., Ltd., Xi'an 710000, P.R. China
| | - Chi He
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P.R. China
- Key Laboratory of Thermo-Fluid Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, P.R. China
| |
Collapse
|
11
|
Li H, Ren Z, Huang D, Jing Q, Tang H. Removal of Hexavalent Chromium in Aqueous Solution by Cellulose Filter Paper Loaded with Nano-Zero-Valent Iron: Performance Investigation and Numerical Modeling. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1867. [PMID: 36767247 PMCID: PMC9915128 DOI: 10.3390/ijerph20031867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
Cr(VI) pollution in water bodies is very harmful to human health and the environment. Therefore, it is necessary to remove Cr(VI) from water. In this study, the composite (FP-nZVI) was prepared by loading nano-zero-valent iron (nZVI) onto cellulose filter paper (FP) using a liquid-phase reduction method to improve the dispersibility and oxidation resistance of nZVI. In batch experiments, the effects of iron loading of FP-nZVI, initial concentration of Cr(VI), temperature, and pH on Cr(VI) removal were particularly investigated. The maximum removal rate of 98.6% was achieved at 25 °C, pH = 5, initial concentration of Cr(VI) of 20 mg/L, and FeCl3·6H2O solution concentration of 0.8 mol/L. The removal of Cr(VI) by FP-nZVI conformed to a pseudo-second-order kinetic model and Langmuir isotherm model. The mechanism of Cr(VI) removal was a multi-step removal mechanism, involving adsorption, reduction, and coprecipitation. Column experiments investigated the effect of flow rate (1 mL/min, 3 mL/min, and 5 mL/min) on Cr(VI) removal. We found that increasing flow rate slightly decreased the removal rate of Cr(VI). The transport of Cr(VI) in composite porous media was simulated using HYDRUS-1D, and the results show that the two-site model can well simulate the reactive transport of Cr(VI). This study may provide a useful reference for the remediation of groundwater contaminated with Cr(VI) or other similar heavy metals using FP-nZVI.
Collapse
Affiliation(s)
- Huali Li
- Institute of Water Resources and Engineering, Beijing University of Technology, Beijing 100124, China
| | - Zhongyu Ren
- Institute of Water Resources and Engineering, Beijing University of Technology, Beijing 100124, China
| | - Dan Huang
- Songliao Water Conservancy Commission, Songliao Basin Water and Soil Conservation Monitoring Center Station, Changchun 130021, China
| | - Qi Jing
- Institute of Water Resources and Engineering, Beijing University of Technology, Beijing 100124, China
| | - Haokai Tang
- Institute of Water Resources and Engineering, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
12
|
Zhang J, Xie L, Ma Q, Liu Y, Li J, Li Z, Li S, Zhang T. Ball milling enhanced Cr(VI) removal of zero-valent iron biochar composites: Functional groups response and dominant reduction species. CHEMOSPHERE 2023; 311:137174. [PMID: 36368528 DOI: 10.1016/j.chemosphere.2022.137174] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 11/01/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Zero-valent iron biochar composites (ZVI/BC) have been widely used to remove Cr(VI) from water. However, the application of ZVI/BC prepared by the carbothermal reduction was limited by the non-uniform dispersion of ZVI on the biochar surface. In this work, ball milling technique was introduced to modify ZVI/BC. Results showed that after ball milling, the maximum Langmuir adsorption capacity for Cr(VI) was 117.7 mg g-1 (298 K) which was 2.08 times higher than ZVI/BC. The initial adsorption rate of the Elovich model increased from 4.57 × 102 mg g-1 min-1 to 3.74 × 109 mg g-1 min-1 after ball milling. Dispersibility of ZVI on biochar surface and contact between ZVI and biochar were improved by the ball milling, thus accelerating the electron transfer. Besides, ball milling increased the content of oxygen-containing functional groups in biochar, contributing to the chemisorption of Cr(VI). The response sequence of oxygen-containing functional groups was analyzed by two-dimensional correlation spectroscopy, indicating that Cr(VI) preferentially complexed with phenolic -OH. Shielding experiments showed that Fe (0) was the dominant reducing species with a contribution of 73.4%, followed by surface-bound Fe(II) (21.3%) and dissolved Fe2+ (5.24%). Density functional theory calculations demonstrated that ball milled ZVI/BC improved the adsorption affinity and electron transfer flux towards Cr(VI) by introducing phenolic -OH and Fe (0). Combining all the textural characterization, the Cr(VI) removal mechanism of the ball milled ZVI/BC could be proposed as adsorption, reduction, and precipitation. Eventually, stable Cr-Fe oxides (FeOCr2O3 and Cr1·3Fe0·7O3) were formed. This work not only provides a simple method to modify ZVI/BC to remove Cr(VI) in water efficiently and rapidly, but also improves the mechanistic insight into the Cr(VI) removal by iron-carbon composites via the response sequence of functional group analysis and the quantitative analysis of reducing species.
Collapse
Affiliation(s)
- Jinlan Zhang
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lihong Xie
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Qiyan Ma
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yiyang Liu
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jie Li
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhifeng Li
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shangyi Li
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Tingting Zhang
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
13
|
Gou G, Huang Y, Wang Y, Liu C, Li N, Lai B, Xiang X, Li J. Peroxymonosulfate activation through magnetic Fe3C/Fe doped biochar from natural loofah sponges for carbamazepine degradation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
14
|
Gamage A, Thiviya P, Mani S, Ponnusamy PG, Manamperi A, Evon P, Merah O, Madhujith T. Environmental Properties and Applications of Biodegradable Starch-Based Nanocomposites. Polymers (Basel) 2022; 14:polym14214578. [PMID: 36365571 PMCID: PMC9656360 DOI: 10.3390/polym14214578] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 12/01/2022] Open
Abstract
In recent years, the demand for environmental sustainability has caused a great interest in finding novel polymer materials from natural resources that are both biodegradable and eco-friendly. Natural biodegradable polymers can displace the usage of petroleum-based synthetic polymers due to their renewability, low toxicity, low costs, biocompatibility, and biodegradability. The development of novel starch-based bionanocomposites with improved properties has drawn specific attention recently in many applications, including food, agriculture, packaging, environmental remediation, textile, cosmetic, pharmaceutical, and biomedical fields. This paper discusses starch-based nanocomposites, mainly with nanocellulose, chitin nanoparticles, nanoclay, and carbon-based materials, and their applications in the agriculture, packaging, biomedical, and environment fields. This paper also focused on the lifecycle analysis and degradation of various starch-based nanocomposites.
Collapse
Affiliation(s)
- Ashoka Gamage
- Chemical and Process Engineering, Faculty of Engineering, University of Peradeniya, Peradeniya 20400, Sri Lanka
- Correspondence: (A.G.); (O.M.); Tel.: +94-714430714 (A.G.); +33-5-3432-3523 (O.M.)
| | - Punniamoorthy Thiviya
- Postgraduate Institute of Agriculture, University of Peradeniya, Peradeniya 20400, Sri Lanka
| | - Sudhagar Mani
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, GA 30602, USA
| | | | - Asanga Manamperi
- Department of Chemical Engineering, College of Engineering, Kettering University, Flint, MI 48504-6214, USA
| | - Philippe Evon
- Laboratoire de Chimie Agro-Industrielle (LCA), Institut National de la Recherche Agronomique, Université de Toulouse, CEDEX 4, 31030 Toulouse, France
| | - Othmane Merah
- Laboratoire de Chimie Agro-Industrielle (LCA), Institut National de la Recherche Agronomique, Université de Toulouse, CEDEX 4, 31030 Toulouse, France
- Département Génie Biologique, IUT A, Université Paul Sabatier, 32000 Auch, France
- Correspondence: (A.G.); (O.M.); Tel.: +94-714430714 (A.G.); +33-5-3432-3523 (O.M.)
| | - Terrence Madhujith
- Department of Food Science and Technology, Faculty of Agriculture, University of Peradeniya, Peradeniya 20400, Sri Lanka
| |
Collapse
|
15
|
Huang X, Niu X, Zhang D, Li X, Li H, Wang Z, Lin Z, Fu M. Fate and mechanistic insights into nanoscale zerovalent iron (nZVI) activation of sludge derived biochar reacted with Cr(VI). JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 319:115771. [PMID: 35982569 DOI: 10.1016/j.jenvman.2022.115771] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 07/03/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
While nanoscale zero-valent iron modified biochar (nZVI-BC) have been widely investigated for the removal of heavy metals, the corrosion products of nZVI and their interaction with heavy metals have not been revealed yet. In this paper, nZVI-BC was synthesized and applied for the removal of Cr(VI). Batch experiments indicated that the adsorption of Cr(VI) fit Langmuir isotherm, with the maximum removal capacity at 172.4 mg/g at pH 2.0. SEM-EDS, BET, XRD, FT-IR, Raman and XPS investigation suggested that reduction of Cr(VI) to Cr(III) was the major removal mechanism. pH played an important role on the corrosion of nZVI-BC, at pH 4.5 and 2.0, FeOOH and Fe3O4 were detected as the major iron oxide, respectively. Therefore, FeOOH-BC and Fe3O4-BC were further prepared and their interaction with Cr were studied. Combining with DFT calculations, it revealed that Fe3O4 has higher adsorption capacity and was responsible for the effective removal of Cr(VI) through electrostatic attraction and reduction under acidic conditions. However, Fe3O4 will continue to convert to the more stable FeOOH, which is the key to for the subsequent stabilization of the reduced Cr(III). The results showed that the oxide corrosion products of nZVI-BC were subjected to the environment, which will eventually affect the fate and transport of the adsorbed heavy metal.
Collapse
Affiliation(s)
- Xuyin Huang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China; School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, PR China
| | - Xiaojun Niu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China; School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, PR China; Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China
| | - Dongqing Zhang
- School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, PR China.
| | - Xiaoqin Li
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China; School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, Guangdong, 510006, China.
| | - Haoshen Li
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Ziyuan Wang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Zhang Lin
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China
| | - Mingli Fu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| |
Collapse
|
16
|
Kinetics and Mechanisms of Cr(VI) Removal by nZVI: Influencing Parameters and Modification. Catalysts 2022. [DOI: 10.3390/catal12090999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In this study, single-spherical nanoscale zero valent iron (nZVI) particles with large specific sur-face area were successfully synthesized by a simple and rapid chemical reduction method. The XRD spectra and SEM–EDS images showed that the synthesized nZVI had excellent crystal struc-ture, but oxidation products, such as γ-Fe2O3 and Fe3O4, were formed on the surface of the parti-cles. The effect of different factors on the removal of Cr(VI) by nZVI were studied, and the opti-mum experimental conditions were found. Kinetic and thermodynamic equations at different temperatures showed that the removal of Cr(VI) by nZVI was a single-layer chemical adsorption, conforming to pseudo-second-order kinetics. By applying the intraparticle diffusion model, the ad-sorption process was composed of three stages, namely rapid diffusion, chemical reduction, and in-ternal saturation. Mechanism analysis demonstrated that the removal of Cr(VI) by nZVI in-volved adsorption, reduction, precipitation and coprecipitation. Meanwhile, Cr(VI) was reduced to Cr(III) by nZVI, while FeCr2O4, CrxFe1−xOOH, and CrxFe1−x(OH)3 were formed as end products. In addition, the study found that ascorbic acid, starch, and Cu modified nZVI can promote the removal efficiency of Cr(VI) in varying degrees due to the enhanced mobility of the particles. These results can provide new insights into the removal mechanisms of Cr(VI) by nZVI.
Collapse
|
17
|
Sun P, Wang Z, An S, Zhao J, Yan Y, Zhang D, Wu Z, Shen B, Lyu H. Biochar-supported nZVI for the removal of Cr(VI) from soil and water: Advances in experimental research and engineering applications. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 316:115211. [PMID: 35561491 DOI: 10.1016/j.jenvman.2022.115211] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/22/2022] [Accepted: 04/30/2022] [Indexed: 06/15/2023]
Abstract
Over the past decade, biochar-supported nZVI composites (nZVI/biochar) have been developed and applied to treat various pollutants due to their excellent physical and chemical properties, especially in the field of chromium (VI) removal. This paper reviewed the factors influencing the preparation and experiments of nZVI/biochar composites, optimization methods, column experimental studies and the mechanism of Cr(VI) removal. The results showed that the difference in raw materials and preparation temperature led to the difference in functional groups and electron transfer capabilities of nZVI/biochar materials. In the experimental process, pH and test temperature can affect the surface chemical properties of materials and involve the electron transfer efficiency. Elemental doping and microbial coupling can effectively improve the performance of nZVI/biochar composites. In conclusion, biochar can stabilize nZVI and enhance electron transfer in nZVI/biochar materials, enabling the composite materials to remove Cr(VI) efficiently. The study of column experiments provides a theoretical basis for applying nZVI/biochar composites in engineering. Finally, the future work prospects of nZVI/biochar composites for heavy metal removal are introduced, and the main challenges and further research directions are proposed.
Collapse
Affiliation(s)
- Peng Sun
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Zhiqiang Wang
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Shengwei An
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Jian Zhao
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Yichen Yan
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Daijie Zhang
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Zhineng Wu
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China.
| | - Boxiong Shen
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300401, China
| | - Honghong Lyu
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin, 300401, China.
| |
Collapse
|
18
|
Duan Y, Meng F, Li M, Hou X, Zhang S, Li J, Liu X. Cr(
VI
) removal from groundwater by calcium alginate coating microscale zero‐valent iron and activated carbon: Batch and column tests. J Appl Polym Sci 2022. [DOI: 10.1002/app.52743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yijun Duan
- School of Environment Tsinghua University Beijing China
| | - Fanbin Meng
- Research Institute of Petroleum Processing, SINOPEC Beijing China
| | - Miao Li
- School of Environment Tsinghua University Beijing China
| | - Xiaoshu Hou
- Chinese Academy of Environmental Planning Beijing China
| | - Shuo Zhang
- School of Environment Tsinghua University Beijing China
| | - Jiacheng Li
- School of Environment Tsinghua University Beijing China
| | - Xiang Liu
- School of Environment Tsinghua University Beijing China
| |
Collapse
|
19
|
Liang W, Wang G, Peng C, Tan J, Wan J, Sun P, Li Q, Ji X, Zhang Q, Wu Y, Zhang W. Recent advances of carbon-based nano zero valent iron for heavy metals remediation in soil and water: A critical review. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:127993. [PMID: 34920223 DOI: 10.1016/j.jhazmat.2021.127993] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 06/14/2023]
Abstract
Heavy metal pollution in soil and water has presented a new challenge for the environmental remediation technology. Nano zero valent iron (nZVI) has excellent adsorbent properties for heavy metals, and thus, exhibits great potential in environmental remediation. Used as supporting materials for nZVI, carbon-based materials, such as activated carbon (AC), biochar (BC), carbon nanotubes (CNTs), and graphene (GNs) with aromatic rings formed by carbon atoms as the skeleton, have a large specific surface area and porous structure. This paper provides a comprehensive review on the advancement of carbon-based nano zero valent iron (C-nZVI) particles for heavy metal remediation in soil and water. First, different types of carbon-based materials and their combination with nZVI, as well as the synthesis methods and common characterization techniques of C-nZVI, are reviewed. Second, the mechanisms for the interactions between contaminants and C-nZVI, including adsorption, reduction, and oxidation reactions are detailed. Third, the environmental factors affecting the remediation efficiency, such as pH, coexisting constituents, oxygen, contact time, and temperature, are highlighted. Finally, perspectives on the challenges for utilization of C-nZVI in the actual contaminated soil and water and on the long-term efficacy and safety evaluation of C-nZVI have been proposed for further development.
Collapse
Affiliation(s)
- Weiyu Liang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Gehui Wang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Cheng Peng
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Academy of Environmental Sciences, Shanghai 200233, China.
| | - Jiaqi Tan
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Jiang Wan
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Pengfei Sun
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, China
| | - Qiannan Li
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaowen Ji
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Qi Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yonghong Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, China
| | - Wei Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Academy of Environmental Sciences, Shanghai 200233, China.
| |
Collapse
|
20
|
The removal of Cr(VI) from aqueous and saturated porous media by nanoscale zero-valent iron stabilized with flaxseed gum extract: Synthesis by continuous flow injection method. KOREAN J CHEM ENG 2022. [DOI: 10.1007/s11814-022-1069-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
21
|
Abdelwahab MS, El Halfawy NM, El-Naggar MY. Lead adsorption and antibacterial activity using modified magnetic biochar/sodium alginate nanocomposite. Int J Biol Macromol 2022; 206:730-739. [PMID: 35301002 DOI: 10.1016/j.ijbiomac.2022.03.053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/25/2022] [Accepted: 03/10/2022] [Indexed: 11/18/2022]
Abstract
Biochar is one of the most promising wastewater treatment materials. As shown in the Scanning Electron Micrograph, the magnetic biochar (BC) cross-linked glutaraldehyde (G) with sodium alginate (SA) (BC-G-SA) nanocomposite formed with uniform particle size without aggregation, and an X-Ray Diffraction study revealed that the BC-G-SA nanocomposite has an amorphous structure. The BC-G-SA nanocomposite enhanced the microwave adsorption process for Pb (II). The maximum metal capacity value was obtained using the microwave adsorption technique at pH 5.0 and contact time 20 s for Pb (II) at medium and low microwave power (940 and 1400 μmol g-1, respectively). Pb (II) adsorption isotherm follows a pseudo-second-order model. Also, the BC-G-SA nanocomposite effectively inhibited bacterial growth throughout the growth kinetics experiment. BC-G-SA inhibited the growth of S. aureus at a MIC of 200 g mL-1, whereas L. monocytogenes had a MIC of 200 g mL-1. The MIC values for E. faecalis and E. faecium were significantly lower (50 and 100 g mL-1, respectively).
Collapse
Affiliation(s)
- Mohamed S Abdelwahab
- Faculty of Education, Physics and Chemistry Department, Matrouh University, Mersa Matruh, Egypt.
| | - Nancy M El Halfawy
- Botany and Microbiology Department, Faculty of Science, Alexandria University, Egypt
| | - Moustafa Y El-Naggar
- Botany and Microbiology Department, Faculty of Science, Alexandria University, Egypt
| |
Collapse
|
22
|
Zheng Z, Duan X. Mitigating the Health Effects of Aqueous Cr(VI) with Iron-Modified Biochar. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:1481. [PMID: 35162503 PMCID: PMC8835030 DOI: 10.3390/ijerph19031481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 12/04/2022]
Abstract
A large amount of chromium (Cr) has entered the natural environment from the wastewater and waste residues, and the hexavalent (Cr(VI)) is highly poisonous, threatening the ecological environment and human health directly. In this study, iron-modified biochar was prepared using honeysuckle residue as raw material and the ferric chloride impregnation method. Batch Cr(VI) adsorption experiments were carried out using the modified honeysuckle-derived biochar (MHDB) as an adsorbent. The results indicate that a pH of 2 was best for the adsorption removal of Cr(VI) in the initial pH range of 2-10. The adsorption kinetic data fitted the pseudo-second-order model best out of the two models, and the Langmuir model was better than the Freundlich model to describe the adsorption process. Thermodynamic analysis indicated that the adsorption process of Cr(VI) on MHDB had an endothermic and spontaneous nature, and the increasing temperature was conducive to the adsorption. The main mechanisms of Cr(VI) adsorption might be the physical adsorption (electrostatic interactions) and chemical adsorption (ion exchange, the reduction of Cr(VI) to Cr(III)). The efficient adsorption of Cr(VI) makes MHDB a potential material for Cr(VI)-containing wastewater treatment. This study provides a feasible adsorption material for mitigating the environmental hazards of chromium, which has a certain reference value for protecting environmental health.
Collapse
Affiliation(s)
- Zhihong Zheng
- School of Water Conservancy, North China University of Water Resources and Electric Power, Zhengzhou 450046, China;
- Henan Vocational College of Water Conservancy and Environment, Zhengzhou 450008, China
| | - Xiaohan Duan
- School of Water Conservancy, North China University of Water Resources and Electric Power, Zhengzhou 450046, China;
| |
Collapse
|
23
|
Ma L, Du Y, Chen S, Du D, Ye H, Zhang TC. Highly efficient removal of Cr(VI) from aqueous solution by pinecone biochar supported nanoscale zero-valent iron coupling with Shewanella oneidensis MR-1. CHEMOSPHERE 2022; 287:132184. [PMID: 34507148 DOI: 10.1016/j.chemosphere.2021.132184] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/29/2021] [Accepted: 09/04/2021] [Indexed: 06/13/2023]
Abstract
Nanoscale zero-valent iron (nZVI) has been extensively used to remove various pollutants. However, the rapid deactivation due to aggregation and surface passivation severely limits its practical application. In this study, a novel composite with nZVI supported by pinecone biochar (nZVI-PBC) was successfully synthesized and used for the removal of high concentration Cr(VI) from aqueous solution in the presence of Shewanella oneidensis MR-1 (MR-1). The results showed that the nZVI-PBC coupling with MR-1 (nZVI-PBC/MR-1) exhibited an excellent removal performance for high concentration Cr(VI) compared to the nZVI-PBC alone. Under optimal conditions, 100 mg/L Cr(VI) could be removed completely by nZVI-PBC/MR-1 within 48 h, while only 39.50% of Cr(VI) was removed by nZVI-PBC alone. The improvement of Cr(VI) removal is due to the dissolution of the surface passivation layer of nZVI-PBC, formation of sorbed Fe(II) in the presence of MR-1, and an important role of extracellular polymeric substance (EPS) derived from MR-1. X-ray photoelectron spectroscopy (XPS) and Cr K-edge X-ray absorption near-edge structure spectra (XANES) confirmed that most Cr(VI) was reduced to insoluble Cr(III) and formed Cr2O3, CrxFe1-x(OH)3 and FeCr2O4 precipitates, and a small amount of unreduced Cr(VI) was immobilized through adsorption and complexation. The results suggest that nZVI-PBC/MR-1 can effectively overcome the limitations of nZVI and achieve highly efficient removal of high concentration Cr(VI).
Collapse
Affiliation(s)
- Liying Ma
- Engineering Research Center for Heavy Metal Pollution Control of Hubei Province, College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan, 430074, China
| | - Yaguang Du
- Engineering Research Center for Heavy Metal Pollution Control of Hubei Province, College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan, 430074, China
| | - Shaohua Chen
- Engineering Research Center for Heavy Metal Pollution Control of Hubei Province, College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan, 430074, China.
| | - Dongyun Du
- Engineering Research Center for Heavy Metal Pollution Control of Hubei Province, College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan, 430074, China
| | - Hengpeng Ye
- Engineering Research Center for Heavy Metal Pollution Control of Hubei Province, College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan, 430074, China
| | - Tian C Zhang
- Civil and Environmental Engineering Department, College of Engineering, University of Nebraska-Lincoln, Omaha, NE, 68182, USA
| |
Collapse
|
24
|
Tan X, Shaaban M, Yang J, Cai Y, Wang B, Peng QA. Efficient Removal of Hexavalent Chromium from an Aquatic System Using Nanoscale Zero-Valent Iron Supported by Ramie Biochar. NANOMATERIALS 2021; 11:nano11102698. [PMID: 34685145 PMCID: PMC8537645 DOI: 10.3390/nano11102698] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/09/2021] [Accepted: 10/10/2021] [Indexed: 11/30/2022]
Abstract
In this study, ramie biochar (RBC) was used to activate nano zero-valent iron (nZVI) to enhance hexavalent chromium (Cr(VI)) removal. The best results were obtained at a pyrolysis temperature of 600 °C, a biochar particle size of < 150 μm, and an iron to carbon ratio = 1:1. Under the optimal conditions, the removal of Cr(VI) by RBC600-nZVI (98.69%) was much greater than that of RBC600 (12.42%) and nZVI (58.26%). Scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and X-ray photoelectron spectroscopy (XPS) revealed that the reaction mechanism at the Fe and Cr interface was a multiple interaction mechanism with reduction dominated, adsorption, and co-precipitation simultaneously. The enhanced performance of RBC600-nZVI resulted from the effective dispersion of nZVI on the surface of RBC600, therefore increasing the adsorption activity sites. At the same time, RBC600 and nZVI exerted a synergistic influence on the composite structure, which jointly promoted the reduction reaction of Cr(VI) and removed more Cr(VI). This study shows that RBC-nZVI is a potentially valuable remediation material that not only provides a new idea for the utilization of ramie waste, but also effectively overcomes the limitations of nZVI, thus, achieving efficient and rapid remediation of Cr(VI).
Collapse
Affiliation(s)
- Xiangpeng Tan
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, China; (X.T.); (J.Y.); (Y.C.); (B.W.)
| | - Muhammad Shaaban
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China;
- Department of Soil Science, FAS&T, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Jianwei Yang
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, China; (X.T.); (J.Y.); (Y.C.); (B.W.)
| | - Yajun Cai
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, China; (X.T.); (J.Y.); (Y.C.); (B.W.)
| | - Buyun Wang
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, China; (X.T.); (J.Y.); (Y.C.); (B.W.)
| | - Qi-An Peng
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, China; (X.T.); (J.Y.); (Y.C.); (B.W.)
- Correspondence:
| |
Collapse
|
25
|
Alvarado N, Abarca RL, Linares-Flores C. Two Fascinating Polysaccharides: Chitosan and Starch. Some Prominent Characterizations for Applying as Eco-Friendly Food Packaging and Pollutant Remover in Aqueous Medium. Progress in Recent Years: A Review. Polymers (Basel) 2021; 13:1737. [PMID: 34073343 PMCID: PMC8198307 DOI: 10.3390/polym13111737] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 11/17/2022] Open
Abstract
The call to use biodegradable, eco-friendly materials is urgent. The use of biopolymers as a replacement for the classic petroleum-based materials is increasing. Chitosan and starch have been widely studied with this purpose: to be part of this replacement. The importance of proper physical characterization of these biopolymers is essential for the intended application. This review focuses on characterizations of chitosan and starch, approximately from 2017 to date, in one of their most-used applications: food packaging for chitosan and as an adsorbent agent of pollutants in aqueous medium for starch.
Collapse
Affiliation(s)
- Nancy Alvarado
- Instituto de Ciencias Químicas Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, El Llano Subercaseaux 2801, San Miguel 8900000, Chile
| | - Romina L. Abarca
- Departamento de Ciencias Animales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Macul, Santiago 7820436, Chile;
| | - Cristian Linares-Flores
- Grupo de Investigación en Energía y Procesos Sustentables, Instituto de Ciencias Químicas Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, El Llano Subercaseaux 2801, San Miguel 8900000, Chile;
| |
Collapse
|
26
|
Wang B, Yu B, Yuan C, Guo L, Liu P, Gao W, Li D, Cui B, Abd El-Aty AM. An overview on plasticized biodegradable corn starch-based films: the physicochemical properties and gelatinization process. Crit Rev Food Sci Nutr 2021; 62:2569-2579. [PMID: 33401939 DOI: 10.1080/10408398.2020.1868971] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
With increasing awareness of environmental protection, petroleum-based raw materials are continuously decreasing, which in turn necessitated the development of eco-friendly sustainable biomaterials, as alternative strategy. Starch could be an ideal substitute. Corn starch has been used as a renewable material for development of biodegradable packaging, owing to great varieties, low cost, large-scale industrial production, and good films forming properties. Unfortunately, its poor mechanical and barrier properties have limited the application of starch-based films. Thence, plasticizers were added to overcome the aforementioned pitfalls and improve the films elongation, distribution, flexibility, elasticity, and rigidity. Addition of plasticizers can change the continuity and therefore would enhance the properties of corn starch-based films. While plasticization can improve the tensile strength and percent elongation, it can reduce the water resistance in prepared films. Herein, we focused on changes of starch granules during gelatinization process, types of biodegradable films, as well as the types of modified starch with plasticizers. Furthermore, the influence of plasticizers on corn starch-based films and the physicochemical properties of various types of corn starch-based films were also addressed.
Collapse
Affiliation(s)
- Bin Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China.,School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong, China.,Department of Food Science and Engineering, Shandong Agricultural University, Taian, China
| | - Bin Yu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China.,School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong, China
| | - Chao Yuan
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China.,School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong, China
| | - Li Guo
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China.,School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong, China
| | - Pengfei Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China.,School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong, China
| | - Wei Gao
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China.,School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong, China.,Department of Food Science and Engineering, Shandong Agricultural University, Taian, China
| | - Dapeng Li
- Department of Food Science and Engineering, Shandong Agricultural University, Taian, China
| | - Bo Cui
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China.,School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong, China
| | - A M Abd El-Aty
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China.,Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.,Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, Turkey
| |
Collapse
|