1
|
Wei Y, Li Z, Yu T, Chen Y, Yang Q, Wen K, Liao J, Li L. Ultrasound-activated piezoelectric biomaterials for cartilage regeneration. ULTRASONICS SONOCHEMISTRY 2025; 117:107353. [PMID: 40250302 DOI: 10.1016/j.ultsonch.2025.107353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/26/2025] [Accepted: 04/11/2025] [Indexed: 04/20/2025]
Abstract
Due to the low density of chondrocytes and limited ability to repair damaged extracellular matrix (ECM) in cartilage, many patients with congenital or acquired craniofacial trauma require filler graft materials to support facial structure, restore function, improve self-confidence, and regain socialization. Ultrasound has the capacity to stimulate piezoelectric materials, converting mechanical energy into electrical signals that can regulate the metabolism, proliferation, and differentiation of chondrocytes. This unique property has sparked growing interest in using piezoelectric biomaterials in regenerative medicine. In this review, we first explain the principle behind ultrasound-activated piezoelectric materials and how they generate piezopotential. We then review studies demonstrating how this bioelectricity promotes chondrocyte regeneration, stimulates the secretion of key extracellular components and supports cartilage regeneration by activating relevant signaling pathways. Next, we discuss the properties, synthesis, and modification strategies of various piezoelectric biomaterials. We further discuss recent progresses in the development of ultrasound-activated piezoelectric biomaterials specifically designed for cartilage regeneration. Lastly, we discuss future research challenges facing this technology, ultrasound-activated piezoelectric materials for cartilage regeneration engineering. While the technology holds great promise, certain obstacles remain, including issues related to material stability, precise control over ultrasound parameters, and the integration of these systems into clinical settings. The combination of ultrasound-activated piezoelectric technology with other emerging fields, such as Artificial Intelligence (AI) and cartilage organoid chips, may open new frontiers in regenerative medicine. We hope this review encourages further exploration of ultrasound-activated strategies for piezoelectric materials and their future applications in regenerative medicines.
Collapse
Affiliation(s)
- Yangchen Wei
- The First Affiliated Hospital, Center of Burn & Plastic and Wound Repair, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China; Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, PR China
| | - Zhengyang Li
- The First Affiliated Hospital, Center of Burn & Plastic and Wound Repair, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China; Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, PR China
| | - Tianjing Yu
- The First Affiliated Hospital, Center of Burn & Plastic and Wound Repair, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China
| | - Yan Chen
- The First Affiliated Hospital, Center of Burn & Plastic and Wound Repair, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China
| | - Qinglai Yang
- Center for Molecular Imaging Probe, Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China
| | - Kaikai Wen
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, PR China; School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Junlin Liao
- The First Affiliated Hospital, Center of Burn & Plastic and Wound Repair, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China.
| | - Linlin Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, PR China; School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
2
|
Pareek P, Chaudhary S, Singh S, Thodikayil AT, Kalyanasundaram D, Kumar S. Bridging biomimetic and bioenergetics scaffold: Cellulose-graphene oxide-arginine functionalized aerogel for stem cell-mediated cartilage repair. Int J Biol Macromol 2024; 278:134608. [PMID: 39134192 DOI: 10.1016/j.ijbiomac.2024.134608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 07/12/2024] [Accepted: 08/07/2024] [Indexed: 08/18/2024]
Abstract
The avascular nature of cartilage tissue limits inherent regenerative capacity to counter any damage and this has become a substantial burden to the health of individuals. As a result, there is a high demand to repair and regenerate cartilage. Existing tissue engineering approaches for cartilage regeneration typically produce either microporous or nano-fibrous scaffolds lacking the desired biological outcome due to lack of biomimetic dual architecture of microporous construct with nano-fibrous interconnected structures like the native cartilage. Most of these scaffolds also fail to suppress ROS generation and provide sustained bioenergetics to cells, resulting in the loss of metabolic activity under avascular microenvironment of cartilage. A dual architecture microporous construct with nano-fibrous interconnected network of cellulose aerogel reinforced with arginine-coated graphene oxide (CNF-GO-Arg aerogel) was developed for cartilage regeneration. The designed dual-architectured CNF-GO-Arg aerogel using dual ice templating assembly demonstrates 80 % strain recovery ability under compression. The release of Arginine from CNF-GO-Arg aerogel supported 41 % reduction in intracellular ROS activity and promoted chondrogenic differentiation of hMSCs by shifting mitochondrial bioenergetics towards oxidative phosphorylation indicated by JC-1 dye staining. Overall developed CNF-GO-Arg aerogel provided multifunctionality via biomimetic morphology, cellular bioenergetics, and suppressed ROS generation to address the need for regeneration of cartilage.
Collapse
Affiliation(s)
- Puneet Pareek
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Shivani Chaudhary
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Sonu Singh
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | | | - Dinesh Kalyanasundaram
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India; Department of Biomedical Engineering, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Sachin Kumar
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India; Department of Biomedical Engineering, All India Institute of Medical Sciences, New Delhi 110029, India.
| |
Collapse
|
3
|
Liu CT, Yu J, Lin MH, Chang KH, Lin CY, Cheng NC, Wu PI, Huang CW, Zhang PY, Hung MT, Hsiao YS. Biophysical Electrical and Mechanical Stimulations for Promoting Chondrogenesis of Stem Cells on PEDOT:PSS Conductive Polymer Scaffolds. Biomacromolecules 2023; 24:3858-3871. [PMID: 37523499 DOI: 10.1021/acs.biomac.3c00506] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
The investigation of the effects of electrical and mechanical stimulations on chondrogenesis in tissue engineering scaffolds is essential for realizing successful cartilage repair and regeneration. The aim of articular cartilage tissue engineering is to enhance the function of damaged or diseased articular cartilage, which has limited regenerative capacity. Studies have shown that electrical stimulation (ES) promotes mesenchymal stem cell (MSC) chondrogenesis, while mechanical stimulation (MS) enhances the chondrogenic differentiation capacity of MSCs. Therefore, understanding the impact of these stimuli on chondrogenesis is crucial for researchers to develop more effective tissue engineering strategies for cartilage repair and regeneration. This study focuses on the preparation of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) conductive polymer (CP) scaffolds using the freeze-drying method. The scaffolds were fabricated with varying concentrations (0, 1, 3, and 10 wt %) of (3-glycidyloxypropyl) trimethoxysilane (GOPS) as a crosslinker and an additive to tailor the scaffold properties. To gain a comprehensive understanding of the material characteristics and the phase aggregation phenomenon of PEDOT:PSS scaffolds, the researchers performed theoretical calculations of solubility parameters and surface energies of PSS, PSS-GOPS, and PEDOT polymers, as well as conducted material analyses. Additionally, the study investigated the potential of promoting chondrogenic differentiation of human adipose stem cells by applying external ES or MS on a PEDOT:PSS CP scaffold. Compared to the group without stimulation, the group that underwent stimulation exhibited significantly up-regulated expression levels of chondrogenic characteristic genes, such as SOX9 and COL2A1. Moreover, the immunofluorescence staining images exhibited a more vigorous fluorescence intensity of SOX9 and COL II proteins that was consistent with the trend of the gene expression results. In the MS experiment, the strain excitation exerted on the scaffold was simulated and transformed into stress. The simulated stress response showed that the peak gradually decreased with time and approached a constant value, with the negative value of stress representing the generation of tensile stress. This stress response quantification could aid researchers in determining specific MS conditions for various materials in tissue engineering, and the applied stress conditions could be further optimized. Overall, these findings are significant contributions to future research on cartilage repair and biophysical ES/MS in tissue engineering.
Collapse
Affiliation(s)
- Chun-Ting Liu
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
- Department of Chemical Engineering, College of Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Jiashing Yu
- Department of Chemical Engineering, College of Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Min-Hsuan Lin
- Department of Chemical Engineering, College of Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Kai-Hsiang Chang
- Department of Chemical Engineering, College of Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Che-Yu Lin
- Institute of Applied Mechanics, College of Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Nai-Chen Cheng
- Department of Surgery, National Taiwan University Hospital and College of Medicine, Taipei 10002, Taiwan
| | - Po-I Wu
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Chun-Wei Huang
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Pin-Yu Zhang
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Min-Tzu Hung
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Yu-Sheng Hsiao
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| |
Collapse
|
4
|
Li H, Dai H, Li J. Immunomodulatory properties of mesenchymal stromal/stem cells: The link with metabolism. J Adv Res 2023; 45:15-29. [PMID: 35659923 PMCID: PMC10006530 DOI: 10.1016/j.jare.2022.05.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/17/2022] [Accepted: 05/26/2022] [Indexed: 10/18/2022] Open
Abstract
BACKGROUND Mesenchymal stromal/stem cells (MSCs) are the most promising stem cells for the treatment of multiple inflammatory and immune diseases due to their easy acquisition and potent immuno-regulatory capacities. These immune functions mainly depend on the MSC secretion of soluble factors. Recent studies have shown that the metabolism of MSCs plays critical roles in immunomodulation, which not only provides energy and building blocks for macromolecule synthesis but is also involved in the signaling pathway regulation. AIM OF REVIEW A thorough understanding of metabolic regulation in MSC immunomodulatory properties can provide new sights to the enhancement of MSC-based therapy. KEY SCIENTIFIC CONCEPTS OF REVIEW MSC immune regulation can be affected by cellular metabolism (glucose, adenosine triphosphate, lipid and amino acid metabolism), which further mediates MSC therapy efficiency in inflammatory and immune diseases. The enhancement of glycolysis of MSCs, such as signaling molecule activation, inflammatory cytokines priming, or environmental control can promote MSC immune functions and therapeutic potential. Besides glucose metabolism, inflammatory stimuli also alter the lipid molecular profile of MSCs, but the direct link with immunomodulatory properties remains to be further explored. Arginine metabolism, glutamine-glutamate metabolism and tryptophan-kynurenine via indoleamine 2,3-dioxygenase (IDO) metabolism all contribute to the immune regulation of MSCs. In addition to the metabolism dictating the MSC immune functions, MSCs also influence the metabolism of immune cells and thus determine their behaviors. However, more direct evidence of the metabolism in MSC immune abilities as well as the underlying mechanism requires to be uncovered.
Collapse
Affiliation(s)
- Hanyue Li
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - Hongwei Dai
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - Jie Li
- College of Stomatology, Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China.
| |
Collapse
|
5
|
Muthuchamy M, Subramanian K, Padhiar C, Dhanraj AK, Desireddy S. Feasibility study on intact human umbilical cord Wharton's jelly as a scaffold for human autologous chondrocyte: In-vitro study. Int J Artif Organs 2022; 45:936-944. [PMID: 35982588 DOI: 10.1177/03913988221118102] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVES Placental tissue is an established biomaterial used in many clinical applications. However, its use for tissue engineering purposes has not been fully realized. Though articular cartilage extracellular matrix (ECM)-derived oriented scaffolds for cartilage tissue engineering were developed, resources are a hindrance to its application. In this regard, the present study investigated the feasibility of using intact decellularized human umbilical cord Wharton's jelly (hUC-WJ) as a new material for chondrocyte carrier in cartilage tissue engineering. The developed hUC-WJ scaffold provides a good microenvironment for the attachment, viability, and delivery of seeded human autologous chondrocytes. It has an advantage over other biomaterials in terms of abundant availability and similar biochemistry to cartilage ECM. MATERIALS AND METHODS hUC-WJ obtained from fresh human placenta were decellularized and gamma sterilized. Human cartilage tissue was obtained from the patients with a total knee replacement. The chondrocytes were isolated and expanded in-vitro and seeded onto the hUC-WJ scaffold. The efficiency of the decellularized tissue as a delivery system for human cartilage cells was investigated by histology, immunohistochemistry, cell count, flow cytometry, and scanning electron microscopy (SEM). RESULTS The results showed that the decellularized hUC-WJ scaffold has supported the microenvironment for chondrocyte attachment and viability without losing its phenotype. In addition, the cells were spread through the hUC-WJ scaffold as confirmed by histology and SEM. CONCLUSION Based on obtained results, the hUC-WJ scaffold has great potential as a 3D scaffold for human autologous chondrocyte carriers in tissue engineering and regenerative medicine applications.
Collapse
Affiliation(s)
- Muthuraman Muthuchamy
- Centre for Drug Discovery and Development, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India.,LifeCell International Private Limited, Chennai, Tamil Nadu, India
| | - Kumaran Subramanian
- Centre for Drug Discovery and Development, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India.,Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Chirayu Padhiar
- LifeCell International Private Limited, Chennai, Tamil Nadu, India
| | | | - Swathi Desireddy
- LifeCell International Private Limited, Chennai, Tamil Nadu, India
| |
Collapse
|
6
|
Davidian D, LeGro M, Barghouth PG, Rojas S, Ziman B, Maciel EI, Ardell D, Escobar AL, Oviedo NJ. Restoration of DNA integrity and cell cycle by electric stimulation in planarian tissues damaged by ionizing radiation. J Cell Sci 2022; 135:274829. [PMID: 35322853 PMCID: PMC9264365 DOI: 10.1242/jcs.259304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 03/05/2022] [Indexed: 10/18/2022] Open
Abstract
Exposure to high levels of ionizing γ-radiation leads to irreversible DNA damage and cell death. Here, we establish that exogenous application of electric stimulation enables cellular plasticity to reestablish stem cell activity in tissues damaged by ionizing radiation. We show that sub-threshold direct current stimulation (DCS) rapidly restores pluripotent stem cell populations previously eliminated by lethally γ-irradiated tissues of the planarian flatworm Schmidtea mediterranea. Our findings reveal that DCS enhances DNA repair, transcriptional activity, and cell cycle entry in post-mitotic cells. These responses involve rapid increases in cytosolic [Ca2+] through the activation of L-type Cav channels and intracellular Ca2+ stores leading to the activation of immediate early genes and ectopic expression of stem cell markers in postmitotic cells. Overall, we show the potential of electric current stimulation to reverse the damaging effects of high dose γ-radiation in adult tissues. Furthermore, our results provide mechanistic insights describing how electric stimulation effectively translates into molecular responses capable of regulating fundamental cellular functions without the need for genetic or pharmacological intervention.
Collapse
Affiliation(s)
- Devon Davidian
- Department of Molecular & Cell Biology, University of California, Merced, USA.,Quantitative and Systems Biology Graduate Program, University of California, Merced, USA
| | - Melanie LeGro
- Department of Molecular & Cell Biology, University of California, Merced, USA.,Quantitative and Systems Biology Graduate Program, University of California, Merced, USA
| | - Paul G Barghouth
- Department of Molecular & Cell Biology, University of California, Merced, USA.,Quantitative and Systems Biology Graduate Program, University of California, Merced, USA
| | - Salvador Rojas
- Department of Molecular & Cell Biology, University of California, Merced, USA.,Quantitative and Systems Biology Graduate Program, University of California, Merced, USA
| | - Benjamin Ziman
- Department of Molecular & Cell Biology, University of California, Merced, USA.,Quantitative and Systems Biology Graduate Program, University of California, Merced, USA
| | - Eli Isael Maciel
- Department of Molecular & Cell Biology, University of California, Merced, USA.,Quantitative and Systems Biology Graduate Program, University of California, Merced, USA
| | - David Ardell
- Department of Molecular & Cell Biology, University of California, Merced, USA.,Health Sciences Research Institute, University of California, Merced, USA
| | - Ariel L Escobar
- Department of Bioengineering, University of California, Merced, USA.,Health Sciences Research Institute, University of California, Merced, USA
| | - Néstor J Oviedo
- Department of Molecular & Cell Biology, University of California, Merced, USA.,Health Sciences Research Institute, University of California, Merced, USA
| |
Collapse
|