1
|
Karthik R, Sukanya R, Chen SM, Hasan M, Dhakal G, Shafi PM, Shim JJ. Development of an Amorphous Nickel Boride/Manganese Molybdate Heterostructure as an Efficient Electrode Material for a High-Performance Asymmetric Supercapacitor. ACS APPLIED MATERIALS & INTERFACES 2023; 15:11927-11939. [PMID: 36890694 DOI: 10.1021/acsami.3c00013] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The exploration of heterostructure materials with unique electronic properties is considered a desirable platform for fabricating electrode/surface interface relationships for constructing asymmetric supercapacitors (ASCs) with high energy density. In this work, a heterostructure based on amorphous nickel boride (NiXB) and crystalline square bar-like manganese molybdate (MnMoO4) was prepared by a simple synthesis strategy. The formation of the NiXB/MnMoO4 hybrid was confirmed by powder X-ray diffraction (p-XRD), field emission scanning electron microscopy (FE-SEM), field-emission transmission electron microscopy (FE-TEM), Brunauer-Emmett-Teller (BET), Raman, and X-ray photoelectron spectroscopy (XPS). In this hybrid system (NiXB/MnMoO4), the intact combination of NiXB and MnMoO4 leads to a large surface area with open porous channels and abundant crystalline/amorphous interfaces with a tunable electronic structure. This NiXB/MnMoO4 hybrid shows high specific capacitance (587.4 F g-1) at 1 A g-1, and it even retains a capacitance of 442.2 F g-1 at 10 A g-1, indicating superior electrochemical performance. The fabricated NiXB/MnMoO4 hybrid electrode also exhibited an excellent capacity retention of 124.4% (10000 cycles) and a Coulombic efficiency of 99.8% at a current density of 10 A g-1. In addition, the ASC device (NiXB/MnMoO4//activated carbon) achieved a specific capacitance of 104 F g-1 at 1 A g-1 and delivered a high energy density of 32.5 Wh.kg-1 with a power density of 750 W·kg-1. This exceptional electrochemical behavior is due to the ordered porous architecture and the strong synergistic effect of NiXB and MnMoO4, which enhances the accessibility and adsorption of OH- ions that improve electron transport. Moreover, the NiXB/MnMoO4//AC device exhibits excellent cyclic stability with a retention of 83.4% of the original capacitance after 10000 cycles, which is due to the heterojunction layer between NiXB and MnMoO4 that can improve the surface wettability without causing structural changes. Our results show that the metal boride/molybdate-based heterostructure is a new category of high-performance and promising material for the growth of advanced energy storage devices.
Collapse
Affiliation(s)
- Raj Karthik
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk 38541, The Republic of Korea
| | - Ramaraj Sukanya
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, Republic of China
| | - Shen Ming Chen
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, Republic of China
| | - Mahmudul Hasan
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk 38541, The Republic of Korea
| | - Ganesh Dhakal
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk 38541, The Republic of Korea
| | - P Muhammed Shafi
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk 38541, The Republic of Korea
- Department of Physics, National Institute of Technology Calicut, Calicut, Kerala 673601, India
| | - Jae-Jin Shim
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk 38541, The Republic of Korea
| |
Collapse
|
2
|
Kim ES, Lee HJ, Kim BH. Sandwich-structured carbon nanofiber/MnO2/carbon nanofiber composites for high-performance supercapacitor. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.139883] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
3
|
Ansarinejad H, Shabani-Nooshabadi M, Ghoreishi SM. Enhanced Supercapacitor Performance Using a Co 3 O 4 @Co 3 S 4 Nanocomposite on Reduced Graphene Oxide/Ni Foam Electrodes. Chem Asian J 2021; 16:1258-1270. [PMID: 33783970 DOI: 10.1002/asia.202100124] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/28/2021] [Indexed: 02/05/2023]
Abstract
To avoid an enormous energy crisis in the not-too-distant future, it be emergent to establish high-performance energy storage devices such as supercapacitors. For this purpose, a three-dimensional (3D) heterostructure of Co3 O4 and Co3 S4 on nickel foam (NF) that is covered by reduced graphene oxide (rGO) has been prepared by following a facile multistep method. At first, rGO nanosheets are deposited on NF under mild hydrothermal conditions to increase the surface area. Subsequently, nanowalls of cobalt oxide are electro-deposited on rGO/Ni foam by applying cyclic-voltammetry (CV) under optimized conditions. Finally, for the synthesis of Co3 O4 @Co3 S4 nanocomposite, the nanostructure of Co3 S4 was fabricated from Co3 O4 nanowalls on rGO/NF by following an ordinary hydrothermal process through the sulfurization for the electrochemical application. The samples are characterized by using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The obtained sample delivers a high capacitance of 13.34 F cm-2 (5651.24 F g-1 ) at a current density of 6 mA cm-2 compared to the Co3 O4 /rGO/NF electrode with a capacitance of 3.06 F cm-2 (1230.77 F g-1 ) at the same current density. The proposed electrode illustrates the superior electrochemical performance such as excellent specific energy density of 85.68 W h Kg-1 , specific power density of 6048.03 W kg-1 and a superior cycling performance (86% after 1000 charge/discharge cycles at a scan rate of 5 mV s-1 ). Finally, by using Co3 O4 @Co3 S4 /rGO/NF and the activated carbon-based electrode as positive and negative electrodes, respectively, an asymmetric supercapacitor (ASC) device was assembled. The fabricated ASC provides an appropriate specific capacitance of 79.15 mF cm-2 at the applied current density of 1 mA cm-2 , and delivered an energy density of 0.143 Wh kg-1 at the power density of 5.42 W kg-1 .
Collapse
Affiliation(s)
- Hanieh Ansarinejad
- Department of Analytical Chemistry, Faculty of Chemistry, University of Kashan, Kashan, Iran
| | - Mehdi Shabani-Nooshabadi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Kashan, Kashan, Iran.,Institute of Nano Science and Nano Technology, University of Kashan, Kashan, Iran
| | - Sayed Mehdi Ghoreishi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Kashan, Kashan, Iran
| |
Collapse
|
4
|
Two-step in-situ hydrothermal synthesis of nanosheet-constructed porous MnMoS4 arrays on 3D Ni foam as a binder-free electrode in high-performance supercapacitors. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125456] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Li H, Xuan H, Guan Y, Zhang G, Wang R, Liang X, Xie Z, Han P, Wu Y. Preparation and characterization of three-dimensional Mn–Mo–S composites on rGO/Ni foam for battery-supercapacitor electrode with high-performance. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136260] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
6
|
Facile synthesis of double-layered CoNiO2/CoO nanowire arrays as multifunction electrodes for hydrogen electrocatalysis and supercapacitors. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136093] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Liu Y, Su D, Sang Z, Su X, Chen H, Yan X. High-performance layered NiCo2S4@rGO/rGO film electrode for flexible electrochemical energy storage. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.135088] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|