1
|
Hwang IC, Kim KK, Kim JH, Lee KR. General and central obesity were significantly correlated with blood lead level in non-smoking, general population aged 30-50, without hypertension. Am J Med Sci 2025; 369:467-471. [PMID: 39586424 DOI: 10.1016/j.amjms.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 11/07/2024] [Accepted: 11/15/2024] [Indexed: 11/27/2024]
Abstract
INTRODUCTION To investigate the association between obesity and blood lead level (BLL) in the general population after controlled for menopause, blood pressure, calcium, and smoking; we assessed the relationship between BMI, WC (Waist Circumference), and blood lead levels in the non-smoking middle-aged subjects without hypertension among 2018 KNHANES. All data were recategorized into S1 (BMI<25 kg/m2 & WC<90 cm), S2 (intermediate), and S3 (BMI>25 kg/m2 & WC>90 cm). METHODS We made the log transformation of blood lead levels to bring them closer to a normal distribution. Logarithmic transformed BLL was closely related to BMI (p=.010) and WC (p=.020) after adjusting for sociodemographic, energy, working factors, and cardiometabolic variables. The prevalence of ratios of S3, S2, and S1 was comparable according to the quarterly group of BLL. RESULTS AND CONCLUSIONS Blood lead levels might increase oxidative stress on triglycerides and low high-density lipoprotein (HDL)-cholesterol; consequently, lead exposure might form peroxynitrite, a reactive oxygen substrate (ROS) susceptible to destroying lipids. Consequently, obesity was significantly correlated with logarithmic blood lead levels irrespective of sociodemographic, energy, working, and cardiometabolic factors in the non-smoking middle-aged population without hypertension. Further controlled clinical trials would be considered.
Collapse
Affiliation(s)
- In Cheol Hwang
- Family Medicine, Gil Medical Center, Gachon University College of Medicine
| | - Kyoung Kon Kim
- Family Medicine, Gil Medical Center, Gachon University College of Medicine
| | - Jeong Heon Kim
- Gil Medical Center, Gachon University College of Medicine
| | - Kyu Rae Lee
- Family Medicine, Dongincheon Gil Hospital, Gachon University College of Medicine.
| |
Collapse
|
2
|
Iaquinta F, Machado I. Biomonitoring of arsenic, lead, manganese and mercury in hair from a presumably exposed Uruguayan child population. Bioanalysis 2024; 16:107-116. [PMID: 37965871 DOI: 10.4155/bio-2023-0157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023] Open
Abstract
Aim: To perform an exposure assessment of arsenic, manganese, mercury and lead levels in hair samples from children from poor neighborhoods. Materials & methods: A total of 38 Caucasian children were recruited with the consent of their parents or tutors. Determinations were performed by atomic absorption spectrometry. Results & conclusion: Results were 0.045-0.12 μg/g-1 (arsenic), 0.56-2.05 μg/g-1 (manganese) and 0.34-27.8 μg/g-1 (lead). Lead results did not correlate with those previously reported in blood from the same individuals, suggesting that hair is not useful for exposure assessment of this contaminant. Mercury was determined for the first time in Uruguayan children showing levels <0.083 μg/g-1. Results revealed low-to-moderate metal exposure, except for some high lead findings.
Collapse
Affiliation(s)
- Fiorella Iaquinta
- Grupo de Bioanalítica y Especiación (BIOESP), Química Analítica, Facultad de Química, Universidad de la República, Montevideo, 11800, Uruguay
| | - Ignacio Machado
- Grupo de Bioanalítica y Especiación (BIOESP), Química Analítica, Facultad de Química, Universidad de la República, Montevideo, 11800, Uruguay
| |
Collapse
|
3
|
Zhang Z, Liang W, Zheng X, Zhong Q, Hu H, Huo X. Kindergarten dust heavy metal(loid) exposure associates with growth retardation in children. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:118341-118351. [PMID: 37910347 DOI: 10.1007/s11356-023-30278-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/29/2023] [Indexed: 11/03/2023]
Abstract
Heavy metal contamination from electronic waste recycling sites is present in dust found in indoor kindergartens located in e-waste recycling areas, and its potential impact on child health is a significant concern. The association between heavy metal(loid)s and the child developmental indicators is still unclear. In 2019 and 2020, we enrolled 325 and 319 children in an e-waste recycling town, respectively. Corresponding 61 and 121 dust samples were collected from roads, houses, and kindergartens in the two years. The median concentrations of metals, including Cr, Ni, Cu, Zn, and Pb exceeded the allowable limits. The highest amount of cumulative enrichment (cEF) was observed in indoor kindergarten dust (cEF = 112.3400), followed by house dust (cEF = 76.6950) and road dust (cEF = 39.7700). Children residing in the e-waste town had below-average height and weight compared to their Chinese peers. Based on linear regression analysis, the daily intake of Cd, V, Mn, and Pb in indoor kindergarten dust was found to be negatively associated with head circumference (HeC) (P < 0.05). Similarly, the daily intake of As, Cd, and Ba in indoor kindergarten dust was found to be negatively associated with chest circumference (ChC) (P < 0.05). In addition, the daily intake of As, Cd, and Ba in indoor kindergarten dust was negatively correlated with body mass index (BMI), as per the results of the study (P < 0.05). Cross-product term analysis revealed a negative correlation between daily intake of heavy metal(loid)s and HeC, ChC, and BMI, with age and sex serving as influencing factors. In conclusion, exposure to heavy metal(loid)s in indoor kindergarten dust increases the risk of growth retardation and developmental delay in children.
Collapse
Affiliation(s)
- Zhuxia Zhang
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, Guangdong, China
| | - Wanting Liang
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, Guangdong, China
| | - Xiangbin Zheng
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, Guangdong, China
| | - Qi Zhong
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, Guangdong, China
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Hongfei Hu
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, Guangdong, China
| | - Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, Guangdong, China.
| |
Collapse
|
4
|
Chen C, Ma C, Li Q, Hang JG, Shen J, Nakayama SF, Kido T, Lin Y, Feng H, Jung C, Sun XL, Lou J. Prenatal Exposure to Heavy Metals and Adverse Birth Outcomes: Evidence From an E-Waste Area in China. GEOHEALTH 2023; 7:e2023GH000897. [PMID: 38023386 PMCID: PMC10680130 DOI: 10.1029/2023gh000897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 12/01/2023]
Abstract
Electronic waste that has not been properly treated can lead to environmental contamination including of heavy metals, which can pose risks to human health. Infants, a sensitive group, are highly susceptible to heavy metals exposure. The aim of this study was to investigate the association between prenatal heavy metal exposure and infant birth outcomes in an e-waste recycling area in China. We analyzed cadmium (Cd), chromium (Cr), manganese (Mn), lead (Pb), copper (Cu), and arsenic (As) concentrations in 102 human milk samples collected 4 weeks after delivery. The results showed that 34.3% of participants for Cr, which exceeds the World Health Organization (WHO) guidelines, as well as the mean exposure of Cr exceeded the WHO guidelines. We collected data on the birth weight (BW) and length of infants and analyzed the association between metal concentration in human milk and birth outcomes using multivariable linear regression. We observed a significant negative association between the Cd concentration in maternal milk and BW in female infants (β = -162.72, 95% CI = -303.16, -22.25). In contrast, heavy metals did not associate with birth outcomes in male infants. In this study, we found that 34.3% of participants in an e-waste recycling area had a Cr concentration that exceeded WHO guidelines, and there was a significant negative association between prenatal exposure to the Cd and infant BW in females. These results suggest that prenatal exposure to heavy metals in e-waste recycling areas may lead to adverse birth outcomes, especially for female infants.
Collapse
Affiliation(s)
- Chen Chen
- School of Medicine, and Huzhou Key Laboratory for Precise Prevention and Control of Major Chronic DiseasesHuzhou UniversityHuzhouChina
| | | | - Qiyao Li
- School of Medicine, and Huzhou Key Laboratory for Precise Prevention and Control of Major Chronic DiseasesHuzhou UniversityHuzhouChina
| | - Jin Guo Hang
- Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical UniversityTaizhouChina
| | - Jiantong Shen
- School of Medicine, and Huzhou Key Laboratory for Precise Prevention and Control of Major Chronic DiseasesHuzhou UniversityHuzhouChina
| | - Shoji F. Nakayama
- Japan Environment and Children's Study Programme OfficeNational Institute for Environmental StudiesTsukubaJapan
| | - Teruhiko Kido
- Faculty of Health SciencesInstitute of Medical, Pharmaceutical, and Health SciencesKanazawa UniversityKanazawaJapan
| | - Yibin Lin
- School of Medicine, and Huzhou Key Laboratory for Precise Prevention and Control of Major Chronic DiseasesHuzhou UniversityHuzhouChina
| | - Hao Feng
- School of MedicineJiaxing UniversityJiaxingChina
| | - Chau‐Ren Jung
- Department of Public HealthCollege of Public HealthChina Medical UniversityTaichungTaiwan
| | - Xian Liang Sun
- School of Medicine, and Huzhou Key Laboratory for Precise Prevention and Control of Major Chronic DiseasesHuzhou UniversityHuzhouChina
- Faculty of Health SciencesInstitute of Medical, Pharmaceutical, and Health SciencesKanazawa UniversityKanazawaJapan
| | - Jianlin Lou
- School of Medicine, and Huzhou Key Laboratory for Precise Prevention and Control of Major Chronic DiseasesHuzhou UniversityHuzhouChina
| |
Collapse
|
5
|
Li M, Ji H, Liu Y, Fu Y, Lin W, Zhu M, Xie D, Ding H, Wang J. Association Between Heavy Metals Exposure and Height in Chinese Preschoolers. J Occup Environ Med 2023; 65:567-572. [PMID: 37171101 DOI: 10.1097/jom.0000000000002834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
OBJECTIVES This study aimed to explore the association between multiple metals' exposure and children's height. METHODS We collected urine samples and physical measurement data of 1477 preschoolers in China. Children's actual height was measured, and whether reached target height was also assessed. Logistic regression analysis was performed to explore the association between heavy metals and height. The least absolute shrinkage and selection operator regression was used to select the urinary metals, which were highly correlated. RESULTS In the single-metal model after adjusting for potential confounders, urinary iron, aluminum, nickel, chrome, titanium, vanadium, selenium, rubidium, and thallium levels were negatively associated with actual height. Urinary iron, aluminum, nickel, and chrome concentrations were also negatively associated with target height. CONCLUSIONS The findings suggested that some urinary metal exposure might be associated with height in preschoolers.
Collapse
Affiliation(s)
- Mingzhu Li
- From the Center for Environment and Health in Water Source Area of South-to-North Water Diversion, School of Public Health, Hubei University of Medicine, Shiyan, Hubei, China (M.L., Y.L., Y.F, J.W.); Department of Child Health, Shiyan Maternal and Child Health Hospital, Hubei University of Medicine, Shiyan, China (H.J.); Remin Hospital, Hubei University of Medicine, Shiyan, China (W.L.); Shiyan Centers for Disease Control and Prevention, Shiyan, Hubei, China (Ms Zhu); Healthcare Center for Children, Taihe Hospital, Hubei University of Medicine, Shiyan, China (D.X.); and Department of Endocrinology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China (H.D., J.W.)
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Frndak S, Yu G, Oulhote Y, Queirolo EI, Barg G, Vahter M, Mañay N, Peregalli F, Olson JR, Ahmed Z, Kordas K. Reducing the complexity of high-dimensional environmental data: An analytical framework using LASSO with considerations of confounding for statistical inference. Int J Hyg Environ Health 2023; 249:114116. [PMID: 36805184 PMCID: PMC10977870 DOI: 10.1016/j.ijheh.2023.114116] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/10/2023] [Accepted: 01/17/2023] [Indexed: 02/19/2023]
Abstract
PURPOSE Frameworks for selecting exposures in high-dimensional environmental datasets, while considering confounding, are lacking. We present a two-step approach for exposure selection with subsequent confounder adjustment for statistical inference. METHODS We measured cognitive ability in 338 children using the Woodcock-Muñoz General Intellectual Ability (GIA) score, and potential associated features across several environmental domains. Initially, 111 variables theoretically associated with GIA score were introduced into a Least Absolute Shrinkage and Selection Operator (LASSO) in a 50% feature selection subsample. Effect estimates for selected features were subsequently modeled in linear regressions in a 50% inference (hold out) subsample, first adjusting for sex and age and later for covariates selected via directed acyclic graphs (DAGs). All models were adjusted for clustering by school. RESULTS Of the 15 LASSO selected variables, eleven were not associated with GIA score following our inference modeling approach. Four variables were associated with GIA scores, including: serum ferritin adjusted for inflammation (inversely), mother's IQ (positively), father's education (positively), and hours per day the child works on homework (positively). Serum ferritin was not in the expected direction. CONCLUSIONS Our two-step approach moves high-dimensional feature selection a step further by incorporating DAG-based confounder adjustment for statistical inference.
Collapse
Affiliation(s)
- Seth Frndak
- Department of Epidemiology and Environmental Health: University at Buffalo, The State University of New York, USA.
| | - Guan Yu
- Department of Biostatistics: University of Pittsburgh, USA
| | - Youssef Oulhote
- Department of Epidemiology, University of Massachusetts Amherst, USA
| | - Elena I Queirolo
- Department of Neuroscience and Learning, Catholic University of Uruguay, Montevideo, Uruguay
| | - Gabriel Barg
- Department of Neuroscience and Learning, Catholic University of Uruguay, Montevideo, Uruguay
| | - Marie Vahter
- Department of Environmental Medicine: Karolinska Institute, Sweden
| | - Nelly Mañay
- Faculty of Chemistry, University of the Republic of Uruguay (UDELAR), Montevideo, Uruguay
| | - Fabiana Peregalli
- Department of Neuroscience and Learning, Catholic University of Uruguay, Montevideo, Uruguay
| | - James R Olson
- Department of Epidemiology and Environmental Health: University at Buffalo, The State University of New York, USA
| | - Zia Ahmed
- Research and Education in eNergy, Environment and Water (RENEW) Institute University at Buffalo, The State University of New York, USA
| | - Katarzyna Kordas
- Department of Epidemiology and Environmental Health: University at Buffalo, The State University of New York, USA
| |
Collapse
|
7
|
Mayne ST. The FDA's action plan to reduce dietary exposure to arsenic, lead, cadmium, and mercury for infants and young children. Am J Clin Nutr 2023; 117:647-648. [PMID: 36796646 DOI: 10.1016/j.ajcnut.2023.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/16/2023] Open
Affiliation(s)
- Susan T Mayne
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, United States.
| |
Collapse
|
8
|
Yue Y, Tan M, Luo Y, Deng P, Wang H, Li J, Hao R, Tian L, Xie J, Chen M, Yu Z, Zhou Z, Pi H. miR-3614-5p downregulation promotes cadmium-induced breast cancer cell proliferation and metastasis by targeting TXNRD1. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 247:114270. [PMID: 36335879 DOI: 10.1016/j.ecoenv.2022.114270] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
Cadmium (Cd), which is considered an endocrine disruptor, has been linked to the onset of breast cancer (BC). Our recent study demonstrated that Cd-induced BC progression has a strong correlation with miR-374c-5p dysregulation. The aim of our work was to investigate other potential miRNAs involved in Cd-induced BC cell proliferation and metastasis. In our study, the miRNA profiles of Cd-treated T-47D cells (10 μM, 72 h) were analyzed by miRNA-seq, and our results confirmed that miR-3614-5p was the top downregulated miRNA. Moreover, miR-3614-5p mimic transfection significantly decreased the proliferative ability, migration and invasive ability of BC cell lines (T-47D and MCF-7). Furthermore, we analyzed the overlapping genes from our RNA-seq data and predicted targets from the mirDIP database, and twelve genes (ALDH1A3, FBN1, GRIA3, NOS1, PLD5, PTGER4, RASGRF2, RELN, RNF150, SLC17A4, TG, and TXNRD1) were identified as potential binding targets of miR-3614-5p in the current model. Nonetheless, only miR-3614-5p inhibition caused an increase in TXNRD1 expression upon Cd exposure in T-47D and MCF-7 cell lines. Importantly, luciferase reporter assays further verified that miR-3614-5p suppressed the expression of TXNRD1 by directly binding to the 3'-untranslated region (UTR), and TXNRD1 inhibition significantly repressed the proliferation and metastasis capacity of BC cells upon Cd exposure. Together, our findings demonstrated that Cd exposure repressed the expression of miR-3614-5p, thus activating TXNRD1 expression, which promoted the abnormal proliferation and metastasis of BC cells.
Collapse
Affiliation(s)
- Yang Yue
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing 400038, China
| | - Miduo Tan
- Surgery Department of Galactophore, Zhuzhou Hospital Affiliated to Xiangya Shool of Medicine, Central South University, Zhuzhou 412000, Hunan, China
| | - Yan Luo
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing 400038, China
| | - Ping Deng
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing 400038, China
| | - Hui Wang
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing 400038, China
| | - Jingdian Li
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing 400038, China
| | - Rongrong Hao
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing 400038, China
| | - Li Tian
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing 400038, China
| | - Jia Xie
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing 400038, China
| | - Mengyan Chen
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing 400038, China
| | - Zhengping Yu
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing 400038, China
| | - Zhou Zhou
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing 400030, China.
| | - Huifeng Pi
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Third Military Medical University, Chongqing 400038, China.
| |
Collapse
|
9
|
García-Villarino M, Signes-Pastor AJ, Karagas MR, Riaño-Galán I, Rodríguez-Dehli C, Grimalt JO, Junqué E, Fernández-Somoano A, Tardón A. Exposure to metal mixture and growth indicators at 4-5 years. A study in the INMA-Asturias cohort. ENVIRONMENTAL RESEARCH 2022; 204:112375. [PMID: 34785205 PMCID: PMC8671344 DOI: 10.1016/j.envres.2021.112375] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 05/02/2023]
Abstract
BACKGROUND Exposure to toxic and non-toxic metals impacts childhood growth and development, but limited data exists on exposure to metal mixtures. Here, we investigated the effects of exposure to individual metals and a mixture of barium, cadmium, cobalt, lead, molybdenum, zinc, and arsenic on growth indicators in children 4-5 years of age. METHODS We used urine metal concentrations as biomarkers of exposure in 328 children enrolled in the Spanish INMA-Asturias cohort. Anthropometric measurements (arm, head, and waist circumferences, standing height, and body mass index) and parental sociodemographic variables were collected through face-to-face interviews by trained study staff. Linear regressions were used to estimate the independent effects and were adjusted for each metal in the mixture. We applied Bayesian kernel machine regression to examine non-linear associations and potential interactions. RESULTS In linear regression, urinary levels of cadmium were associated with reduced arm circumference (βadjusted = -0.44, 95% confidence interval [CI]: -0.73, -0.15), waist circumference (βadjusted = -1.29, 95% CI: -2.10, -0.48), and standing height (βadjusted = -1.09, 95% CI: -1.82, -0.35). Lead and cobalt concentrations were associated with reduced standing height (βadjusted = -0.64, 95% CI: -1.20, -0.07) and smaller head circumference (βadjusted = -0.29, 95% CI: -0.49, -0.09), respectively. However, molybdenum was positively associated with head circumference (βadjusted = 0.22, 95% CI: 0.01, 0.43). BKMR analyses showed strong linear negative associations of cadmium with arm and head circumference and standing height. BKMR analyses also found lead and cobalt in the metal mixture were related to reduce standing height and head circumference, and consistently found molybdenum was related to increased head circumference. CONCLUSION Our findings suggest that exposure to metal mixtures impacts growth indicators in children.
Collapse
Affiliation(s)
- Miguel García-Villarino
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Monforte de Lemos Avenue 3-5, 28029, Madrid, Spain; Unidad de Epidemiología Molecular Del Cáncer, Instituto Universitario de Oncología Del Principado de Asturias (IUOPA) - Departamento de Medicina, Universidad de Oviedo, Julián Clavería Street S/n, 33006, Oviedo, Asturias, Spain; Instituto de Investigación Sanitaria Del Principado de Asturias (ISPA), Roma Avenue S/n, 33001, Oviedo, Spain
| | - Antonio J Signes-Pastor
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, 1 Medical Center Dr., Lebanon, NH, 03756, USA; Department of Public Health. Universidad Miguel Hernández, Avenida de Alicante KM 87, 03550, Sant Joan D'Alacant, Spain
| | - Margaret R Karagas
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, 1 Medical Center Dr., Lebanon, NH, 03756, USA
| | - Isolina Riaño-Galán
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Monforte de Lemos Avenue 3-5, 28029, Madrid, Spain; Servicio de Pediatría, Endocrinología Pediátrica, HUCA, Roma Avenue S/n, 33001, Oviedo, Asturias, Spain
| | | | - Joan O Grimalt
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona Street 18-26, 08034, Barcelona, Cataluña, Spain
| | - Eva Junqué
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona Street 18-26, 08034, Barcelona, Cataluña, Spain
| | - Ana Fernández-Somoano
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Monforte de Lemos Avenue 3-5, 28029, Madrid, Spain; Unidad de Epidemiología Molecular Del Cáncer, Instituto Universitario de Oncología Del Principado de Asturias (IUOPA) - Departamento de Medicina, Universidad de Oviedo, Julián Clavería Street S/n, 33006, Oviedo, Asturias, Spain; Instituto de Investigación Sanitaria Del Principado de Asturias (ISPA), Roma Avenue S/n, 33001, Oviedo, Spain.
| | - Adonina Tardón
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Monforte de Lemos Avenue 3-5, 28029, Madrid, Spain; Unidad de Epidemiología Molecular Del Cáncer, Instituto Universitario de Oncología Del Principado de Asturias (IUOPA) - Departamento de Medicina, Universidad de Oviedo, Julián Clavería Street S/n, 33006, Oviedo, Asturias, Spain; Instituto de Investigación Sanitaria Del Principado de Asturias (ISPA), Roma Avenue S/n, 33001, Oviedo, Spain
| |
Collapse
|
10
|
Di S, Zhao H, Liu Z, Cang T, Wang Z, Qi P, Wang X, Xu H, Wang X. Low-dose cadmium affects the enantioselective bioaccumulation and dissipation of chiral penflufen in zebrafish (Danio rerio). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 232:113270. [PMID: 35124423 DOI: 10.1016/j.ecoenv.2022.113270] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/24/2022] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
Pesticides are currently extensively used in agriculture, forestry, animal husbandry, and environmental hygiene, and their residues have become a global environmental problem, which can easily form combined pollution with heavy metals. The present study examined the effects of chronic (28 days) aqueous exposure of chiral penflufen (rac-penflufen, R-(-)-penflufen and S-(+)-penflufen), a widely used fungicide, with/without cadmium (Cd), a highly toxic heavy metal in zebrafish (Danio rerio). After rac-penflufen individual or combined exposure with Cd, the bioaccumulation and residual levels of S-(+)-penflufen were significantly higher than R-(-)-penflufen, and the effects of Cd were insignificantly. But for penflufen enantiomer, the effects of Cd were more serious for R-(-)-penflufen, which could increase the bioaccumulation (up to1.73 times), inhibit the dissipation (up to 32.3%) and enhance the residue (up to 5.35 times) of R-(-)-penflufen in zebrafish, decreasing the enantioselectivity. However, significant increase of S-(+)-penflufen concentrations was only found in viscera under co-exposure of Cd. The tissue distribution of penflufen enantiomers were not affected by the presence of Cd, and no interconversion of the two enantiomers occurred regardless of the presence of Cd. These findings indicated that co-contamination with Cd could increase the persistence of R-(-)-penflufen in zebrafish, thus increasing the environmental risks. The significant differences of Cd effects on chiral pesticide enantiomer and racemate indicated that the combined pollution of heavy metal and chiral pesticide might have enantiomer-specific, which should raise concern, and the enantioselective mechanism deserve further study.
Collapse
Affiliation(s)
- Shanshan Di
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Quality Safety and Nutrition of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, PR China
| | - Huiyu Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Quality Safety and Nutrition of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, PR China
| | - Zhenzhen Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Quality Safety and Nutrition of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, PR China
| | - Tao Cang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Quality Safety and Nutrition of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, PR China
| | - Zhiwei Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Quality Safety and Nutrition of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, PR China
| | - Peipei Qi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Quality Safety and Nutrition of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, PR China
| | - Xiangyun Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Quality Safety and Nutrition of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, PR China
| | - Hao Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Quality Safety and Nutrition of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, PR China
| | - Xinquan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Quality Safety and Nutrition of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou 310021, PR China.
| |
Collapse
|
11
|
Malin Igra A, Warnqvist A, Rahman SM, Ekström EC, Rahman A, Vahter M, Kippler M. Environmental metal exposure and growth to 10 years of age in a longitudinal mother-child cohort in rural Bangladesh. ENVIRONMENT INTERNATIONAL 2021; 156:106738. [PMID: 34246127 DOI: 10.1016/j.envint.2021.106738] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Early-life exposure to arsenic (As), cadmium (Cd), and lead (Pb) has been linked to smaller birth and early childhood anthropometry, but little is known beyond the first years in life. OBJECTIVES To evaluate the impact of gestational and childhood exposures to As, Cd, and Pb on growth up to 10 years of age. METHODS We studied 1530 mother-child dyads from a nested sub-cohort of the MINIMat trial in rural Matlab, Bangladesh. Metal concentrations in maternal erythrocytes during pregnancy and in children's urine at 10y were measured by inductively coupled plasma mass spectroscopy. Child height and weight were measured at 19 occasions from birth until 10y and converted to height-for-age Z-scores (HAZ) and weight-for-age Z-scores (WAZ). Associations between log2-transformed metal concentrations and growth parameters were assessed with multivariable-adjusted regression models. RESULTS Children's concurrent urinary Cd (median 0.24 µg/L), reflecting long-term exposure, was inversely associated with WAZ (B: -0.072; 95% confidence interval (CI): -0.12, -0.020; p = 0.007), and possibly HAZ (B: -0.046; 95% CI: -0.096, 0.0014; p = 0.057), at 10y. The association with WAZ was stronger in boys than in girls. Maternal erythrocyte Cd (median 0.90 µg/kg) during pregnancy was inversely associated with WAZ during childhood only in boys (B: -0.071, 95% CI: -0.14, -0.0047, p = 0.036). Concurrent urinary Pb (median 1.6 µg/L) was inversely associated with WAZ (B: -0.084; 95% CI: -0.16, -0.0085; p = 0.029) and HAZ (B: -0.087; 95% CI: -0.15, -0.021; p = 0.010) in boys, but not in girls. Neither gestational nor childhood As exposure (median maternal erythrocyte As 4.3 µg/kg and children's urinary As 57 µg/L) was associated with growth up to 10y. CONCLUSIONS While all effect estimates were small, environmental exposure to Cd and Pb is common and impaired growth is of public health concern, especially for children already at risk of reduced growth due to malnutrition. Gender differences in susceptibility need further investigation.
Collapse
Affiliation(s)
- Annachiara Malin Igra
- Unit of Metals and Health, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Anna Warnqvist
- Unit of Biostatistics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Syed Moshfiqur Rahman
- International Maternal and Child Health, Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Eva-Charlotte Ekström
- International Maternal and Child Health, Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Anisur Rahman
- Maternal and Child Health Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Marie Vahter
- Unit of Metals and Health, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Maria Kippler
- Unit of Metals and Health, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
12
|
Zhang H, Li H, Green AP, Wang M, Yan F, Li M, He Y, Sun W, Yuan X, Lu J, Sun M, Merriman TR, Li C. Association of low-level environmental exposure to cadmium and lead with gout flare using a cohort study design. CHEMOSPHERE 2021; 280:130648. [PMID: 33932909 DOI: 10.1016/j.chemosphere.2021.130648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/18/2021] [Accepted: 04/20/2021] [Indexed: 06/12/2023]
Abstract
Cadmium (Cd) and lead (Pb) are toxic heavy metals with endocrine-disrupting properties. We investigated the associations of low-level environmental exposure to Cd/Pb and gout status (intercritical gout, gout flare and combined gout) in a cohort study. We measured by ICP-MS the levels of Cd and Pb in blood (Cd-B and Pb-B) and urine (Cd-U and Pb-U) from 408 participants with blood and 346 participants with urine samples recruited from a hospital gout clinic. The median levels of Cd-B and Pb-B (in μg/L) in the gout flare group were 0.87 (range 0.41-2.49) and 31.54 (25.38-41.46), respectively, and the median levels of Cd-U and Pb-U in the gout flare group were 1.05 (0.69-1.91) and 3.86 (3.49-4.44), respectively. These medians were significantly higher than those in the control or intercritical groups (P < 0.05). For Cd-B in tertile 2 (T2) and Cd-U in tertile 3, Cd levels were significantly associated with gout flare status compared to the reference tertile 1 (OR = 4.3, P = 0.041 and OR = 25.1, P = 0.002, respectively) after adjustment under Model 3. For Pb-U, the risk of gout flare status was significantly higher in T2 (OR = 51.0, P = 0.002) compared to the T1 under Model 3. Our results show that median levels of Cd-B, Pb-B, Cd-U and Pb-U in the gout flare group were significantly higher than participants without gout or with gout but in the intercritical period. We provide evidence that the risk of gout flare status is associated with increased Cd levels, and that blood and urine levels of Cd are a risk factor for gout flare status.
Collapse
Affiliation(s)
- Hui Zhang
- Institute of Metabolic Diseases, Qingdao University, Qingdao, 266071, China; Shandong Provincial Key Laboratory of Metabolic Diseases and Qingdao Key Laboratory of Gout, the Affiliated Hospital of Qingdao University, China; Medical Research Center, The Affiliated Hospital of Qingdao University, China.
| | - Hailong Li
- Institute of Metabolic Diseases, Qingdao University, Qingdao, 266071, China; Shandong Provincial Key Laboratory of Metabolic Diseases and Qingdao Key Laboratory of Gout, the Affiliated Hospital of Qingdao University, China; Medical Research Center, The Affiliated Hospital of Qingdao University, China.
| | | | - Ming Wang
- Institute of Metabolic Diseases, Qingdao University, Qingdao, 266071, China; Shandong Provincial Key Laboratory of Metabolic Diseases and Qingdao Key Laboratory of Gout, the Affiliated Hospital of Qingdao University, China; Medical Research Center, The Affiliated Hospital of Qingdao University, China.
| | - Fei Yan
- Institute of Metabolic Diseases, Qingdao University, Qingdao, 266071, China; Shandong Provincial Key Laboratory of Metabolic Diseases and Qingdao Key Laboratory of Gout, the Affiliated Hospital of Qingdao University, China; Medical Research Center, The Affiliated Hospital of Qingdao University, China.
| | - Maichao Li
- Institute of Metabolic Diseases, Qingdao University, Qingdao, 266071, China; Shandong Provincial Key Laboratory of Metabolic Diseases and Qingdao Key Laboratory of Gout, the Affiliated Hospital of Qingdao University, China; Medical Research Center, The Affiliated Hospital of Qingdao University, China.
| | - Yuwei He
- Institute of Metabolic Diseases, Qingdao University, Qingdao, 266071, China; Shandong Provincial Key Laboratory of Metabolic Diseases and Qingdao Key Laboratory of Gout, the Affiliated Hospital of Qingdao University, China; Medical Research Center, The Affiliated Hospital of Qingdao University, China.
| | - Wenyan Sun
- Institute of Metabolic Diseases, Qingdao University, Qingdao, 266071, China; Shandong Provincial Key Laboratory of Metabolic Diseases and Qingdao Key Laboratory of Gout, the Affiliated Hospital of Qingdao University, China; Medical Research Center, The Affiliated Hospital of Qingdao University, China.
| | - Xuan Yuan
- Institute of Metabolic Diseases, Qingdao University, Qingdao, 266071, China; Shandong Provincial Key Laboratory of Metabolic Diseases and Qingdao Key Laboratory of Gout, the Affiliated Hospital of Qingdao University, China; Medical Research Center, The Affiliated Hospital of Qingdao University, China.
| | - Jie Lu
- Institute of Metabolic Diseases, Qingdao University, Qingdao, 266071, China; Shandong Provincial Key Laboratory of Metabolic Diseases and Qingdao Key Laboratory of Gout, the Affiliated Hospital of Qingdao University, China; Medical Research Center, The Affiliated Hospital of Qingdao University, China.
| | - Mingshu Sun
- Department of Rheumatology and Clinical Immunology, The Affiliated Hospital of Qingdao University, China.
| | - Tony R Merriman
- Institute of Metabolic Diseases, Qingdao University, Qingdao, 266071, China; Department of Biochemistry, University of Otago, Dunedin, New Zealand; Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Alabama, USA.
| | - Changgui Li
- Institute of Metabolic Diseases, Qingdao University, Qingdao, 266071, China; Shandong Provincial Key Laboratory of Metabolic Diseases and Qingdao Key Laboratory of Gout, the Affiliated Hospital of Qingdao University, China; Medical Research Center, The Affiliated Hospital of Qingdao University, China; Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, China.
| |
Collapse
|
13
|
Yang H, Xing R, Liu S, Yu H, Li P. Role of Fucoxanthin towards Cadmium-induced renal impairment with the antioxidant and anti-lipid peroxide activities. Bioengineered 2021; 12:7235-7247. [PMID: 34569908 PMCID: PMC8806766 DOI: 10.1080/21655979.2021.1973875] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Kidney damages caused by cadmium are considered to be one of the most dangerous consequences for the human body. This study aimed to investigate the protective effects of fucoxanthin supplementation on mice models subjected to cadmium-induced kidney damage. The mice treated with cadmium chloride (CdCl2) were observed to have significantly reduced the cross-section area of glomeruli. Cadmium exposure has also caused the damage of the structural integrity of mitochondria and increased blood urea nitrogen (BUN), kidney injury molecule 1 (KIM1), and neutrophil gelatinase associated lipocalin (NGAL) levels. Peroxidase (POD), superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX) levels in cadmium-exposed mice were markedly declined. Caspase3, caspase8, and caspase9 gene expressions in association with apoptosis were dramatically elevated in renal tissues. The CdCl2 treated mice were orally administered with 50 mg/kg Shenfukang, 10 mg/kg, 25 mg/kg, and 50 mg/kg fucoxanthin for 14 days. The results revealed that high doses of fucoxanthin administration significantly decreased BUN, KIM1, NGAL levels, increasing POD, SOD, CAT, and ascorbate APX levels. Fucoxanthin administration also promoted recovery of the renal functions, micro-structural organization, and ultra-structural organization in the renal cells. In summary, the ameliorative effects of fucoxanthin supplementation against cadmium-induced kidney damage were mediated via inhibiting oxidative stress and apoptosis, promoting the recovery of structural integrity of mitochondria.
Collapse
Affiliation(s)
- Haoyue Yang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Ronge Xing
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Song Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Huahua Yu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Pengcheng Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| |
Collapse
|
14
|
Olivero-Verbel J, Alvarez-Ortega N, Alcala-Orozco M, Caballero-Gallardo K. Population exposure to lead and mercury in Latin America. CURRENT OPINION IN TOXICOLOGY 2021. [DOI: 10.1016/j.cotox.2021.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|