1
|
Jian L, Li X, Zheng X, Peng J, Zhang T, Lin L, Wang J. Influence of habitat utilization strategies on trace element signatures in egg contents of green turtles nesting on Xisha Islands, South China Sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177149. [PMID: 39442727 DOI: 10.1016/j.scitotenv.2024.177149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 10/18/2024] [Accepted: 10/20/2024] [Indexed: 10/25/2024]
Abstract
Habitat utilization significantly influences the accumulation of chemical pollutants, including trace elements (TEs), in the tissues of large marine organisms. Previous research has demonstrated that sea turtles nesting in the same location may employ distinct foraging strategies. This study investigated the influence of habitat use strategies on the concentrations of 16 TEs in the eggs of green turtles (Chelonia mydas) nesting on the Xisha Islands. The analysis incorporated stable carbon (δ13C) and nitrogen (δ15N) isotopes, as well as characteristic elements. Additionally, inter-relationships between TEs were examined. The nesting female green turtles were categorized into two foraging groups based on isotopic signatures, namely oceanic (δ13C values: -21.5 to -17.0 ‰; δ15N values: 7.10 to 12.5 ‰) and neritic (δ13C values: -14.4 to -9.95 ‰ and δ15N values: 5.10 to 10.0 ‰). Different TE patterns were observed in the egg contents of these two groups. The neritic group exhibited elevated levels of V and Cu, which positively corrected with δ13C values. Conversely, the oceanic group displayed higher levels of Zn, Cd, Se, Sn, As and Hg, which positively associated with δ15N values. This distribution pattern is attributed to variations in background TE concentrations in the respective foraging habitats. Additionally, prey items and trophic levels of green turtles may contribute to the observed inter-group differences in TE concentrations (e.g. Zn, As, Se, Sn) found in their eggs, warranting further research. This study provides valuable information about habitat utilization patterns and TE distribution in green turtles nesting on the Xisha Islands. The findings enhance our understanding of TE accumulation mechanisms in turtle tissues and eggs, which is significant for the conservation of this endangered species, the green sea turtle.
Collapse
Affiliation(s)
- Li Jian
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan 571199, China; Hainan Sansha Provincial Observation and Research Station of Sea Turtle Ecology, Sansha 573100, China
| | - Xiang Li
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Xiaobo Zheng
- College of Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Jingyue Peng
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Ting Zhang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Liu Lin
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Jichao Wang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China.
| |
Collapse
|
2
|
Di Fiore C, Sammartino MP, Giannattasio C, Avino P, Visco G. Microplastic contamination in commercial salt: An issue for their sampling and quantification. Food Chem 2023; 404:134682. [DOI: 10.1016/j.foodchem.2022.134682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/27/2022] [Accepted: 10/16/2022] [Indexed: 11/05/2022]
|
3
|
Wang X, Su D. Using fluorescence and circular dichroism (CD) spectroscopy to investigate the interaction between di-n-butyl phthalate and bovine serum albumin. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2022; 57:997-1002. [PMID: 36285349 DOI: 10.1080/10934529.2022.2136909] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/07/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
The interaction between di-n-butyl phthalate (DBP) and bovine serum albumin (BSA) in physiological Tris-HCl buffer at pH 7.4 was investigated by fluorescence quenching technique. By analyzing the fluorescence spectrum and intensity, it was observed that the DBP had a strong ability to quench the intrinsic fluorescence of BSA through a static quenching procedure. The binding constants K and the number of binding sites n of DBP with BSA were calculated to be 0.11 × 102 L·mol-1 and 0.52 at 298 K, respectively. The thermodynamic parameters of enthalpy change (ΔH) and entropy change (ΔS) were also calculated to be positive showing that hydrophobic forces might play a major role in the binding of DBP to BSA. The binding process was spontaneous in which Gibbs free energy change (ΔG) was negative. The distance (r) between the donor (BSA) and acceptor (DBP) was calculated to be 2.02 nm based on Forster's non-radiative energy transfer theory, which indicated that the energy transfer from BSA to DBP occurs with a high possibility. The synchronous fluorescence, three-dimensional fluorescence, and circular dichroism (CD) spectra showed that the binding of di-n-butyl phthalate to BSA induced conformational changes in BSA. The interaction between DBP and BSA can help researchers better understand the nature of poisons and serve people in the right way with first aid and detoxification.
Collapse
Affiliation(s)
- Xin Wang
- Key Laboratory of Eco-Remediation of Regional Contaminated Environment, Ministry of Education, Shenyang University, Shenyang, People's Republic of China
| | - Dan Su
- School of Environmental Science, Liaoning University, Shenyang, Shenyang, People's Republic of China
| |
Collapse
|