1
|
Xu X, Zhang X, Chen J, Du X, Sun Y, Zhan L, Wang W, Li Y. Exploring the molecular mechanisms by which per- and polyfluoroalkyl substances induce polycystic ovary syndrome through in silico toxicogenomic data mining. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 275:116251. [PMID: 38537477 DOI: 10.1016/j.ecoenv.2024.116251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/01/2024] [Accepted: 03/20/2024] [Indexed: 04/12/2024]
Abstract
The pathogeny of polycystic ovary syndrome (PCOS) is intricate, with endocrine disruptors (EDCs) being acknowledged as significant environmental factors. Research has shown a link between exposure to per- and polyfluoroalkyl substances (PFAS) and the development and progression of PCOS, although the precise mechanism is not fully understood. This study utilized toxicogenomics and comparative toxicogenomics databases to analyze data and investigate how PFAS mixtures may contribute to the development of PCOS. The results indicated that 74 genes are associated with both PFAS exposure and PCOS progression. Enrichment analysis suggested that cell cycle regulation and steroid hormone synthesis may be crucial pathways through which PFAS mixtures participate in the development of PCOS, involving important genes such as CCNB1 and SRD5A1. Furthermore, the study identified transcription factors (TFs) and miRNAs that may be involved in the onset and progression of PCOS, constructing regulatory networks encompassing TFs-mRNA interactions and miRNA-mRNA relationships to elucidate their regulatory roles in gene expression. By utilizing data mining techniques based on toxicogenomic databases, this study provides relatively comprehensive insights into the association between exposure factors and diseases compared to traditional toxicology studies. These findings offer new perspectives for further in vivo or in vitro investigations and contribute to understanding the pathogenesis of PCOS, thereby providing valuable references for identifying clinical treatment targets.
Collapse
Affiliation(s)
- Xueming Xu
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environment factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Xiaoping Zhang
- Ganzhou Ganxian District Maternity and Child Health Hospital, Ganzhou, Jiangxi Province 341100, China
| | - Jiake Chen
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environment factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Xiushuai Du
- School of Public Health, Fudan University, Shanghai 200032, China
| | - Yi Sun
- Research Center for Environment and Female Reproductive Health, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Liqin Zhan
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environment factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Wenxiang Wang
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environment factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China
| | - Yuchen Li
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environment factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province 350122, China.
| |
Collapse
|
2
|
Shahid R, Iahtisham-Ul-Haq, Mahnoor, Awan KA, Iqbal MJ, Munir H, Saeed I. Diet and lifestyle modifications for effective management of polycystic ovarian syndrome (PCOS). J Food Biochem 2022; 46:e14117. [PMID: 35199348 DOI: 10.1111/jfbc.14117] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/25/2022] [Accepted: 01/30/2022] [Indexed: 11/28/2022]
Abstract
Polycystic ovarian syndrome (PCOS) is caused by abnormal production of androgens resulting in the formation of small fluid-filled sacs in the ovaries. This condition worsens the life quality of women by disturbing their physiology and psychology in reproductive age. PCOS may also be associated with other morbidities like diabetes and hypertension. Numerous factors like imbalanced dietary patterns, poor lifestyle activities, improper care and medication, late diagnosis, and ignorance are involved in the prevalence of this disease in women. Hence, an early diagnosis and improved dietary and lifestyle management may improve the life quality and timely recovery of the patient from this disease. Various herbal extracts show a positive correlation in reducing the indicators associated with PCOS. This review discusses the effect of dietary and lifestyle practices on PCOS as prominent features. It has been recommended that a balanced diet with 40% energy from carbohydrates, 30% from fats, and 30% from protein with optimum physical activity could reduce severe PCOS symptoms and improve metabolic balance. Furthermore, recommendations for modification of diet and lifestyle activities are made which may positively influence the recovery from PCOS. PRACTICAL APPLICATIONS: Polycystic ovarian syndrome (PCOS) severely affects the life quality of suffering women. The dietary patterns, lifestyle activities, and co-medical conditions collectively affect the severity and related consequences of PCOS. This article provides sufficient information on dietary and lifestyle modifications to effectively manage this disease. Furthermore, dietitians, nutritionists, gynecologists, and obstetrics physicians can benefit from the information provided in it to understand and develop the management strategies to alleviate the disease symptoms and severity.
Collapse
Affiliation(s)
- Rimsha Shahid
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, University of Lahore, Lahore, Pakistan
| | - Iahtisham-Ul-Haq
- Kauser Abdulla Malik School of Life Sciences, Forman Christian College (A Charted University), Lahore, Pakistan
| | - Mahnoor
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, University of Lahore, Lahore, Pakistan
| | - Kanza Aziz Awan
- Department of Food Science and Technology, Faculty of Life Sciences, University of Central Punjab, Lahore, Pakistan
| | - Muhammad Jawad Iqbal
- Department of Food Science and Technology, Faculty of Allied Health Sciences, Minhaj University, Lahore, Pakistan
| | - Hussan Munir
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, University of Lahore, Lahore, Pakistan
| | - Iqra Saeed
- Department of Food Science and Technology, Faculty of Allied Health Sciences, Minhaj University, Lahore, Pakistan
| |
Collapse
|
3
|
Bruni V, Capozzi A, Lello S. The Role of Genetics, Epigenetics and Lifestyle in Polycystic Ovary Syndrome Development: the State of the Art. Reprod Sci 2021; 29:668-679. [DOI: 10.1007/s43032-021-00515-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 02/21/2021] [Indexed: 12/11/2022]
|
4
|
Nikolaou N, Hodson L, Tomlinson JW. The role of 5-reduction in physiology and metabolic disease: evidence from cellular, pre-clinical and human studies. J Steroid Biochem Mol Biol 2021; 207:105808. [PMID: 33418075 DOI: 10.1016/j.jsbmb.2021.105808] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 12/31/2020] [Accepted: 01/03/2021] [Indexed: 01/01/2023]
Abstract
The 5-reductases (5α-reductase types 1, 2 and 3 [5αR1-3], 5β-reductase [5βR]) are steroid hormone metabolising enzymes that hold fundamental roles in human physiology and pathology. They possess broad substrate specificity converting many steroid hormones to their 5α- and 5β-reduced metabolites, as well as catalysing crucial steps in bile acid synthesis. 5αRs are fundamentally important in urogenital development by converting testosterone to the more potent androgen 5α-dihydrotestosterone (5αDHT); inactivating mutations in 5αR2 lead to disorders of sexual development. Due to the ability of the 5αRs to generate 5αDHT, they are an established drug target, and 5αR inhibitors are widely used for the treatment of androgen-dependent benign or malignant prostatic diseases. There is an emerging body of evidence to suggest that the 5-reductases can impact upon aspects of health and disease (other than urogenital development); alterations in their expression and activity have been associated with metabolic disease, polycystic ovarian syndrome, inflammation and bone metabolism. This review will outline the evidence base for the extra-urogenital role of 5-reductases from in vitro cell systems, pre-clinical models and human studies, and highlight the potential adverse effects of 5αR inhibition in human health and disease.
Collapse
Affiliation(s)
- Nikolaos Nikolaou
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, OX3 7LE, UK
| | - Leanne Hodson
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, OX3 7LE, UK
| | - Jeremy W Tomlinson
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, OX3 7LE, UK.
| |
Collapse
|
5
|
Yuan X, Lan G, Li L, He H, Wang J, Hu S. Differential gene expression profiling of the goose pineal gland. Br Poult Sci 2020; 61:200-208. [PMID: 31830828 DOI: 10.1080/00071668.2019.1698014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
1. The present study was conducted to obtain a better understanding of the molecular mechanisms underlying broodiness in a commercial breed, Tianfu geese, as little is known about the role of the pineal gland in this period. The aim was to identify genes which are differentially expressed in the pineal gland between the laying and broodiness periods by performing a transcriptome screen.2. After sequencing cDNA derived from the pineal gland and annotation of the results, a sequencing depth of 14.82 and 18.17 million mapped tags was obtained during the laying and broodiness periods, respectively, and a total of 120 differentially expressed genes were identified. Of these, 32 genes showing up-regulated expression and 88 genes showing down-regulated expression were identified in broodiness period vs. laying period libraries.3. Gene ontology (GO) analyses showed that these genes were related to the visual process, phototransduction, and lipoprotein metabolism. Kyoto Encyclopaedia of Genes and Genome (KEGG) analyses showed that phototransduction and tryptophan metabolism pathways exhibited the largest enrichment factors. The reliability of the RNA sequence data was confirmed by quantitative real-time PCR analysis of five genes, and the results were mostly consistent with those from the high-throughput RNA sequencing.4. The goose transcriptome and the identification of differentially expressed genes provided comprehensive gene expression information that enables a better understanding of the molecular mechanisms underlying the broodiness period of geese.
Collapse
Affiliation(s)
- X Yuan
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Ya'an, Sichuan, P.R.China.,Animal husbandry and veterinary medicine, Chengdu Agriculture College, Wenjiang, Sichuan, P.R.China
| | - G Lan
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Ya'an, Sichuan, P.R.China
| | - L Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Ya'an, Sichuan, P.R.China
| | - H He
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Ya'an, Sichuan, P.R.China
| | - J Wang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Ya'an, Sichuan, P.R.China
| | - S Hu
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Ya'an, Sichuan, P.R.China
| |
Collapse
|
6
|
Exercise activates the PI3K-AKT signal pathway by decreasing the expression of 5α-reductase type 1 in PCOS rats. Sci Rep 2018; 8:7982. [PMID: 29789599 PMCID: PMC5964186 DOI: 10.1038/s41598-018-26210-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 05/03/2018] [Indexed: 12/31/2022] Open
Abstract
Hyperandrogenism and hyperinsulinemia are main clinical endocrine features of PCOS. Exercise can adjust the androgen level, as well as increase the sensitivity of insulin by activating PI3K-Akt insulin signaling pathways. 5αR1 has certain effects on insulin resistance and can synthesize dihydrotestosterone by metabolizing testosterone. So 5αR1 may be the target of androgen and insulin for exercise-induced regulation. To investigate the role of 5αR1 in the PI3K-Akt signaling pathway in skeletal muscle of PCOS rats activated by exercise, fifty-four female rats were randomly divided into the PCOS group (n = 42) and the control group(n = 12). After injection of testosterone propionate for 28 days, the remaining 36 rats in the PCOS group were randomly assigned to six groups: the sedentary group (PS, n = 6), sedentary and 5αRI (5α-reductase inhibitor) group (PS + RI, n = 6), sedentary and 5αR2I (5α-reductase type 2 selective inhibitor) group (PS + R2I, n = 6), exercise group (PE, n = 6), exercise and 5αRI group (PE + RI, n = 6), and exercise and 5αR2I group (PE + R2I, n = 6). The rats undergoing exercise were trained to swim for 14 days. Finasteride (5α-reductase type 2 selective inhibitor) and dutasteride (5α-reductase inhibitor) were administered once daily and were dosed based on weight. At the end, the expression of 5αR1 proteins, the phosphorylation level of PI3K and AKT, were determined by Western blot. The PCOS non-exercise group and the PE + RI group displayed significantly lower phosphorylation of Akt, PI3K p85 and GLUT4 expression, while in the PE + R2I group, the level of Akt phosphorylation and PI3K p85 expression was significantly higher than that of the PCOS non-exercise group and the PE + RI group. In summary, our study demonstrated that exercise can activate the PI3K/AKT signal pathway of PCOS rats by decreasing the expression of 5αR1.
Collapse
|
7
|
Wu C, Wei K, Jiang Z. 5α-reductase activity in women with polycystic ovary syndrome: a systematic review and meta-analysis. Reprod Biol Endocrinol 2017; 15:21. [PMID: 28347315 PMCID: PMC5369013 DOI: 10.1186/s12958-017-0242-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 03/20/2017] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND 5α-reductase activity might be important during the development of polycystic ovary syndrome (PCOS). However, the changes of 5α-reductase activity in PCOS subjects and the relationship between 5α-reductase activity and body mass index (BMI), insulin resistance (IR) remain largely unknown. METHODS We performed a meta-analysis to examine 5α-reductase activity in women with PCOS; exploratory subgroup analyses were also performed. RESULTS Five articles (with 356 cases and 236 controls) reporting 5α-reductase activity in patients with PCOS were selected for the meta-analysis. We observed significantly higher ratios of 5αTHF/THF (5α-reduced tetrahydrocortisol to 5β-reduced tetrahydrocortisol) and An/Et (androsteroneto/etiocholanolone) levels, which were used to assess 5α-reductase activity, among the patients with PCOS, [standardized mean differences (SMD) =0.43, 95%confidence intervals (95%CI) =0.25-0.61, P < 0.00001; SMD = 0.86, 95% CI = 0.29-1.44, P = 0.003]. We observed significant heterogeneity between studies for An/Et (I2 = 89% and P < 0.00001). According to the group analysis, women with PCOS exhibited increased 5α-reductase activity which was significantly associated with homeostasis model assessment of insulin resistance (HOMA-IR) regardless of obesity. CONCLUSIONS 5α-reductase activity was enhanced in women with PCOS. Increased 5α-reductase activity in patients with PCOS was related to IR.
Collapse
Affiliation(s)
- Chuyan Wu
- Department of Rehabilitation Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ke Wei
- Medical Service Section, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhongli Jiang
- Department of Rehabilitation Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
8
|
Ketefian A, Jones MR, Krauss RM, Chen YDI, Legro RS, Azziz R, Goodarzi MO. Association study of androgen signaling pathway genes in polycystic ovary syndrome. Fertil Steril 2016; 105:467-73.e4. [PMID: 26493122 PMCID: PMC4744098 DOI: 10.1016/j.fertnstert.2015.09.043] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 09/30/2015] [Accepted: 09/30/2015] [Indexed: 01/25/2023]
Abstract
OBJECTIVE To evaluate genes involved in androgen receptor (AR) signaling as candidate genes for polycystic ovary syndrome (PCOS). DESIGN Two groups of women with PCOS and control women (discovery and replication cohorts), were genotyped for single-nucleotide polymorphisms (SNPs) in eight genes for AR chaperones and co-chaperones: HSPA1A, HSPA8, ST13, STIP1, PTGES3, FKBP4, BAG1, and STUB1. Single-nucleotide polymorphisms were tested for association with PCOS status and with androgenic and metabolic parameters. SETTING Tertiary referral center. PATIENT(S) Discovery cohort: 354 women with PCOS and 161 control women. Replication cohort: 397 women with PCOS and 306 control women. INTERVENTION(S) Phenotypic and genotypic assessment. MAIN OUTCOME MEASURE(S) Single-nucleotide polymorphism genotypes, association with PCOS status, and androgenic and metabolic parameters. RESULT(S) In the discovery cohort, FKBP4 SNPs rs2968909 and rs4409904 were associated with lower odds of PCOS. This finding was not confirmed in the replication cohort analysis; however, when combining the two cohorts, rs4409904 was associated with lower odds of PCOS. In subjects with PCOS in the replication cohort as well as in the combined cohort, rs2968909 was associated with lower body mass index. CONCLUSION(S) Single-nucleotide polymorphisms in FKBP4, which codes for the AR co-chaperone FKBP52, may be associated with PCOS and body mass index in patients with PCOS. The remaining genes studied do not seem to be major contributors to the development of PCOS. These findings warrant confirmation in future studies, and genes encoding other androgen pathway components remain to be studied.
Collapse
Affiliation(s)
- Aline Ketefian
- Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, California; Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Michelle R Jones
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Ronald M Krauss
- Children's Hospital Oakland Research Institute, Oakland, California
| | - Yii-Der I Chen
- Institute for Translational Genomics and Population Sciences, Los Angeles BioMedical Research Institute at Harbor-UCLA Medical Center, Torrance, California
| | - Richard S Legro
- Department of Obstetrics and Gynecology, Pennsylvania State College of Medicine, Hershey, Pennsylvania
| | - Ricardo Azziz
- Departments of Obstetrics and Gynecology and Medicine, Georgia Regents University, Augusta, Georgia
| | - Mark O Goodarzi
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California.
| |
Collapse
|
9
|
Lan CW, Chen MJ, Tai KY, Yu DC, Yang YC, Jan PS, Yang YS, Chen HF, Ho HN. Functional microarray analysis of differentially expressed genes in granulosa cells from women with polycystic ovary syndrome related to MAPK/ERK signaling. Sci Rep 2015; 5:14994. [PMID: 26459919 PMCID: PMC4602237 DOI: 10.1038/srep14994] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 09/14/2015] [Indexed: 11/26/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is the most common endocrine disorder in women of reproductive age. Although its aetiology and pathogenesis remain unclear, recent studies suggest that the dysfunction of granulosa cells may partly be responsible. This study aimed to use cDNA microarray technology to compare granulosa cell gene expression profiles in women with and without PCOS to identify genes that may be aetiologically implicated in the pathogenesis of PCOS. The study cohort included 12 women undergoing in vitro fertilization, six with PCOS and six without PCOS. Differential gene expression profiles were classified by post-analyses of microarray data, followed by western blot analyses to confirm the microarray data of selected genes. In total, 243 genes were differentially expressed (125 upregulated and 118 downregulated) between the PCOS and non-PCOS granulosa cells. These genes are involved in reproductive system development, amino acid metabolism and cellular development and proliferation. Comparative analysis revealed genes involved in the mitogen-activated protein kinase/extracellular regulated kinase (MAPK/ERK) signaling pathways. Western blot analyses confirmed that mitogen-activated protein kinase kinase kinase 4 and phospho-ERK1/2 were decreased in PCOS granulosa cells. This study identified candidate genes involved in MAPK/ERK signaling pathways that may influence the function of granulosa cells in PCOS.
Collapse
Affiliation(s)
- Chen-Wei Lan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University Taipei, Taiwan.,Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, College of Medicine and the Hospital, National Taiwan University Taipei, Taiwan
| | - Mei-Jou Chen
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, College of Medicine and the Hospital, National Taiwan University Taipei, Taiwan
| | - Kang-Yu Tai
- Genome and Systems Biology Degree Program, National Taiwan University Taipei, Taiwan
| | - Danny Cw Yu
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, College of Medicine and the Hospital, National Taiwan University Taipei, Taiwan
| | - Yu-Chieh Yang
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, College of Medicine and the Hospital, National Taiwan University Taipei, Taiwan
| | - Pey-Shynan Jan
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, College of Medicine and the Hospital, National Taiwan University Taipei, Taiwan
| | - Yu-Shih Yang
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, College of Medicine and the Hospital, National Taiwan University Taipei, Taiwan
| | - Hsin-Fu Chen
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University Taipei, Taiwan.,Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, College of Medicine and the Hospital, National Taiwan University Taipei, Taiwan.,Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan university Taipei, Taiwan
| | - Hong-Nerng Ho
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University Taipei, Taiwan.,Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, College of Medicine and the Hospital, National Taiwan University Taipei, Taiwan.,Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan university Taipei, Taiwan
| |
Collapse
|
10
|
Shohat-Tal A, Sen A, Barad DH, Kushnir V, Gleicher N. Genetics of androgen metabolism in women with infertility and hypoandrogenism. Nat Rev Endocrinol 2015; 11:429-41. [PMID: 25942654 DOI: 10.1038/nrendo.2015.64] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hypoandrogenism in women with low functional ovarian reserve (LFOR, defined as an abnormally low number of small growing follicles) adversely affects fertility. The androgen precursor dehydroepiandrosterone (DHEA) is increasingly used to supplement treatment protocols in women with LFOR undergoing in vitro fertilization. Due to differences in androgen metabolism, however, responses to DHEA supplementation vary between patients. In addition to overall declines in steroidogenic capacity with advancing age, genetic factors, which result in altered expression or enzymatic function of key steroidogenic proteins or their upstream regulators, might further exacerbate variations in the conversion of DHEA to testosterone. In this Review, we discuss in vitro studies and animal models of polymorphisms and gene mutations that affect the conversion of DHEA to testosterone and attempt to elucidate how these variations affect female hormone profiles. We also discuss treatment options that modulate levels of testosterone by targeting the expression of steroidogenic genes. Common variants in genes encoding DHEA sulphotransferase, aromatase, steroid 5α-reductase, androgen receptor, sex-hormone binding globulin, fragile X mental retardation protein and breast cancer type 1 susceptibility protein have been implicated in androgen metabolism and, therefore, can affect levels of androgens in women. Short of screening for all potential genetic variants, hormonal assessments of patients with low testosterone levels after DHEA supplementation facilitate identification of underlying genetic defects. The genetic predisposition of patients can then be used to design individualized fertility treatments.
Collapse
Affiliation(s)
- Aya Shohat-Tal
- Center for Human Reproduction, 21 E. 69th Street, New York, NY 10021, USA
| | - Aritro Sen
- Department of Internal Medicine, Division of Endocrinology and Metabolism, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - David H Barad
- Center for Human Reproduction, 21 E. 69th Street, New York, NY 10021, USA
| | - Vitaly Kushnir
- Center for Human Reproduction, 21 E. 69th Street, New York, NY 10021, USA
| | - Norbert Gleicher
- Center for Human Reproduction, 21 E. 69th Street, New York, NY 10021, USA
| |
Collapse
|
11
|
Kröpfl JM, Stelzer I, Mangge H, Pekovits K, Fuchs R, Allard N, Schinagl L, Hofmann P, Dohr G, Wallner-Liebmann S, Domej W, Müller W. Exercise-induced norepinephrine decreases circulating hematopoietic stem and progenitor cell colony-forming capacity. PLoS One 2014; 9:e106120. [PMID: 25180783 PMCID: PMC4152172 DOI: 10.1371/journal.pone.0106120] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 07/28/2014] [Indexed: 11/18/2022] Open
Abstract
A recent study showed that ergometry increased circulating hematopoietic stem and progenitor cell (CPC) numbers, but reduced hematopoietic colony forming capacity/functionality under normoxia and normobaric hypoxia. Herein we investigated whether an exercise-induced elevated plasma free/bound norepinephrine (NE) concentration could be responsible for directly influencing CPC functionality. Venous blood was taken from ten healthy male subjects (25.3+/-4.4 yrs) before and 4 times after ergometry under normoxia and normobaric hypoxia (FiO2<0.15). The circulating hematopoietic stem and progenitor cell numbers were correlated with free/bound NE, free/bound epinephrine (EPI), cortisol (Co) and interleukin-6 (IL-6). Additionally, the influence of exercise-induced NE and blood lactate (La) on CPC functionality was analyzed in a randomly selected group of subjects (n = 6) in vitro under normoxia by secondary colony-forming unit granulocyte macrophage assays. Concentrations of free NE, EPI, Co and IL-6 were significantly increased post-exercise under normoxia/hypoxia. Ergometry-induced free NE concentrations found in vivo showed a significant impairment of CPC functionality in vitro under normoxia. Thus, ergometry-induced free NE was thought to trigger CPC mobilization 10 minutes post-exercise, but as previously shown impairs CPC proliferative capacity/functionality at the same time. The obtained results suggest that an ergometry-induced free NE concentration has a direct negative effect on CPC functionality. Cortisol may further influence CPC dynamics and functionality.
Collapse
Affiliation(s)
- Julia M. Kröpfl
- Institute of Human Movement Sciences and Sport, Exercise Physiology Lab, ETH Zurich, Zurich, Switzerland
- Institute of Biophysics, Medical University of Graz, Graz, Austria
| | - Ingeborg Stelzer
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Research Unit on Lifestyle and Inflammation-associated Risk Biomarkers, Medical University of Graz, Graz, Austria
- Institute for Pathophysiology and Immunology, Medical University of Graz, Graz, Austria
| | - Harald Mangge
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Research Unit on Lifestyle and Inflammation-associated Risk Biomarkers, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Karl-Franzens University & Technical University & Medical University of Graz, Graz, Austria
| | - Karin Pekovits
- Department of Ophthalmology, Medical University of Graz, Graz, Austria
| | - Robert Fuchs
- Institute for Pathophysiology and Immunology, Medical University of Graz, Graz, Austria
| | - Nathalie Allard
- Institute for Pathophysiology and Immunology, Medical University of Graz, Graz, Austria
| | - Lukas Schinagl
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Research Unit on Lifestyle and Inflammation-associated Risk Biomarkers, Medical University of Graz, Graz, Austria
- Institute for Pathophysiology and Immunology, Medical University of Graz, Graz, Austria
| | - Peter Hofmann
- Institute of Sports Science, Karl-Franzens University of Graz, Graz, Austria
| | - Gottfried Dohr
- Institute of Cell Biology, Histology and Embryology, Medical University of Graz, Graz, Austria
| | | | - Wolfgang Domej
- Department of Pulmonology, Medical University of Graz, Graz, Austria
| | - Wolfram Müller
- Institute of Biophysics, Medical University of Graz, Graz, Austria
| |
Collapse
|
12
|
Lerchbaum E, Schwetz V, Giuliani A, Obermayer-Pietsch B. Influence of a positive family history of both type 2 diabetes and PCOS on metabolic and endocrine parameters in a large cohort of PCOS women. Eur J Endocrinol 2014; 170:727-39. [PMID: 24591551 DOI: 10.1530/eje-13-1035] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE There is evidence suggesting a strong genetic background of polycystic ovary syndrome (PCOS). We aim to study the metabolic and endocrine characteristics of PCOS women with and without a family history (FHx) of type 2 diabetes mellitus (T2DM) and PCOS. DESIGN Cross-sectional study. METHODS We analysed the association of T2DM FHx and PCOS FHx with metabolic and endocrine parameters in 714 PCOS women. RESULTS A positive FHx of T2DM and PCOS were prevalent in 36.8 and 21.4% of PCOS women respectively. We found an independent association of T2DM FHx with central fat accumulation, obesity, prediabetes, metabolic syndrome (MS), insulin resistance, low HDL and elevated blood pressure (P<0.05 for all). PCOS FHx was independently associated with prediabetes (P<0.05). We observed an independent association of PCOS FHx with clinical and biochemical hyperandrogenism (P<0.05 for all), whereas there was no independent association of T2DM FHx with hyperandrogenism. PCOS women with a positive FHx of both T2DM and PCOS had an adverse metabolic and endocrine profile including a linear increase in risk of obesity, central fat accumulation, MS, prediabetes and low HDL (P<0.05 for all). CONCLUSIONS Our findings suggest that the assessment of FHx might allow risk stratification of PCOS women, which is important considering the high prevalence of PCOS.
Collapse
Affiliation(s)
- Elisabeth Lerchbaum
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria
| | | | | | | |
Collapse
|
13
|
Zettergren A, Jonsson L, Johansson D, Melke J, Lundström S, Anckarsäter H, Lichtenstein P, Westberg L. Associations between polymorphisms in sex steroid related genes and autistic-like traits. Psychoneuroendocrinology 2013; 38:2575-84. [PMID: 23867117 DOI: 10.1016/j.psyneuen.2013.06.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 05/24/2013] [Accepted: 06/07/2013] [Indexed: 01/27/2023]
Abstract
Sex differences in psychiatric disorders are common, which is particularly striking in autism spectrum disorders (ASDs) that are four times more prevalent in boys. High levels of testosterone during early development have been hypothesized to be a risk factor for ASDs, supported by several studies showing fetal testosterone levels, as well as indirect measures of prenatal androgenization, to be associated with ASDs and autistic-like traits (ALTs). Further, the importance of sex steroid related genes in ASDs is supported by studies reporting associations between polymorphisms in genes involved in sex steroid synthesis/metabolism and ASDs and ALTs. The aim of the present study was to investigate possible associations between 29 single nucleotide polymorphisms (SNPs) in eight genes related to sex steroids and autistic features. Individuals included in the study belong to a subset (n=1771) from The Child and Adolescent Twin Study in Sweden (CATSS), which are all assessed for ALTs. For two SNPs, rs2747648 located in the 3'-UTR of ESR1 encoding the estrogen receptor alpha and rs523349 (Leu89Val) located in SRD5A2 encoding 5-alpha-reductase, type 2, highly significant associations with ALTs were found in boys and girls, respectively. The results of the present study suggest that SNPs in sex steroid related genes, known to affect gene expression (rs2747648 in ESR1) and enzymatic activity (Leu89Val in SRD5A2), seem to be associated with ALTs in a general population. In conclusion, the current findings provide further support for a role of sex steroids in the pathophysiology of ASDs.
Collapse
Affiliation(s)
- Anna Zettergren
- Institute of Neuroscience and Physiology, Department of Pharmacology, University of Gothenburg, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Testosterone-dependent interaction between androgen receptor and aryl hydrocarbon receptor induces liver receptor homolog 1 expression in rat granulosa cells. Mol Cell Biol 2013; 33:2817-28. [PMID: 23689136 DOI: 10.1128/mcb.00011-13] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Androgens play a major role in the regulation of normal ovarian function; however, they are also involved in the development of ovarian pathologies. These contrasting effects may involve a differential response of granulosa cells to the androgens testosterone (T) and dihydrotestosterone (DHT). To determine the molecular pathways that mediate the distinct effects of T and DHT, we studied the expression of the liver receptor homolog 1 (LRH-1) gene, which is differentially regulated by these steroids. We found that although both T and DHT stimulate androgen receptor (AR) binding to the LRH-1 promoter, DHT prevents T-mediated stimulation of LRH-1 expression. T stimulated the expression of aryl hydrocarbon receptor (AHR) and its interaction with the AR. T also promoted the recruitment of the AR/AHR complex to the LRH-1 promoter. These effects were not mimicked by DHT. We also observed that the activation of extracellular regulated kinases by T is required for AR and AHR interaction. In summary, T, but not DHT, stimulates AHR expression and the interaction between AHR and AR, leading to the stimulation of LRH-1 expression. These findings could explain the distinct response of granulosa cells to T and DHT and provide a molecular mechanism by which DHT negatively affects ovarian function.
Collapse
|
15
|
Pau C, Saxena R, Welt CK. Evaluating reported candidate gene associations with polycystic ovary syndrome. Fertil Steril 2013; 99:1774-8. [PMID: 23375202 PMCID: PMC3722586 DOI: 10.1016/j.fertnstert.2012.12.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 12/20/2012] [Accepted: 12/20/2012] [Indexed: 12/18/2022]
Abstract
OBJECTIVE To replicate variants in candidate genes associated with polycystic ovary syndrome (PCOS) in a population of European women with PCOS and control subjects. DESIGN Case-control association analysis and meta-analysis. SETTING Major academic hospital. PATIENT(S) Women of European ancestry with PCOS (n = 525) and controls (n = 472), aged 18-45 years. INTERVENTION(S) Variants previously associated with PCOS in candidate gene studies were genotyped (n = 39). Metabolic, reproductive, and anthropomorphic parameters were examined as a function of the candidate variants. All genetic association analyses were adjusted for age, body mass index, and ancestry and were reported after correction for multiple testing. MAIN OUTCOME MEASURE(S) Association of candidate gene variants with PCOS. RESULT(S) Three variants, rs3797179 (SRD5A1), rs12473543 (POMC), and rs1501299 (ADIPOQ), were nominally associated with PCOS. However, they did not remain significant after correction for multiple testing, and none of the variants replicated in a sufficiently powered meta-analysis. Variants in the FBN3 gene (rs17202517 and rs73503752) were associated with smaller waist circumferences, and variant rs727428 in the SHBG gene was associated with lower sex hormone-binding globulin levels. CONCLUSION(S) Previously identified variants in candidate genes do not seem to be associated with PCOS risk. CLINICAL TRIAL REGISTRATION NUMBER NCT00166569.
Collapse
Affiliation(s)
- Cindy Pau
- Reproductive Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.
| | | | | |
Collapse
|
16
|
Subjective and Objective Vocal Parameters in Women With Polycystic Ovary Syndrome. J Voice 2013; 27:98-100. [DOI: 10.1016/j.jvoice.2012.07.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 07/12/2012] [Indexed: 12/31/2022]
|
17
|
Schweighofer N, Lerchbaum E, Trummer O, Schwetz V, Pilz S, Pieber TR, Obermayer-Pietsch B. Androgen levels and metabolic parameters are associated with a genetic variant of F13A1 in women with polycystic ovary syndrome. Gene 2012; 504:133-9. [PMID: 22565190 DOI: 10.1016/j.gene.2012.04.050] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 03/08/2012] [Accepted: 04/18/2012] [Indexed: 12/31/2022]
Abstract
The polycystic ovary syndrome (PCOS), characterized by hyperandrogenism, is one of the most common hormonal disorders among premenopausal women and is associated with infertility, obesity, and insulin resistance. Accumulating evidence suggests a role of the blood coagulation factor gene F13A1 in obesity (GeneBank ID: NM_000129.3). The aim of this study was to investigate the association of intronic allelic variants of the F13A1 gene with PCOS susceptibility and metabolic parameters in lean and obese PCOS women. In a case-control study, we determined an intronic F13A1 single nucleotide polymorphism (SNP) (dbSNP ID: rs7766109) in 585 PCOS and 171 control women and tested for PCOS susceptibility and associations with anthropometric, metabolic and hormonal parameters. Genotype frequencies of the F13A1 SNP rs7766109 were equivalent in PCOS and control women. In PCOS women, F13A1 gene variants were significantly associated with body mass index (BMI) (p=0.013), systolic blood pressure (p=0.042), insulin response (AUCins) (p=0.015), triglycerides (TG) (p=0.001), and high density lipoprotein cholesterol (HDL) (p=0.012). In the subgroup of obese PCOS women free androgen index (FAI), free testosterone and sex hormone binding globulin (SHBG) as well as glucose measurements showed a significantly different pattern across F13A1 gene variants (p=0.043; p=0.039 and p=0.013, respectively). We report for the first time an association of the F13A1 SNP rs7766109 with BMI, androgens, and insulin resistance in PCOS women. Further studies are needed to confirm our findings and to evaluate whether F13A1 is causally involved in the pathogenesis of PCOS related metabolic and hormonal disturbances.
Collapse
Affiliation(s)
- N Schweighofer
- Medical University of Graz, Division of Endocrinology and Metabolism, Department of Internal Medicine, Auenbruggerplatz 15, 8036 Graz, Austria
| | | | | | | | | | | | | |
Collapse
|
18
|
Eriksen MB, Brusgaard K, Andersen M, Tan Q, Altinok ML, Gaster M, Glintborg D. Association of polycystic ovary syndrome susceptibility single nucleotide polymorphism rs2479106 and PCOS in Caucasian patients with PCOS or hirsutism as referral diagnosis. Eur J Obstet Gynecol Reprod Biol 2012; 163:39-42. [PMID: 22504079 DOI: 10.1016/j.ejogrb.2012.03.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 02/29/2012] [Accepted: 03/12/2012] [Indexed: 01/17/2023]
Abstract
CONTEXT Polycystic ovary syndrome (PCOS) is the most common endocrine disease among premenopausal women. A recent study found association between three single nucleotide polymorphisms (SNPs) and PCOS in a cohort of Han Chinese women. OBJECTIVE To investigate the association between rs13405728 (LHCGR gene), rs13429458 (THADA gene) and rs2479106 (DENND1A gene), PCOS, hirsutism and metabolic and hormonal parameters in a well characterized cohort of Caucasian patients of Danish descendant with PCOS or hirsutism. STUDY DESIGN Patients underwent clinical examination, hormone analyses, oral glucose tolerance test and transvaginal ultrasound. Genetic variation was tested using allelic discrimination by real-time PCR. PATIENTS 268 patients referred to The Department of Endocrinology, Odense University Hospital, Denmark with PCOS or hirsutism between 1997 and 2011. Two hundred and forty-eight healthy females were included as controls. RESULTS Genotype distributions and allele frequencies of rs13405728, rs13429458, and rs2479106 were comparable in patients and controls. The rs2479106 G allele was associated with a decreased PCOS susceptibility. None of the SNPs were associated with hirsutism or increased metabolic parameters. CONCLUSIONS The rs2479106 G allele was associated with decreased PCOS susceptibility, thus confirming previously reported findings of association between rs2479106 and PCOS. Metabolic and hormonal parameters were comparable between genotypes of rs13405728 and rs2479106.
Collapse
Affiliation(s)
- Mette B Eriksen
- Department of Endocrinology, Odense University Hospital, 5000 Odense C, Denmark.
| | | | | | | | | | | | | |
Collapse
|
19
|
The 5 alpha-reductase isozyme family: a review of basic biology and their role in human diseases. Adv Urol 2011; 2012:530121. [PMID: 22235201 PMCID: PMC3253436 DOI: 10.1155/2012/530121] [Citation(s) in RCA: 209] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 09/11/2011] [Accepted: 09/27/2011] [Indexed: 12/11/2022] Open
Abstract
Despite the discovery of 5 alpha-reduction as an enzymatic step in steroid metabolism in 1951, and the discovery that dihydrotestosterone is more potent than testosterone in 1968, the significance of 5 alpha-reduced steroids in human diseases was not appreciated until the discovery of 5 alpha-reductase type 2 deficiency in 1974. Affected males are born with ambiguous external genitalia, despite normal internal genitalia. The prostate is hypoplastic, nonpalpable on rectal examination and approximately 1/10th the size of age-matched normal glands. Benign prostate hyperplasia or prostate cancer does not develop in these patients. At puberty, the external genitalia virilize partially, however, secondary sexual hair remains sparse and male pattern baldness and acne develop rarely. Several compounds have been developed to inhibit the 5 alpha-reductase isozymes and they play an important role in the prevention and treatment of many common diseases. This review describes the basic biochemical properties, functions, tissue distribution, chromosomal location, and clinical significance of the 5 alpha-reductase isozyme family.
Collapse
|