1
|
Gao Y, Liu W. Impact of cerium doping on the peroxidase-like activity of metal-organic frameworks. Dalton Trans 2025; 54:2584-2598. [PMID: 39760398 DOI: 10.1039/d4dt03111c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Hydrogen peroxide, phenols, amines, aldehydes, and other substances can easily damage intracellular biomacromolecules. Although natural peroxidases can convert these harmful substances into benign ones, the high costs, poor stabilities, and stringent application conditions associated with these enzymes necessitate the exploration of artificial mimics. In this study, Ce-doped MIL-101(Fe)-NH2 and MIL-101(Fe)-NO2 were synthesized with varying compositions via a solvothermal method. The materials were characterized, and their peroxidase-like activities were compared under optimal conditions after optimizing the reaction conditions. Previous studies have suggested that the undoped MIL-101(Fe)-NO2 exhibits a superior peroxidase-like activity to that of the undoped MIL-101(Fe)-NH2. Our experimental results demonstrated the opposite trend, in stark contrast to previous findings. Based on these experiments, the fundamental processes were examined through computational methods. The Ce-doped Fe metal-organic framework exhibited lower detection limits and wider detection ranges for hydrogen peroxide and ascorbic acid when used as a sensitive colorimetric sensor.
Collapse
Affiliation(s)
- Yang Gao
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, 73000 Lanzhou, China.
| | - Weisheng Liu
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotopes, College of Chemistry and Chemical Engineering, Lanzhou University, 73000 Lanzhou, China.
| |
Collapse
|
2
|
Nieścioruk MJ, Bandrow P, Szufa S, Woźniak M, Siczek K. Biomass-Based Hydrogen Extraction and Accompanying Hazards-Review. Molecules 2025; 30:565. [PMID: 39942668 PMCID: PMC11819887 DOI: 10.3390/molecules30030565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/17/2025] [Accepted: 01/20/2025] [Indexed: 02/16/2025] Open
Abstract
Nowadays, there is an increased demand for energy, the access to which, however, is limited due to the decreasing of fossil sources and the need to reduce emissions, especially carbon dioxide. One possible remedy for this situation is using hydrogen as a source of green energy. Hydrogen is usually bound to other chemical elements and can be separated via energy-intensive few-step conversion processes. A few methods are involved in separating H2 from biomass, including biological and thermochemical (TC) ones. Such methods and possible hazards related to them are reviewed in this study.
Collapse
Affiliation(s)
- Mariusz J. Nieścioruk
- Mjniescioruk AEI, Traktorowa Str. 55/34, 91-111 Lodz, Poland;
- Faculty of Civil and Transport Engineering, Poznan University of Technology, Piotrowo Str. 3, 61-138 Poznań, Poland
| | - Paulina Bandrow
- The Szewalski Institute of Fluid-Flow Machinery Polish Academy of Sciences, Fiszera 14 St., 80-231 Gdańsk, Poland;
- BADER Polska Sp. z o.o., Mostowa 1 St., 59-700 Bolesławiec, Poland
| | - Szymon Szufa
- Faculty of Process and Environmental Engineering, Lodz University of Technology, Wolczanska 213, 90-924 Lodz, Poland
| | - Marek Woźniak
- Department of Vehicles and Fundamentals of Machine Design, Lodz University of Technology, Stefanowskiego Str. 1/15, 90-537 Lodz, Poland; (M.W.); (K.S.)
| | - Krzysztof Siczek
- Department of Vehicles and Fundamentals of Machine Design, Lodz University of Technology, Stefanowskiego Str. 1/15, 90-537 Lodz, Poland; (M.W.); (K.S.)
| |
Collapse
|
3
|
Xie Q, Li W, Chen C, Yang Q, Jiang J, Cai X, Li R. Discovery of Lipoxygenase-Like Materials for Inducing Ferroptosis. ACS NANO 2024; 18:32438-32450. [PMID: 39532303 DOI: 10.1021/acsnano.4c04741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Recent research has highlighted the pivotal role of lipoxygenases in modulating ferroptosis and immune responses by catalyzing the generation of lipid peroxides. However, the limitations associated with protein enzymes, such as poor stability, low bioavailability, and high production costs, have motivated researchers to explore biomimetic materials with lipoxygenase-like activity. Here, we report the discovery of lipoxygenase-like two-dimensional (2D) MoS2nanosheets capable of catalyzing lipid peroxidation and inducing ferroptosis. The resulting catalytic products were successfully identified using mass spectrometry and a luminescent substrate. Unlike native lipoxygenases, MoS2 nanosheets exhibited exceptional catalytic activity at extreme pH, high temperature, high ionic strength, and organic solvent conditions. Structure-activity relationship analysis indicates that sulfur atomic vacancy sites on MoS2 nanosheets are responsible for their catalytic activity. Furthermore, the lipoxygenase-like activity of MoS2 nanosheets was demonstrated within mammalian cells and animal tissues, inducing distinctive ferroptotic cell death. In summary, this research introduces an alternative to lipoxygenase to regulate lipid peroxidation in cells, offering a promising avenue for ferroptosis induction.
Collapse
Affiliation(s)
- Qianqian Xie
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Wenjie Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Changzhi Chen
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Qing Yang
- School of Public Health, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jie Jiang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Xiaoming Cai
- School of Public Health, Soochow University, Suzhou, Jiangsu 215123, China
| | - Ruibin Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
- VSB-Technical University of Ostrava, CEET, Nanotechnology Centre, 17 listopadu 2172-15, Ostrava 70800, Czech Republic
| |
Collapse
|
4
|
Yu Z, Liu L. Recent Advances in Hybrid Seawater Electrolysis for Hydrogen Production. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2308647. [PMID: 38143285 DOI: 10.1002/adma.202308647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/04/2023] [Indexed: 12/26/2023]
Abstract
Seawater electrolysis (SWE) is a promising and potentially cost-effective approach to hydrogen production, considering that seawater is vastly abundant and SWE is able to combine with offshore renewables producing green hydrogen. However, SWE has long been suffering from technical challenges including the high energy demand and interference of chlorine chemistry, leading electrolyzers to a low efficiency and short lifespan. In this context, hybrid SWE, operated by replacing the energy-demanding oxygen evolution reaction and interfering chlorine evolution reaction (CER) with a thermodynamically more favorable anodic oxidation reaction (AOR) or by designing innovative electrolyzer cells, has recently emerged as a better alternative, which not only allows SWE to occur in a safe and energy-saving manner without the notorious CER, but also enables co-production of value-added chemicals or elimination of environmental pollutants. This review provides a first account of recent advances in hybrid SWE for hydrogen production. The substitutional AOR of various small molecules or redox mediators, in couple with hydrogen evolution from seawater, is comprehensively summarized. Moreover, how the electrolyzer cell design helps in hybrid SWE is briefly discussed. Last, the current challenges and future outlook about the development of the hybrid SWE technology are outlined.
Collapse
Affiliation(s)
- Zhipeng Yu
- Frontier Research Center, Songshan Lake Materials Laboratory, Dongguan, 523808, P. R. China
- Clean Energy Cluster, International Iberian Nanotechnology Laboratory (INL), Avenida Mestre Jose Veiga, Braga, 4715-330, Portugal
| | - Lifeng Liu
- Frontier Research Center, Songshan Lake Materials Laboratory, Dongguan, 523808, P. R. China
- Clean Energy Cluster, International Iberian Nanotechnology Laboratory (INL), Avenida Mestre Jose Veiga, Braga, 4715-330, Portugal
| |
Collapse
|
5
|
Critical analysis of the role of various iron-based heterogeneous catalysts for advanced oxidation processes: A state of the art review. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
6
|
Fenton A, Ashraf Gandomi Y, Mallia CT, Neyhouse BJ, Kpeglo MA, Exson WE, Wan CTC, Brushett FR. Toward a Mechanically Rechargeable Solid Fuel Flow Battery Based on Earth-Abundant Materials. ACS OMEGA 2022; 7:40540-40547. [PMID: 36385869 PMCID: PMC9648110 DOI: 10.1021/acsomega.2c05798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Metal-air batteries are a promising energy storage solution, but material limitations (e.g., metal passivation and low active material utilization) have stymied their adoption. We investigate a solid fuel flow battery (SFFB) architecture that combines the energy density of metal-air batteries with the modularity of redox flow batteries. Specifically, a metallic solid electrochemical fuel (SEF) is spatially separated from the anodic current collector, a dissolved redox mediator (RM) shuttles charges between the two, and an oxygen reduction cathode completes the circuit. This modification decouples power and energy system components while enabling mechanical recharging and mitigating the effects of nonuniform metal oxidation. We conduct an exploratory study showing that metallic SEFs can chemically reduce organic RMs repeatedly. We subsequently operate a proof-of-concept SFFB cell for ca. 25 days as an initial demonstration of technical feasibility. Overall, this work illustrates the potential of this storage concept and highlights scientific and engineering pathways to improvement.
Collapse
Affiliation(s)
- Alexis
M. Fenton
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts02139, United States
| | - Yasser Ashraf Gandomi
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts02139, United States
| | - Christopher T. Mallia
- Department
of Materials Science and Engineering, Massachusetts
Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts02139, United States
| | - Bertrand J. Neyhouse
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts02139, United States
| | - M. Aba Kpeglo
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts02139, United States
| | - William E. Exson
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts02139, United States
| | - Charles Tai-Chieh Wan
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts02139, United States
| | - Fikile R. Brushett
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts02139, United States
| |
Collapse
|
7
|
Ma X, Ma J, Li M, Gu Y, Wang T. MnO2 oxidative degradation of lignin and electrochemical recovery study. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2022.110091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
8
|
Zhang W, Zhang Y, Yuan H, Li J, Ding L, Chu S, Wang L, Zhai W, Jiao Z. Carbon hollow matrix anchored by isolated transition metal atoms serving as a single atom cocatalyst to facilitate the water oxidation kinetics of bismuth vanadate. J Colloid Interface Sci 2022; 616:631-640. [PMID: 35240441 DOI: 10.1016/j.jcis.2022.02.096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/15/2022] [Accepted: 02/20/2022] [Indexed: 12/22/2022]
Abstract
Here, nitrogen doped carbon hollow matrix anchored by isolated transition metal atoms (M@NC, M = Fe, Co or Ni) are firstly utilized as new single atom cocatalysts (SACCs) to enhance the PEC performance of Mo, W ions co-doped BiVO4 (Mo, W: BVO) through a simple spin-coating method. It is found that Mo, W: BVO modified with Fe@NC exhibits higher photocurrent density than the one decorated with Co@NC or Ni@NC due to the relatively low redox potential of Fe3+/Fe2+ (0.77 V vs SHE). During the photoelectrochemical (PEC) process, the Fe2+ ions are easier to accept the photogenerated holes of BVO and be oxidized to Fe3+ ions. Then, Fe3+ ions are reduced to Fe2+ again by accepting the electrons of water, and evolve oxygen simultaneously. Hence, Fe@NC could facilitate the water oxidation kinetics through the redox cycle of Fe ions and promote the charge separation efficiency by capturing the photogenerated holes. Theoretical calculations demonstrate that the deposition of Fe atoms make NC negatively charged, which is conducive to receiving the photogenerated holes. As a result, Mo, W: BVO/Fe@NC exhibits higher photocurrent density (3.2 mA/cm2 vs RHE) than other BVO-based samples. This work opens up a new application field of SACCs serving as OER cocatalysts, and may provide a universal strategy to construct the efficient PEC photoelectrodes.
Collapse
Affiliation(s)
- Wenjie Zhang
- Institute of Materials for Energy and Environment, and College of Material Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Yujia Zhang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, China
| | - Hao Yuan
- Institute of Materials for Energy and Environment, and College of Material Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Jiaxin Li
- Institute of Materials for Energy and Environment, and College of Material Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Lei Ding
- Institute of Materials for Energy and Environment, and College of Material Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Shuai Chu
- Institute of Materials for Energy and Environment, and College of Material Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Lin Wang
- Institute of Materials for Energy and Environment, and College of Material Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Wei Zhai
- Institute of Materials for Energy and Environment, and College of Material Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Zhengbo Jiao
- Institute of Materials for Energy and Environment, and College of Material Science and Engineering, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
9
|
Hibino T, Kobayashi K, Hitomi T. Biomass solid oxide fuel cell using solid weed waste as fuel. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138681] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
10
|
Du X, Zhang H, Sullivan KP, Gogoi P, Deng Y. Electrochemical Lignin Conversion. CHEMSUSCHEM 2020; 13:4318-4343. [PMID: 33448690 DOI: 10.1002/cssc.202001187] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 07/17/2020] [Indexed: 06/12/2023]
Abstract
Lignin is the largest source of renewable aromatic compounds, making the recovery of aromatic compounds from this material a significant scientific goal. Recently, many studies have reported on lignin depolymerization and upgrading strategies. Electrochemical approaches are considered to be low cost, reagent free, and environmentally friendly, and can be carried out under mild reaction conditions. In this Review, different electrochemical lignin conversion strategies, including electrooxidation, electroreduction, hybrid electro-oxidation and reduction, and combinations of electrochemical and other processes (e. g., biological, solar) for lignin depolymerization and upgrading are discussed in detail. In addition to lignin conversion, electrochemical lignin fractionation from biomass and black liquor is also briefly discussed. Finally, the outlook and challenges for electrochemical lignin conversion are presented.
Collapse
Affiliation(s)
- Xu Du
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory (NREL), Golden, CO 80401, USA
| | - Haichuan Zhang
- School of Chemical & Biomolecular Engineering and Renewable Bioproducts Institute, Georgia Institute of Technology, 500 10th Street N.W., Atlanta, GA 303320620, USA
- Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, Guangdong, P. R. China
| | - Kevin P Sullivan
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory (NREL), Golden, CO 80401, USA
| | - Parikshit Gogoi
- Department of Chemistry, Nowgong College, Nagaon, 782001, Assam, India
| | - Yulin Deng
- School of Chemical & Biomolecular Engineering and Renewable Bioproducts Institute, Georgia Institute of Technology, 500 10th Street N.W., Atlanta, GA 303320620, USA
| |
Collapse
|
11
|
Anson CW, Stahl SS. Mediated Fuel Cells: Soluble Redox Mediators and Their Applications to Electrochemical Reduction of O 2 and Oxidation of H 2, Alcohols, Biomass, and Complex Fuels. Chem Rev 2020; 120:3749-3786. [PMID: 32216295 PMCID: PMC7357856 DOI: 10.1021/acs.chemrev.9b00717] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mediated fuel cells are electrochemical devices that produce power in a manner similar to that of conventional proton exchange membrane fuel cells (PEMFCs). They differ from PEMFCs in their use of redox mediators dissolved in liquid electrolyte to conduct oxidation of the fuel or reduction of the oxidant, typically O2, in bulk solution. The mediators transport electrons (and often protons) between the electrode and the catalysts or chemical reagents in solution. This strategy can help overcome many of the challenges associated with conventional fuel cells, including managing complex multiphase reactions (as in O2 reduction) or the use of challenging or heterogeneous fuels, such as hydrocarbons, polyols, and biomass. Mediators are also commonly used in enzymatic fuel cells, where direct electron transfer from the electrode to the enzymatic active site can be slow. This review provides a comprehensive survey of historical and recent mediated fuel cell efforts, including applications using chemical and enzymatic catalysts.
Collapse
Affiliation(s)
- Colin W. Anson
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Shannon S. Stahl
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
12
|
Li X, Li X, Liu C, Huang H, Gao P, Ahmad F, Luo L, Ye Y, Geng Z, Wang G, Si R, Ma C, Yang J, Zeng J. Atomic-Level Construction of Tensile-Strained PdFe Alloy Surface toward Highly Efficient Oxygen Reduction Electrocatalysis. NANO LETTERS 2020; 20:1403-1409. [PMID: 31967840 DOI: 10.1021/acs.nanolett.9b05024] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Exploring the high-performance non-Pt electrocatalysts for oxygen reduction reaction (ORR), the bottleneck process in fuel cells, is desirable but challenging. Here, we report the Pd@PdFe core-shell icosahedra as an active and durable electrocatalyst toward ORR in alkaline conditions, which feature a three-atomic-layer tensile-strained PdFe overlayer on Pd icosahedra. Our optimized catalyst shows 2.8-fold enhancement in mass activity and 6.9-fold enhancement in specific activity than commercial Pt/C catalyst toward ORR, representing one of the best non-Pt electrocatalysts. Moreover, the boosted ORR catalysis is strongly supported by the assembled fuel cell performance using Pd@PdFe core-shell icosahedra as the cathode electrocatalyst. The density functional theory calculations reveal that the synergistic coupling of tensile strain and alloy effects enables the optimum binding strength for intermediates, thus causing the maximum activity. The present work suggests the coupling between multiple surface modulations endows larger room for the rational design of remarkable catalysts.
Collapse
Affiliation(s)
- Xu Li
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, National Synchrotron Radiation Laboratory, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics , University of Science and Technology of China , Hefei , Anhui 230026 , P.R. China
| | - Xingxing Li
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, National Synchrotron Radiation Laboratory, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics , University of Science and Technology of China , Hefei , Anhui 230026 , P.R. China
| | - Chunxiao Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, National Synchrotron Radiation Laboratory, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics , University of Science and Technology of China , Hefei , Anhui 230026 , P.R. China
| | - Hongwen Huang
- College of Materials Science and Engineering , Hunan University , Changsha , Hunan 410082 , P.R. China
| | - Pengfei Gao
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, National Synchrotron Radiation Laboratory, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics , University of Science and Technology of China , Hefei , Anhui 230026 , P.R. China
| | - Fawad Ahmad
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, National Synchrotron Radiation Laboratory, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics , University of Science and Technology of China , Hefei , Anhui 230026 , P.R. China
| | - Laihao Luo
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, National Synchrotron Radiation Laboratory, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics , University of Science and Technology of China , Hefei , Anhui 230026 , P.R. China
| | - Yifan Ye
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023 , P.R. China
| | - Zhigang Geng
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, National Synchrotron Radiation Laboratory, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics , University of Science and Technology of China , Hefei , Anhui 230026 , P.R. China
| | - Guoxiong Wang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023 , P.R. China
| | - Rui Si
- Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics , Chinese Academy of Sciences , Shanghai 201204 , P.R. China
| | - Chao Ma
- College of Materials Science and Engineering , Hunan University , Changsha , Hunan 410082 , P.R. China
| | - Jinlong Yang
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, National Synchrotron Radiation Laboratory, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics , University of Science and Technology of China , Hefei , Anhui 230026 , P.R. China
| | - Jie Zeng
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, National Synchrotron Radiation Laboratory, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics , University of Science and Technology of China , Hefei , Anhui 230026 , P.R. China
| |
Collapse
|
13
|
Fa D, Zhou M, Zhao H, Jiang Y, Miao Y. 3D flower-like Ni–Co–S with high specific surface area for the electrocatalytic oxidation of methanol. Polyhedron 2018. [DOI: 10.1016/j.poly.2018.01.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Wang L, Li H, Wang L. Iron-Catalyzed C(sp3)–H Acyloxylation of Aryl-2H Azirines with Hypervalent Iodine(III) Reagents. Org Lett 2018; 20:1663-1666. [DOI: 10.1021/acs.orglett.8b00442] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Lulu Wang
- Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Hongji Li
- Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Lei Wang
- Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Shanghai 200032, P. R. China
| |
Collapse
|
15
|
Zhou M, Liu Y, Fa D, Qian L, Miao Y. Growth of radial microspheres of Ni-Co-O at porous Ti and its phosphorization for high efficient hydrogen evolution. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2017.11.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|