Gao X, Wen M, Liu Y, Hou T, Niu B, An M. Synthesis and Characterization of PU/PLCL/CMCS Electrospun Scaffolds for Skin Tissue Engineering.
Polymers (Basel) 2022;
14:polym14225029. [PMID:
36433156 PMCID:
PMC9699124 DOI:
10.3390/polym14225029]
[Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 11/22/2022] Open
Abstract
As tissue regeneration material, electrospun fibers can mimic the microscale and nanoscale structure of the natural extracellular matrix (ECM), which provides a basis for cell growth and achieves organic integration with surrounding tissues. At present, the challenge for researchers is to develop a bionic scaffold for the regeneration of the wound area. In this paper, polyurethane (PU) is a working basis for the subsequent construction of tissue-engineered skin. poly(L-lactide-co-caprolactone) (PLCL)/carboxymethyl chitosan (CMCS) composite fibers were prepared via electrospinning and cross-linked by glutaraldehyde. The effect of CMCS content on the surface morphology, mechanical properties, hydrophilicity, swelling degree, and cytocompatibility were explored, aiming to assess the possibility of composite scaffolds for tissue engineering applications. The results showed that randomly arranged electrospun fibers presented a smooth surface. All scaffolds exhibited sufficient tensile strength (5.30-5.60 MPa), Young's modulus (2.62-4.29 MPa), and swelling degree for wound treatment. The addition of CMCS improved the hydrophilicity and cytocompatibility of the scaffolds.
Collapse