1
|
Lu K, Chen R, Yang Y, Xu H, Jiang J, Li L. Involvement of the Cell Wall-Integrity Pathway in Signal Recognition, Cell-Wall Biosynthesis, and Virulence in Magnaporthe oryzae. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:608-622. [PMID: 37140471 DOI: 10.1094/mpmi-11-22-0231-cr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The fungal cell wall is the first layer exposed to the external environment. The cell wall has key roles in regulating cell functions, such as cellular stability, permeability, and protection against stress. Understanding the structure of the cell wall and the mechanism of its biogenesis is important for the study of fungi. Highly conserved in fungi, including Magnaporthe oryzae, the cell wall-integrity (CWI) pathway is the primary signaling cascade regulating cell-wall structure and function. The CWI pathway has been demonstrated to correlate with pathogenicity in many phytopathogenic fungi. In the synthesis of the cell wall, the CWI pathway cooperates with multiple signaling pathways to regulate cell morphogenesis and secondary metabolism. Many questions have arisen regarding the cooperation of different signaling pathways with the CWI pathway in regulating cell-wall synthesis and pathogenicity. In this review, we summarized the latest advances in the M. oryzae CWI pathway and cell-wall structure. We discussed the CWI pathway components and their involvement in different aspects, such as virulence factors, the possibility of the pathway as a target for antifungal therapies, and crosstalk with other signaling pathways. This information will aid in better understanding the universal functions of the CWI pathway in regulating cell-wall synthesis and pathogenicity in M. oryzae. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Kailun Lu
- School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Rangrang Chen
- School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Yi Yang
- School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Hui Xu
- School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Jihong Jiang
- School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
| | - Lianwei Li
- School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
2
|
Maguvu TE, Travadon R, Cantu D, Trouillas FP. Whole genome sequencing and analysis of multiple isolates of Ceratocystis destructans, the causal agent of Ceratocystis canker of almond in California. Sci Rep 2023; 13:14873. [PMID: 37684350 PMCID: PMC10491840 DOI: 10.1038/s41598-023-41746-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
Ceratocystis canker caused by Ceratocystis destructans is a severe disease of almond, reducing the longevity and productivity of infected trees. Once the disease has established in an individual tree, there is no cure, and management efforts are often limited to removing the infected area of cankers. In this study, we present the genome assemblies of five C. destructans isolates isolated from symptomatic almond trees. The genomes were assembled into a genome size of 27.2 ± 0.9 Mbp with an average of 6924 ± 135 protein-coding genes and an average GC content of 48.8 ± 0.02%. We concentrated our efforts on identifying putative virulence factors of canker pathogens. Analysis of the secreted carbohydrate-active enzymes showed that the genomes harbored 83.4 ± 1.8 secreted CAZymes. The secreted CAZymes covered all the known categories of CAZymes. AntiSMASH revealed that the genomes had at least 7 biosynthetic gene clusters, with one of the non-ribosomal peptide synthases encoding dimethylcoprogen, a conserved virulence determinant of plant pathogenic ascomycetes. From the predicted proteome, we also annotated cytochrome P450 monooxygenases, and transporters, these are well-established virulence determinants of canker pathogens. Moreover, we managed to identify 57.4 ± 2.1 putative effector proteins. Gene Ontology (GO) annotation was applied to compare gene content with two closely related species C. fimbriata, and C. albifundus. This study provides the first genome assemblies for C. destructans, expanding genomic resources for an important almond canker pathogen. The acquired knowledge provides a foundation for further advanced studies, such as molecular interactions with the host, which is critical for breeding for resistance.
Collapse
Affiliation(s)
- Tawanda E Maguvu
- Department of Plant Pathology, University of California, Davis, CA, 95616, USA
- Kearney Agricultural Research and Extension Center, Parlier, CA, 93648, USA
| | - Renaud Travadon
- Department of Plant Pathology, University of California, Davis, CA, 95616, USA
| | - Dario Cantu
- Department of Viticulture and Enology, University of California, Davis, CA, 95616, USA
| | - Florent P Trouillas
- Department of Plant Pathology, University of California, Davis, CA, 95616, USA.
- Kearney Agricultural Research and Extension Center, Parlier, CA, 93648, USA.
| |
Collapse
|
3
|
Fang Y, Jiang J, Ding H, Li X, Xie X. Phospholipase C: Diverse functions in plant biotic stress resistance and fungal pathogenicity. MOLECULAR PLANT PATHOLOGY 2023; 24:1192-1202. [PMID: 37119461 PMCID: PMC10423330 DOI: 10.1111/mpp.13343] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/10/2023] [Accepted: 04/04/2023] [Indexed: 06/19/2023]
Abstract
Phospholipase C (PLC) generates various second messenger molecules and mediates phospholipid hydrolysis. In recent years, the important roles of plant and fungal PLC in disease resistance and pathogenicity, respectively, have been determined. However, the roles of PLC in plants and fungi are unintegrated and relevant literature is disorganized. This makes it difficult for researchers to implement PLC-based strategies to improve disease resistance in plants. In this comprehensive review, we summarize the structure, classification, and phylogeny of the PLCs involved in plant biotic stress resistance and fungal pathogenicity. PLCs can be divided into two groups, nonspecific PLC (NPC) and phosphatidylinositol-specific PLC (PI-PLC), which present marked differences in phylogenetic evolution. The products of PLC genes in fungi play significant roles in physiological activity and pathogenesis, whereas those encoded by plant PLC genes mediate the immune response to fungi. This review provides a perspective for the future control of plant fungal diseases.
Collapse
Affiliation(s)
- Yuanpeng Fang
- Key Laboratory of Agricultural MicrobiologyCollege of Agriculture, Guizhou UniversityGuiyangChina
| | - Junmei Jiang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural BioengineeringMinistry of Education, Guizhou UniversityGuiyangChina
| | - Haixia Ding
- Key Laboratory of Agricultural MicrobiologyCollege of Agriculture, Guizhou UniversityGuiyangChina
| | - Xiangyang Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural BioengineeringMinistry of Education, Guizhou UniversityGuiyangChina
| | - Xin Xie
- Key Laboratory of Agricultural MicrobiologyCollege of Agriculture, Guizhou UniversityGuiyangChina
| |
Collapse
|
4
|
Fu T, Park HH, Kim KS. Role of the cAMP signaling pathway in the dissemination and development on pepper fruit anthracnose disease caused by Colletotrichum scovillei. Front Cell Infect Microbiol 2022; 12:1003195. [PMID: 36262188 PMCID: PMC9574036 DOI: 10.3389/fcimb.2022.1003195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/16/2022] [Indexed: 11/13/2022] Open
Abstract
The ascomycete fungus Colletotrichum scovillei causes severe anthracnose disease on the fruit of sweet pepper and chili pepper (Capsicum annuum L.) worldwide. Understanding the biology of C. scovillei would improve the management of fruit anthracnose diseases. The cyclic adenosine monophosphate (cAMP) signaling pathway regulates diverse cellular and physiological processes in several foliar fungal pathogens. We investigated the roles of the cAMP signaling pathway in C. scovillei using pharmaceutical and genetic approaches. Exogenous cAMP was found to increase conidiation, appressorium formation, and anthracnose disease development in C. scovillei. CsAc1, CsCap1, and CsPdeH, which regulate the intracellular cAMP level, were deleted by homology-dependent gene replacement. Expectedly, the intracellular cAMP level was significantly decreased in ΔCsac1 and ΔCscap1 but increased in ΔCspdeh. All three deletion mutants exhibited serious defects in multiple fungal developments and pathogenicity, suggesting regulation of the intracellular cAMP level is important for C. scovillei. Notably, exogenous cAMP recovered the defect of ΔCsac1 in appressorium development, but not penetration, which was further recovered by adding CaCl2. This result suggests that CsAc1 is associated with both the cAMP and Ca2+ signaling pathways in C. scovillei. ΔCscap1 produced morphologically abnormal conidia with reduced tolerance to thermal stress. ΔCspdeh was completely defective in conidiation in C. scovillei, unlike other foliar pathogens. Taken together, these results demonstrate the importance of cAMP signaling in anthracnose disease caused by C. scovillei.
Collapse
|
5
|
Myint NNA, Korinsak S, Chutteang C, Laosatit K, Thunnom B, Toojinda T, Siangliw JL. Identification of Pathogenicity Loci in Magnaporthe oryzae Using GWAS with Neck Blast Phenotypic Data. Genes (Basel) 2022; 13:916. [PMID: 35627301 PMCID: PMC9141631 DOI: 10.3390/genes13050916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 12/10/2022] Open
Abstract
Magnaporthae oryzae (M. oryzae) is the most destructive disease of rice worldwide. In this study, one hundred and two isolates of M. oryzae were collected from rice (Oryzae sativa L.) from 2001 to 2017, and six rice varieties with resistance genes Pizt, Pish, Pik, Pib, and Pi2 were used in a genome-wide association study to identify pathogenicity loci in M. oryzae. Genome-wide association analysis was performed using 5338 single nucleotide polymorphism (SNPs) and phenotypic data of neck blast screening by TASSEL software together with haplotype block and SNP effect analysis. Twenty-seven significant SNPs were identified on chromosomes 1, 2, 3, 4, 5, 6, and 7. Many predicted genes (820 genes) were found in the target regions of six rice varieties. Most of these genes are described as putative uncharacterized proteins, however, some genes were reported related to virulence in M. oryzae. Moreover, this study revealed that R genes, Pik, Pish, and Pi2, were broad-spectrum resistant against neck blast disease caused by Thai blast isolate. Haplotype analysis revealed that the combination of the favorable alleles causing reduced virulence of isolates against IRBLz5-CA carrying Pi2 gene contributes 69% of the phenotypic variation in pathogenicity. The target regions and information are useful to develop marker-specific genes to classify blast fungal isolates and select appropriate resistance genes for rice cultivation and improvement.
Collapse
Affiliation(s)
- Nyein Nyein Aye Myint
- Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen, Nakhon Pathom 73140, Thailand;
| | - Siripar Korinsak
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Phahonyothin, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand; (S.K.); (B.T.); (T.T.)
| | - Cattleya Chutteang
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen, Nakhon Pathom 73140, Thailand; (C.C.); (K.L.)
| | - Kularb Laosatit
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen, Nakhon Pathom 73140, Thailand; (C.C.); (K.L.)
| | - Burin Thunnom
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Phahonyothin, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand; (S.K.); (B.T.); (T.T.)
| | - Theerayut Toojinda
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Phahonyothin, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand; (S.K.); (B.T.); (T.T.)
| | - Jonaliza L. Siangliw
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Phahonyothin, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand; (S.K.); (B.T.); (T.T.)
| |
Collapse
|
6
|
Xie M, Ma N, Bai N, Zhu M, Zhang KQ, Yang J. Phospholipase C (AoPLC2) regulates mycelial development, trap morphogenesis, and pathogenicity of the nematode-trapping fungus Arthrobotrys oligospora. J Appl Microbiol 2021; 132:2144-2156. [PMID: 34797022 DOI: 10.1111/jam.15370] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 11/15/2021] [Indexed: 11/27/2022]
Abstract
AIMS Phospholipase C (PLC) is a hydrolase involved in signal transduction in eukaryotic cells. This study aimed to understand the function of PLC in the nematode-trapping fungus Arthrobotrys oligospora. METHODS AND RESULTS Orthologous PLC (AoPLC2) of A. oligospora was functionally analysed using gene disruption and multi-phenotypic analysis. Disrupting Aoplc2 caused a deformation of partial hyphal cells (about 10%) and conidia (about 50%), decreased the number of nuclei in both conidia and hyphal cells, and increased the accumulation of lipid droplets. Meanwhile, the sporulation-related genes fluG and abaA were downregulated in ΔAoplc2 mutants than in the wild-type strain. Moreover, ΔAoplc2 mutants were more sensitive to osmotic stressors. Importantly, the number of traps, electron-dense bodies in traps, and nematicidal activity of ΔAoplc2 mutants were reduced, and the shape of the traps was deformed. In addition, AoPLC2 was involved in the biosynthesis of secondary metabolites in A. oligospora. CONCLUSIONS AoPLC2 plays an important role in the development of hyphae, spores, and cell nuclei, responses to stress, formation of traps, and predation of nematodes in A. oligospora. SIGNIFICANCE AND IMPACT OF STUDY This study reveals the various functions of phospholipase C and elucidates the regulation of trap morphogenesis in nematode-trapping fungi.
Collapse
Affiliation(s)
- Meihua Xie
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, and School of Life Science, Yunnan University, Kunming, China.,School of Resource, Environment and Chemistry, Chuxiong Normal University, Chuxiong, China
| | - Ni Ma
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, and School of Life Science, Yunnan University, Kunming, China.,Yunnan Center for Disease Control and Prevention, Kunming, China
| | - Na Bai
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, and School of Life Science, Yunnan University, Kunming, China
| | - Meichen Zhu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, and School of Life Science, Yunnan University, Kunming, China
| | - Ke-Qin Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, and School of Life Science, Yunnan University, Kunming, China
| | - Jinkui Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, and School of Life Science, Yunnan University, Kunming, China
| |
Collapse
|
7
|
Han S, Chen J, Zhao Y, Cai H, Guo C. Bacillus subtilis HSY21 can reduce soybean root rot and inhibit the expression of genes related to the pathogenicity of Fusarium oxysporum. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 178:104916. [PMID: 34446192 DOI: 10.1016/j.pestbp.2021.104916] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
Soybean root rot occurs globally and seriously affects soybean production. To avoid the many disadvantages of chemical fungicides, the addition of Bacillus is gradually becoming an alternative strategy to tackle soybean root rot. However, the molecular mechanism of phytopathogenic fungi in this process by Bacillus inhibition is rarely reported. In this study, we isolated a strain of B. subtilis HSY21 from soybean rhizosphere soil, which had an inhibition rate of 81.30 ± 0.15% (P < 0.05) against Fusarium oxysporum. The control effects of this strain against soybean root rot under greenhouse and field conditions were 63.83% and 57.07% (P < 0.05), respectively. RNA-seq analysis of F. oxysporum after treatment with strain HSY21 revealed 1445 downregulated genes and 1561 upregulated genes. Among them, genes involved in mycelial growth, metabolism regulation, and disease-related enzymes were mostly downregulated. The activities of cellulase, β-glucosidase, α-amylase, and pectin-methyl- galacturonase as well as levels of oxalic acid and ergosterol in F. oxysporum were significantly decreased after HSY21 treatment. These results demonstrated that B. subtilis HSY21 could effectively control F. oxysporum by inhibiting its growth and the expression of pathogenic genes, thus indicating that this strain may be an ideal candidate for the prevention and control of soybean root rot.
Collapse
Affiliation(s)
- Songyang Han
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding, College of Life Science and Technology, Harbin Normal University, Harbin, Heilongjiang Province, China
| | - Jiaxin Chen
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding, College of Life Science and Technology, Harbin Normal University, Harbin, Heilongjiang Province, China
| | - Yujie Zhao
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding, College of Life Science and Technology, Harbin Normal University, Harbin, Heilongjiang Province, China
| | - Hongsheng Cai
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding, College of Life Science and Technology, Harbin Normal University, Harbin, Heilongjiang Province, China
| | - Changhong Guo
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding, College of Life Science and Technology, Harbin Normal University, Harbin, Heilongjiang Province, China..
| |
Collapse
|
8
|
CgEnd3 Regulates Endocytosis, Appressorium Formation, and Virulence in the Poplar Anthracnose Fungus Colletotrichum gloeosporioides. Int J Mol Sci 2021; 22:ijms22084029. [PMID: 33919762 PMCID: PMC8103510 DOI: 10.3390/ijms22084029] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/02/2021] [Accepted: 04/03/2021] [Indexed: 01/23/2023] Open
Abstract
The hemibiotrophic ascomycete fungus Colletotrichum gloeosporioides is the causal agent of anthracnose on numerous plants, and it causes considerable economic losses worldwide. Endocytosis is an essential cellular process in eukaryotic cells, but its roles in C. gloeosporioides remain unknown. In our study, we identified an endocytosis-related protein, CgEnd3, and knocked it out via polyethylene glycol (PEG)-mediated protoplast transformation. The lack of CgEnd3 resulted in severe defects in endocytosis. C. gloeosporioides infects its host through a specialized structure called appressorium, and ΔCgEnd3 showed deficient appressorium formation, melanization, turgor pressure accumulation, penetration ability of appressorium, cellophane membrane penetration, and pathogenicity. CgEnd3 also affected oxidant adaptation and the expression of core effectors during the early stage of infection. CgEnd3 contains one EF hand domain and four calcium ion-binding sites, and it is involved in calcium signaling. A lack of CgEnd3 changed the responses to cell-wall integrity agents and fungicide fludioxonil. However, CgEnd3 regulated appressorium formation and endocytosis in a calcium signaling-independent manner. Taken together, these results demonstrate that CgEnd3 plays pleiotropic roles in endocytosis, calcium signaling, cell-wall integrity, appressorium formation, penetration, and pathogenicity in C. gloeosporioides, and it suggests that CgEnd3 or endocytosis-related genes function as promising antifungal targets.
Collapse
|
9
|
Comparative Analysis of Transcriptome and sRNAs Expression Patterns in the Brachypodium distachyon- Magnaporthe oryzae Pathosystems. Int J Mol Sci 2021; 22:ijms22020650. [PMID: 33440747 PMCID: PMC7826919 DOI: 10.3390/ijms22020650] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 12/28/2020] [Accepted: 01/01/2021] [Indexed: 01/10/2023] Open
Abstract
The hemibiotrophic fungus Magnaporthe oryzae (Mo) is the causative agent of rice blast and can infect aerial and root tissues of a variety of Poaceae, including the model Brachypodium distachyon (Bd). To gain insight in gene regulation processes occurring at early disease stages, we comparatively analyzed fungal and plant mRNA and sRNA expression in leaves and roots. A total of 310 Mo genes were detected consistently and differentially expressed in both leaves and roots. Contrary to Mo, only minor overlaps were observed in plant differentially expressed genes (DEGs), with 233 Bd-DEGs in infected leaves at 2 days post inoculation (DPI), compared to 4978 at 4 DPI, and 138 in infected roots. sRNA sequencing revealed a broad spectrum of Mo-sRNAs that accumulated in infected tissues, including candidates predicted to target Bd mRNAs. Conversely, we identified a subset of potential Bd-sRNAs directed against fungal cell wall components, virulence genes and transcription factors. We also show a requirement of operable RNAi genes from the DICER-like (DCL) and ARGONAUTE (AGO) families for fungal virulence. Overall, our work elucidates the extensive reprogramming of transcriptomes and sRNAs in both plant host (Bd) and fungal pathogen (Mo), further corroborating the critical role played by sRNA species in the establishment of the interaction and its outcome.
Collapse
|
10
|
Wang X, Liu Y, Li Z, Gao X, Dong J, Yang M. Expression and evolution of the phospholipase C gene family in Brachypodium distachyon. Genes Genomics 2020; 42:1041-1053. [PMID: 32712839 DOI: 10.1007/s13258-020-00973-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/14/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Phospholipase C (PLC) is an enzyme that hydrolyzes phospholipids and plays an important role in plant growth and development. The Brachypodium distachyon is a model plant of Gramineae, but the research on PLC gene family of Brachypodium has not been reported. OBJECTIVE This study was performed to identify the PLC family gene in Brachypodium and to determine the expression profiles of PLCs under the abiotic stress. METHODS Complete genome sequences and transcriptomes of Brachypodium were downloaded from the PLAZA. The hidden Markov model-based profile of the conserved PLC domain was submitted as a query to identify all potential PLC domain sequences with HMMER software. Expression profiles of BdPLCs were obtained based on the qRT-PCR analysis. RESULTS There were 8 PLC genes in Brachypodium (BdPI-PLCs 1-4 and BdNPCs 1-4). All members of BdPI-PLC had three conserved domains of X, Y, and C2, and no EF-hand was found. All BdNPCs contained a phosphatase domain. BdPI-PLC genes were distributed on Chr1, Chr2 and Chr4, with different types and numbers of cis-regulatory elements in their respective gene promoters. Phylogenetic analysis showed that the genetic relationship between Brachypodium and rice was closer than Arabidopsis. The expression patterns of BdPI-PLC gene under abiotic stresses (drought, low temperature, high temperature and salt stress) were up-regulated, indicated their important roles in response to low temperature, high temperature, drought and salt stresses. CONCLUSIONS This study provides comprehensive information for the study of Brachypodium PLC gene family and lays a foundation for further research on the molecular mechanism of Brachypodium stress adaptation.
Collapse
Affiliation(s)
- Xianguo Wang
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yang Liu
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zheng Li
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xiang Gao
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Jian Dong
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Mingming Yang
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
11
|
Huang Y, Li Y, Li D, Bi Y, Prusky DB, Dong Y, Wang T, Zhang M, Zhang X, Liu Y. Phospholipase C From Alternaria alternata Is Induced by Physiochemical Cues on the Pear Fruit Surface That Dictate Infection Structure Differentiation and Pathogenicity. Front Microbiol 2020; 11:1279. [PMID: 32695073 PMCID: PMC7339947 DOI: 10.3389/fmicb.2020.01279] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 05/19/2020] [Indexed: 11/18/2022] Open
Abstract
To investigate the mechanisms of phospholipase C (PLC)-mediated calcium (Ca2+) signaling in Alternaria alternata, the regulatory roles of PLC were elucidated using neomycin, a specific inhibitor of PLC activity. Three isotypes of PLC designated AaPLC1, AaPLC2, and AaPLC3 were identified in A. alternata through genome sequencing. qRT-PCR analysis showed that fruit wax extracts significantly upregulated the expression of all three PLC genes in vitro. Pharmacological experiments showed that neomycin treatment led to a dose-dependent reduction in spore germination and appressorium formation in A. alternata. Appressorium formation was stimulated on hydrophobic and pear wax-coated surfaces but was significantly inhibited by neomycin treatment. The appressorium formation rates of neomycin treated A. alternata on hydrophobic and wax-coated surfaces decreased by 86.6 and 47.4%, respectively. After 4 h of treatment, exogenous CaCl2 could partially reverse the effects of neomycin treatment. Neomycin also affected mycotoxin production in alternariol (AOH), alternariol monomethyl ether (AME), altenuene (ALT), and tentoxin (TEN), with exogenous Ca2+ partially reversing these effects. These results suggest that PLC is required for the growth, infection structure differentiation, and secondary metabolism of A. alternata in response to physiochemical signals on the pear fruit surface.
Collapse
Affiliation(s)
- Yi Huang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Yongcai Li
- Institute of Postharvest and Food Sciences, The Volcani Center, Agricultural Research Organization, Rishon LeZion, Israel
| | - Dongmei Li
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Yang Bi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Dov B Prusky
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China.,Institute of Postharvest and Food Sciences, The Volcani Center, Agricultural Research Organization, Rishon LeZion, Israel
| | - Yupeng Dong
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Tiaolan Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Miao Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Xuemei Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Yongxiang Liu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
12
|
Genome-Wide Identification and Expression Profile Analysis of the Phospholipase C Gene Family in Wheat ( Triticum aestivum L.). PLANTS 2020; 9:plants9070885. [PMID: 32668812 PMCID: PMC7412115 DOI: 10.3390/plants9070885] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/08/2020] [Accepted: 07/10/2020] [Indexed: 12/20/2022]
Abstract
Phospholipid-hydrolyzing enzymes include members of the phospholipase C (PLC) family that play important roles in regulating plant growth and responding to stress. In the present study, a systematic in silico analysis of the wheat PLC gene family revealed a total of 26 wheat PLC genes (TaPLCs). Phylogenetic and sequence alignment analyses divided the wheat PLC genes into 2 subfamilies, TaPI-PLC (containing the typical X, Y, and C2 domains) and TaNPC (containing a phosphatase domain). TaPLC expression patterns differed among tissues, organs, and under abiotic stress conditions. The transcript levels of 8 TaPLC genes were validated through qPCR analyses. Most of the TaPLC genes were sensitive to salt stress and were up-regulated rapidly, and some were sensitive to low temperatures and drought. Overexpression of TaPI-PLC1-2B significantly improved resistance to salt and drought stress in Arabidopsis, and the primary root of P1-OE was significantly longer than that of the wild type under stress conditions. Our results not only provide comprehensive information for understanding the PLC gene family in wheat, but can also provide a solid foundation for functional characterization of the wheat PLC gene family.
Collapse
|
13
|
Fu T, Kim JO, Han JH, Gumilang A, Lee YH, Kim KS. A Small GTPase RHO2 Plays an Important Role in Pre-infection Development in the Rice Blast Pathogen Magnaporthe oryzae. THE PLANT PATHOLOGY JOURNAL 2018; 34:470-479. [PMID: 30588220 PMCID: PMC6305172 DOI: 10.5423/ppj.oa.04.2018.0069] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 08/17/2018] [Accepted: 08/21/2018] [Indexed: 05/15/2023]
Abstract
The rice blast pathogen Magnaporthe oryzae is a global threat to rice production. Here we characterized RHO2 gene (MGG_02457) that belongs to the Rho GTPase family, using a deletion mutant. This mutant ΔMorho2 exhibited no defects in conidiation and germination but developed only 6% of appressoria in response to a hydrophobic surface when compared to the wild-type progenitor. This result indicates that MoRHO2 plays a role in appressorium development. Furthermore, exogenous cAMP treatment on the mutant led to appressoria that exhibited abnormal morphology on both hydrophobic and hydrophilic surfaces. These outcomes suggested the involvement of MoRHO2 in cAMP-mediated appressorium development. ΔMorho2 mutation also delayed the development of appressorium-like structures (ALS) at hyphal tips on hydrophobic surface, which were also abnormally shaped. These results suggested that MoRHO2 is involved in morphological development of appressoria and ALS from conidia and hyphae, respectively. As expected, ΔMorho2 mutant was defective in plant penetration, but was still able to cause lesions, albeit at a reduced rate on wounded plants. These results implied that MoRHO2 plays a role in M. oryzae virulence as well.
Collapse
Affiliation(s)
- Teng Fu
- Division of Bioresource Sciences, and Bioherb Research Institute, Kangwon National University, Chuncheon 24341,
Korea
| | - Joon-Oh Kim
- Division of Bioresource Sciences, and Bioherb Research Institute, Kangwon National University, Chuncheon 24341,
Korea
| | - Joon-Hee Han
- Division of Bioresource Sciences, and Bioherb Research Institute, Kangwon National University, Chuncheon 24341,
Korea
| | - Adiyantara Gumilang
- Division of Bioresource Sciences, and Bioherb Research Institute, Kangwon National University, Chuncheon 24341,
Korea
| | - Yong-Hwan Lee
- Department of Agricultural Biotechnology, and Center for Fungal Genetic Resources, Seoul National University, Seoul 08826,
Korea
| | - Kyoung Su Kim
- Division of Bioresource Sciences, and Bioherb Research Institute, Kangwon National University, Chuncheon 24341,
Korea
- Corresponding author: Phone) +82-33-250-6435, FAX) +82-33-259-5558, E-mail)
| |
Collapse
|
14
|
Distinct roles of the YPEL gene family in development and pathogenicity in the ascomycete fungus Magnaporthe oryzae. Sci Rep 2018; 8:14461. [PMID: 30262874 PMCID: PMC6160453 DOI: 10.1038/s41598-018-32633-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 09/12/2018] [Indexed: 11/13/2022] Open
Abstract
Members of the Yippee-like (YPEL) gene family are highly conserved in eukaryotes and are homologous to the Drosophila yippee gene. In this study, we functionally characterized two YPEL-homologous genes, MoYPEL1 and MoYPEL2, in the rice blast pathogen Magnaporthe oryzae using the deletion mutants ΔMoypel1, ΔMoypel2, and ΔΔMoypel1,2. The MoYPEL1 deletion mutant was significantly defective in conidiation and unable to undergo appressorium development; however, deletion of MoYPEL2 resulted in a significant increase in conidiation and the abnormal development of two appressoria per conidium. These data demonstrate the opposite roles of each member of the YPEL gene family during the development of M. oryzae. The double mutant was phenotypically similar to the ΔMoypel1 mutant in conidiation, but similar to the ΔMoypel2 mutant in appressorium development. Subcellular localization of the MoYPEL1 protein was dynamic during appressorium development, while the MoYPEL2 protein consistently localized within the nuclei during developmental stages. Our studies indicate that the two YPEL gene family members play distinct roles in the developmental stages of M. oryzae, furthering our understanding of disease dissemination and development in fungi.
Collapse
|
15
|
Bandara YMAY, Weerasooriya DK, Liu S, Little CR. The Necrotrophic Fungus Macrophomina phaseolina Promotes Charcoal Rot Susceptibility in Grain Sorghum Through Induced Host Cell-Wall-Degrading Enzymes. PHYTOPATHOLOGY 2018; 108:948-956. [PMID: 29465007 DOI: 10.1094/phyto-12-17-0404-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The cell-wall-degrading enzymes (CWDE) secreted by necrotrophs are important virulence factors. Although not unequivocally demonstrated, it has been suggested that necrotrophs induce hosts to cooperate in disease development through manipulation of host CWDE. The necrotrophic fungus Macrophomina phaseolina causes charcoal rot disease in Sorghum bicolor. An RNA-seq experiment was conducted to investigate the behavior of sorghum CWDE-encoding genes after M. phaseolina inoculation. Results revealed M. phaseolina's ability to significantly upregulate pectin methylesterase-, polygalacturonase-, cellulase-, endoglucanase-, and glycosyl hydrolase-encoding genes in a charcoal rot-susceptible sorghum genotype (Tx7000) but not in a resistant genotype (SC599). For functional validation, crude enzyme mixtures were extracted from M. phaseolina- and mock-inoculated charcoal-rot-resistant (SC599 and SC35) and -susceptible (Tx7000 and BTx3042) sorghum genotype stalks. A gel diffusion assay (pectin substrate) revealed significantly increased pectin methylesterase activity in M. phaseolina-inoculated Tx7000 and BTx3042. Polygalacturonase activity was determined using a ruthenium red absorbance assay (535 nm). Significantly increased polygalacturonase activity was observed in two susceptible genotypes after M. phaseolina inoculation. The activity of cellulose-degrading enzymes was determined using a 2-cyanoacetamide fluorimetric assay (excitation and emission maxima at 331 and 383 nm, respectively). The assay revealed significantly increased cellulose-degrading enzyme activity in M. phaseolina-inoculated Tx7000 and BTx3042. These findings revealed M. phaseolina's ability to promote charcoal rot susceptibility in grain sorghum through induced host CWDE.
Collapse
Affiliation(s)
- Y M A Y Bandara
- First third, and fourth authors: Department of Plant Pathology, and second author: Department of Agronomy, Kansas State University, Manhattan 66506
| | - D K Weerasooriya
- First third, and fourth authors: Department of Plant Pathology, and second author: Department of Agronomy, Kansas State University, Manhattan 66506
| | - S Liu
- First third, and fourth authors: Department of Plant Pathology, and second author: Department of Agronomy, Kansas State University, Manhattan 66506
| | - C R Little
- First third, and fourth authors: Department of Plant Pathology, and second author: Department of Agronomy, Kansas State University, Manhattan 66506
| |
Collapse
|
16
|
Anjago WM, Zhou T, Zhang H, Shi M, Yang T, Zheng H, Wang Z. Regulatory network of genes associated with stimuli sensing, signal transduction and physiological transformation of appressorium in Magnaporthe oryzae. Mycology 2018; 9:211-222. [PMID: 30181927 PMCID: PMC6115909 DOI: 10.1080/21501203.2018.1492981] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 06/21/2018] [Indexed: 02/02/2023] Open
Abstract
Rice blast caused by Magnaporthe oryzae is the most destructive disease affecting the rice production (Oryza sativa), with an average global loss of 10-30% per annum. Recent reports have indicated that the fungus also inflicts blast disease on wheat (Triticum aestivum) posing a serious threat to the wheat production. Due to its easily detected infectious process and manoeuvrable genetic manipulation, M. oryzae is considered a model organism for exploring the molecular mechanism underlying fungal pathogenicity during the pathogen-host interaction. M. oryzae utilises an infectious structure called appressorium to breach the host surface by generating high turgor pressure. The appressorium development is induced by physical and chemical cues which are coordinated by the highly conserved cAMP/PKA, MAPK and calcium signalling cascades. Genes involved in the appressorium development have been identified and well studied in M. oryzae, a summary of the working gene network linking stimuli sensing and physiological transformation of appressorium is needed. This review provides a comprehensive discussion regarding the regulatory networks underlying appressorium development with particular emphasis on sensing of appressorium inducing stimuli, signal transduction, transcriptional regulation and the corresponding developmental and physiological responses. We also discussed the crosstalk and interaction of various pathways during the appressorium development.
Collapse
Affiliation(s)
- Wilfred Mabeche Anjago
- Fujian University Key Laboratory for Plant-Microbe interaction, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Tengshen Zhou
- Institute of oceanography, Minjian University, FuzhouChina
| | - Honghong Zhang
- Plant Protection College, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mingyue Shi
- Plant Protection College, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Tao Yang
- Fujian University Key Laboratory for Plant-Microbe interaction, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Huakun Zheng
- Fujian University Key Laboratory for Plant-Microbe interaction, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zonghua Wang
- Fujian University Key Laboratory for Plant-Microbe interaction, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of oceanography, Minjian University, FuzhouChina
| |
Collapse
|
17
|
Phospholipases play multiple cellular roles including growth, stress tolerance, sexual development, and virulence in fungi. Microbiol Res 2018; 209:55-69. [DOI: 10.1016/j.micres.2017.12.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 12/21/2017] [Accepted: 12/31/2017] [Indexed: 12/16/2022]
|
18
|
Molano EPL, Cabrera OG, Jose J, do Nascimento LC, Carazzolle MF, Teixeira PJPL, Alvarez JC, Tiburcio RA, Tokimatu Filho PM, de Lima GMA, Guido RVC, Corrêa TLR, Leme AFP, Mieczkowski P, Pereira GAG. Ceratocystis cacaofunesta genome analysis reveals a large expansion of extracellular phosphatidylinositol-specific phospholipase-C genes (PI-PLC). BMC Genomics 2018; 19:58. [PMID: 29343217 PMCID: PMC5773145 DOI: 10.1186/s12864-018-4440-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 01/08/2018] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The Ceratocystis genus harbors a large number of phytopathogenic fungi that cause xylem parenchyma degradation and vascular destruction on a broad range of economically important plants. Ceratocystis cacaofunesta is a necrotrophic fungus responsible for lethal wilt disease in cacao. The aim of this work is to analyze the genome of C. cacaofunesta through a comparative approach with genomes of other Sordariomycetes in order to better understand the molecular basis of pathogenicity in the Ceratocystis genus. RESULTS We present an analysis of the C. cacaofunesta genome focusing on secreted proteins that might constitute pathogenicity factors. Comparative genome analyses among five Ceratocystidaceae species and 23 other Sordariomycetes fungi showed a strong reduction in gene content of the Ceratocystis genus. However, some gene families displayed a remarkable expansion, in particular, the Phosphatidylinositol specific phospholipases-C (PI-PLC) family. Also, evolutionary rate calculations suggest that the evolution process of this family was guided by positive selection. Interestingly, among the 82 PI-PLCs genes identified in the C. cacaofunesta genome, 70 genes encoding extracellular PI-PLCs are grouped in eight small scaffolds surrounded by transposon fragments and scars that could be involved in the rapid evolution of the PI-PLC family. Experimental secretome using LC-MS/MS validated 24% (86 proteins) of the total predicted secretome (342 proteins), including four PI-PLCs and other important pathogenicity factors. CONCLUSION Analysis of the Ceratocystis cacaofunesta genome provides evidence that PI-PLCs may play a role in pathogenicity. Subsequent functional studies will be aimed at evaluating this hypothesis. The observed genetic arsenals, together with the analysis of the PI-PLC family shown in this work, reveal significant differences in the Ceratocystis genome compared to the classical vascular fungi, Verticillium and Fusarium. Altogether, our analyses provide new insights into the evolution and the molecular basis of plant pathogenicity.
Collapse
Affiliation(s)
- Eddy Patricia Lopez Molano
- Genomic and Expression Laboratory, Department of Genetics, Evolution and Bioagents, Institute of Biology, University of Campinas, Campinas, SP, 13083-970, Brazil
| | - Odalys García Cabrera
- Genomic and Expression Laboratory, Department of Genetics, Evolution and Bioagents, Institute of Biology, University of Campinas, Campinas, SP, 13083-970, Brazil
| | - Juliana Jose
- Genomic and Expression Laboratory, Department of Genetics, Evolution and Bioagents, Institute of Biology, University of Campinas, Campinas, SP, 13083-970, Brazil
| | | | - Marcelo Falsarella Carazzolle
- Genomic and Expression Laboratory, Department of Genetics, Evolution and Bioagents, Institute of Biology, University of Campinas, Campinas, SP, 13083-970, Brazil.,Centro Nacional de Processamento de Alto Desempenho, Universidade Estadual de Campinas, Campinas, Brazil
| | - Paulo José Pereira Lima Teixeira
- Genomic and Expression Laboratory, Department of Genetics, Evolution and Bioagents, Institute of Biology, University of Campinas, Campinas, SP, 13083-970, Brazil.,Present Address: Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Javier Correa Alvarez
- Departamento de Ciencias Biológicas, Escuela de Ciencias, Universidad EAFIT, Medellın, Colombia
| | - Ricardo Augusto Tiburcio
- Genomic and Expression Laboratory, Department of Genetics, Evolution and Bioagents, Institute of Biology, University of Campinas, Campinas, SP, 13083-970, Brazil
| | - Paulo Massanari Tokimatu Filho
- Genomic and Expression Laboratory, Department of Genetics, Evolution and Bioagents, Institute of Biology, University of Campinas, Campinas, SP, 13083-970, Brazil
| | - Gustavo Machado Alvares de Lima
- Centro de Biotecnologia Molecular Estrutural, Instituto de Física de São Carlos, Universidade de São Paulo, São Paulo, Brazil
| | - Rafael Victório Carvalho Guido
- Centro de Biotecnologia Molecular Estrutural, Instituto de Física de São Carlos, Universidade de São Paulo, São Paulo, Brazil
| | - Thamy Lívia Ribeiro Corrêa
- Genomic and Expression Laboratory, Department of Genetics, Evolution and Bioagents, Institute of Biology, University of Campinas, Campinas, SP, 13083-970, Brazil
| | | | - Piotr Mieczkowski
- High-Throughput Sequencing Facility, University of North Carolina, Chapel Hill, NC, USA
| | - Gonçalo Amarante Guimarães Pereira
- Genomic and Expression Laboratory, Department of Genetics, Evolution and Bioagents, Institute of Biology, University of Campinas, Campinas, SP, 13083-970, Brazil.
| |
Collapse
|
19
|
Lambie SC, Kretschmer M, Croll D, Haslam TM, Kunst L, Klose J, Kronstad JW. The putative phospholipase Lip2 counteracts oxidative damage and influences the virulence of Ustilago maydis. MOLECULAR PLANT PATHOLOGY 2017; 18:210-221. [PMID: 26950180 PMCID: PMC6638309 DOI: 10.1111/mpp.12391] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 02/29/2016] [Accepted: 03/02/2016] [Indexed: 06/05/2023]
Abstract
Ustilago maydis is an obligate biotrophic fungal pathogen which causes common smut disease of corn. To proliferate in host tissue, U. maydis must gain access to nutrients and overcome plant defence responses, such as the production of reactive oxygen species. The elucidation of the mechanisms by which U. maydis meets these challenges is critical for the development of strategies to combat smut disease. In this study, we focused on the contributions of phospholipases (PLs) to the pathogenesis of corn smut disease. We identified 11 genes encoding putative PLs and characterized the transcript levels for these genes in the fungus grown in culture and during infection of corn tissue. To assess the contributions of specific PLs, we focused on two genes, lip1 and lip2, which encode putative phospholipase A2 (PLA2 ) enzymes with similarity to platelet-activating factor acetylhydrolases. PLA2 enzymes are known to counteract oxidative damage to lipids in other organisms. Consistent with a role in the mitigation of oxidative damage, lip2 mutants were sensitive to oxidative stress provoked by hydrogen peroxide and by increased production of reactive oxygen species caused by inhibitors of mitochondrial functions. Importantly, mutants defective in lip2, but not lip1, were attenuated for virulence in corn seedlings. Finally, a comparative analysis of fatty acid and cardiolipin profiles in the wild-type strain and a lip2 mutant revealed differences consistent with a protective role for Lip2 in maintaining lipid homeostasis and mitochondrial health during proliferation in the hostile host environment.
Collapse
Affiliation(s)
- Scott C. Lambie
- Department of Microbiology and ImmunologyUniversity of British ColumbiaVancouver V6T 1Z3BCCanada
- The Michael Smith Laboratories, University of British ColumbiaVancouver V6T 1Z4BCCanada
| | - Matthias Kretschmer
- The Michael Smith Laboratories, University of British ColumbiaVancouver V6T 1Z4BCCanada
| | - Daniel Croll
- The Michael Smith Laboratories, University of British ColumbiaVancouver V6T 1Z4BCCanada
- Present address:
Institute of Integrative Biology, ETH Zürich8092 ZürichSwitzerland
| | - Tegan M. Haslam
- Department of BotanyUniversity of British ColumbiaVancouver V6T 1Z4BCCanada
| | - Ljerka Kunst
- Department of BotanyUniversity of British ColumbiaVancouver V6T 1Z4BCCanada
| | - Jana Klose
- Department of Microbiology and ImmunologyUniversity of British ColumbiaVancouver V6T 1Z3BCCanada
- The Michael Smith Laboratories, University of British ColumbiaVancouver V6T 1Z4BCCanada
| | - James W. Kronstad
- Department of Microbiology and ImmunologyUniversity of British ColumbiaVancouver V6T 1Z3BCCanada
- The Michael Smith Laboratories, University of British ColumbiaVancouver V6T 1Z4BCCanada
| |
Collapse
|
20
|
Zhu Q, Sun L, Lian J, Gao X, Zhao L, Ding M, Li J, Liang Y. The phospholipase C (FgPLC1) is involved in regulation of development, pathogenicity, and stress responses in Fusarium graminearum. Fungal Genet Biol 2016; 97:1-9. [PMID: 27777035 DOI: 10.1016/j.fgb.2016.10.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 09/09/2016] [Accepted: 10/07/2016] [Indexed: 02/08/2023]
Abstract
Phospholipase C (PLC) is an important phospholipid hydrolase that plays critical roles in various biological processes in eukaryotic cells. To elucidate the functions of PLC in morphogenesis and pathogenesis in Fusarium graminearum, deletion mutants were constructed of all six FgPLC genes identified in this study. Deletion of FgPLC1, but not the other five FgPLC genes, affected hyphal growth and conidiation. The FgPLC1 deletion mutant (Δplc1) also was defective in conidium germination and germ tube growth. It was sterile in selfing crosses and had increased sensitivities to hyperosmotic and cell wall stresses. The Δplc1 mutant showed reduced DON production and virulence during infection in flowering wheat heads. Deletion of FgPLC1 decreased the phosphorylation levels of both Gpmk1 and Mgv1 MAP kinases. qRT-PCR analysis showed that several genes related to defective phenotypes were down-regulated in the Δplc1 mutant. Taken together, these results indicated that FgPLC1 is important for hyphal growth, plant infection, and sexual or asexual reproduction, and it may be functionally related to MAP kinases in F. graminearum.
Collapse
Affiliation(s)
- Qili Zhu
- College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| | - Ling Sun
- College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| | - Jiajie Lian
- College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| | - Xuli Gao
- College of Plant Protection, Northwest A & F University, Yangling 712100, China
| | - Lei Zhao
- Institute of Environment and Ecology, Shandong Normal University, Jinan 250014, China
| | - Mingyu Ding
- College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| | - Jing Li
- College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| | - Yuancun Liang
- College of Plant Protection, Shandong Agricultural University, Taian 271018, China.
| |
Collapse
|
21
|
Han JH, Lee HM, Shin JH, Lee YH, Kim KS. Role of the MoYAK1 protein kinase gene in Magnaporthe oryzae development and pathogenicity. Environ Microbiol 2015; 17:4672-89. [PMID: 26248223 DOI: 10.1111/1462-2920.13010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Revised: 07/29/2015] [Accepted: 08/02/2015] [Indexed: 11/27/2022]
Abstract
Conidiation and appressorium differentiation are key processes for polycyclic dissemination and infection in many pathogens. Our previous study using DNA microarray led to the discovery of the MoYAK1 gene in Magnaporthe oryzae that is orthologous to YAK1 in Saccharomyces cerevisiae. Although the mechanistic roles of YAK1 in S. cerevisiae have been described, roles of MoYAK1 in M. oryzae, a phytopathogenic fungus responsible for rice blast, remain uncharacterized. Targeted disruption of MoYAK1 results in pleiotropic defects in M. oryzae development and pathogenicity. The ΔMoyak1 mutant exhibits a severe reduction in aerial hyphal formation and conidiation. Conidia in the ΔMoyak1 are delayed in germination and demonstrate decreased glycogen content in a conidial age-dependent manner. The expression of hydrophobin-coding genes is dramatically changed in the ΔMoyak1 mutant, leading to a loss of surface hydrophobicity. Unlike the complete inability of the ΔMoyak1 mutant to develop appressoria on an inductive surface, the mutant forms appressoria of abnormal morphology in response to exogenous cyclic adenosine-5'-monophosphate and host-driven signals, which are all defective in penetrating host tissues due to abnormalities in glycogen and lipid metabolism, turgor generation and cell wall integrity. These data indicate that MoYAK1 is a protein kinase important for the development and pathogenicity of M. oryzae.
Collapse
Affiliation(s)
- Joon-Hee Han
- Department of Applied Biology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, 200-701, South Korea
| | - Hye-Min Lee
- Department of Applied Biology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, 200-701, South Korea
| | - Jong-Hwan Shin
- Department of Applied Biology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, 200-701, South Korea
| | - Yong-Hwan Lee
- Department of Agricultural Biotechnology, Center for Fungal Genetic Resources, Center for Fungal Pathogenesis, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Korea
| | - Kyoung Su Kim
- Department of Applied Biology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, 200-701, South Korea.,BioHerb Research Institute, Kangwon National University, Chuncheon, 200-701, South Korea
| |
Collapse
|
22
|
Effects of Phospholipase C on Fusarium graminearum Growth and Development. Curr Microbiol 2015; 71:632-7. [DOI: 10.1007/s00284-015-0901-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 07/18/2015] [Indexed: 10/23/2022]
|
23
|
Barman A, Tamuli R. Multiple cellular roles of Neurospora crassa plc-1, splA2, and cpe-1 in regulation of cytosolic free calcium, carotenoid accumulation, stress responses, and acquisition of thermotolerance. J Microbiol 2015; 53:226-35. [DOI: 10.1007/s12275-015-4465-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 12/12/2014] [Accepted: 12/15/2014] [Indexed: 01/02/2023]
|
24
|
Gonçalves AP, Cordeiro JM, Monteiro J, Muñoz A, Correia-de-Sá P, Read ND, Videira A. Activation of a TRP-like channel and intracellular Ca2+ dynamics during phospholipase-C-mediated cell death. J Cell Sci 2014; 127:3817-29. [PMID: 25037570 PMCID: PMC4150065 DOI: 10.1242/jcs.152058] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The model organism Neurospora crassa undergoes programmed cell death when exposed to staurosporine. Here, we show that staurosporine causes defined changes in cytosolic free Ca2+ ([Ca2+]c) dynamics and a distinct Ca2+ signature that involves Ca2+ influx from the external medium and internal Ca2+ stores. We investigated the molecular basis of this Ca2+ response by using [Ca2+]c measurements combined with pharmacological and genetic approaches. Phospholipase C was identified as a pivotal player during cell death, because modulation of the phospholipase C signaling pathway and deletion of PLC-2, which we show to be involved in hyphal development, results in an inability to trigger the characteristic staurosporine-induced Ca2+ signature. Using Δcch-1, Δfig-1 and Δyvc-1 mutants and a range of inhibitors, we show that extracellular Ca2+ entry does not occur through the hitherto described high- and low-affinity Ca2+ uptake systems, but through the opening of plasma membrane channels with properties resembling the transient receptor potential (TRP) family. Partial blockage of the response to staurosporine after inhibition of a putative inositol-1,4,5-trisphosphate (IP3) receptor suggests that Ca2+ release from internal stores following IP3 formation combines with the extracellular Ca2+ influx.
Collapse
Affiliation(s)
- A Pedro Gonçalves
- IBMC-Instituto de Biologia Molecular e Celular - Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal ICBAS-Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - J Miguel Cordeiro
- ICBAS-Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - João Monteiro
- IBMC-Instituto de Biologia Molecular e Celular - Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
| | - Alberto Muñoz
- Manchester Fungal Infection Group, Institute of Inflammation and Repair, CTF Building, Grafton Street, University of Manchester, Manchester M13 9NT, UK
| | - Paulo Correia-de-Sá
- ICBAS-Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Nick D Read
- Manchester Fungal Infection Group, Institute of Inflammation and Repair, CTF Building, Grafton Street, University of Manchester, Manchester M13 9NT, UK
| | - Arnaldo Videira
- IBMC-Instituto de Biologia Molecular e Celular - Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal ICBAS-Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
25
|
Sadat MA, Jeon J, Mir AA, Choi J, Choi J, Lee YH. Regulation of cellular diacylglycerol through lipid phosphate phosphatases is required for pathogenesis of the rice blast fungus, Magnaporthe oryzae. PLoS One 2014; 9:e100726. [PMID: 24959955 PMCID: PMC4069076 DOI: 10.1371/journal.pone.0100726] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 05/26/2014] [Indexed: 11/18/2022] Open
Abstract
Considering implication of diacylglycerol in both metabolism and signaling pathways, maintaining proper levels of diacylglycerol (DAG) is critical to cellular homeostasis and development. Except the PIP2-PLC mediated pathway, metabolic pathways leading to generation of DAG converge on dephosphorylation of phosphatidic acid catalyzed by lipid phosphate phosphatases. Here we report the role of such enzymes in a model plant pathogenic fungus, Magnaporthe oryzae. We identified five genes encoding putative lipid phosphate phosphatases (MoLPP1 to MoLPP5). Targeted disruption of four genes (except MoLPP4) showed that MoLPP3 and MoLPP5 are required for normal progression of infection-specific development and proliferation within host plants, whereas MoLPP1 and MoLPP2 are indispensable for fungal pathogenicity. Reintroduction of MoLPP3 and MoLPP5 into individual deletion mutants restored all the defects. Furthermore, exogenous addition of saturated DAG not only restored defect in appressorium formation but also complemented reduced virulence in both mutants. Taken together, our data indicate differential roles of lipid phosphate phosphatase genes and requirement of proper regulation of cellular DAGs for fungal development and pathogenesis.
Collapse
Affiliation(s)
- Md. Abu Sadat
- Department of Agricultural Biotechnology, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Junhyun Jeon
- Department of Agricultural Biotechnology, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Albely Afifa Mir
- Department of Agricultural Biotechnology, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Jaeyoung Choi
- Department of Agricultural Biotechnology, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Jaehyuk Choi
- Center for Fungal Pathogenesis, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Yong-Hwan Lee
- Department of Agricultural Biotechnology, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Korea
- Center for Fungal Pathogenesis, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Korea
- Center for Fungal Genetic Resources, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| |
Collapse
|
26
|
Kim HJ, Han JH, Kim KS, Lee YH. Comparative functional analysis of the velvet gene family reveals unique roles in fungal development and pathogenicity in Magnaporthe oryzae. Fungal Genet Biol 2014; 66:33-43. [DOI: 10.1016/j.fgb.2014.02.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 02/17/2014] [Accepted: 02/25/2014] [Indexed: 11/27/2022]
|
27
|
Tsai HC, Chung KR. Calcineurin phosphatase and phospholipase C are required for developmental and pathological functions in the citrus fungal pathogen Alternaria alternata. MICROBIOLOGY-SGM 2014; 160:1453-1465. [PMID: 24763426 DOI: 10.1099/mic.0.077818-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Excessive Ca(2+) or compounds interfering with phosphoinositide cycling have been found to inhibit the growth of the tangerine pathotype of Alternaria alternata, suggesting a crucial role of Ca(2+) homeostasis in this pathotype. The roles of PLC1, a phospholipase C-coding gene and CAL1, a calcineurin phosphatase-coding gene were investigated. Targeted gene disruption showed that both PLC1 and CAL1 were required for vegetative growth, conidial formation and pathogenesis in citrus. Fungal strains lacking PLC1 or CAL1 exhibited extremely slow growth and induced small lesions on calamondin leaves. Δplc1 mutants produced fewer conidia, which germinated at slower rates than wild-type. Δcal1 mutants produced abnormal hyphae and failed to produce any mature conidia, but instead produced highly melanized bulbous hyphae with distinct septae. Fluorescence microscopy using Fluo-3 dye as a Ca(2+) indicator revealed that the Δplc1 mutant hyphae emitted stronger cytosolic fluorescence, and the Δcal1 mutant hyphae emitted less cytosolic fluorescence, than those of wild-type. Infection assessed on detached calamondin leaves revealed that application of CaCl2 or neomycin 24 h prior to inoculation provided protection against Alt. alternata. These data indicate that a dynamic equilibrium of cellular Ca(2+) is critical for developmental and pathological processes of Alt. alternata.
Collapse
Affiliation(s)
- Hsieh-Chin Tsai
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences (IFAS), University of Florida, 700 Experiment Station Road, Lake Alfred, FL 33850, USA
| | - Kuang-Ren Chung
- Department of Plant Pathology, IFAS, University of Florida, Gainesville, FL 32611, USA.,Citrus Research and Education Center, Institute of Food and Agricultural Sciences (IFAS), University of Florida, 700 Experiment Station Road, Lake Alfred, FL 33850, USA
| |
Collapse
|
28
|
Genetic control of infection-related development in Magnaporthe oryzae. Curr Opin Microbiol 2012; 15:678-84. [DOI: 10.1016/j.mib.2012.09.004] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 09/24/2012] [Accepted: 09/26/2012] [Indexed: 11/23/2022]
|
29
|
Kim HS, Czymmek KJ, Patel A, Modla S, Nohe A, Duncan R, Gilroy S, Kang S. Expression of the Cameleon calcium biosensor in fungi reveals distinct Ca(2+) signatures associated with polarized growth, development, and pathogenesis. Fungal Genet Biol 2012; 49:589-601. [PMID: 22683653 DOI: 10.1016/j.fgb.2012.05.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 05/22/2012] [Accepted: 05/24/2012] [Indexed: 11/19/2022]
Abstract
Calcium is a universal messenger that translates diverse environmental stimuli and developmental cues into specific cellular and developmental responses. While individual fungal species have evolved complex and often unique biochemical and structural mechanisms to exploit specific ecological niches and to adjust growth and development in response to external stimuli, one universal feature to all is that Ca(2+)-mediated signaling is involved. The lack of a robust method for imaging spatial and temporal dynamics of subcellular Ca(2+) (i.e., "Ca(2+) signature"), readily available in the plant and animal systems, has severely limited studies on how this signaling pathway controls fungal growth, development, and pathogenesis. Here, we report the first successful expression of a FRET (Förster Resonance Energy Transfer)-based Ca(2+) biosensor in fungi. Time-lapse imaging of Magnaporthe oryzae, Fusarium oxysporum, and Fusarium graminearum expressing this sensor showed that instead of a continuous gradient, the cytoplasmic Ca(2+) ([Ca(2+)](c)) change occurred in a pulsatile manner with no discernable gradient between pulses, and each species exhibited a distinct Ca(2+) signature. Furthermore, occurrence of pulsatile Ca(2+) signatures was age and development dependent, and major [Ca(2+)](c) transients were observed during hyphal branching, septum formation, differentiation into specialized plant infection structures, cell-cell contact and in planta growth. In combination with the sequenced genomes and ease of targeted gene manipulation of these and many other fungal species, the data, materials and methods developed here will help understand the mechanism underpinning Ca(2+)-mediated control of cellular and developmental changes, its role in polarized growth forms and the evolution of Ca(2+) signaling across eukaryotic kingdoms.
Collapse
Affiliation(s)
- Hye-Seon Kim
- Department of Plant Pathology, The Pennsylvania State University, University Park, PA 16802, United States
| | | | | | | | | | | | | | | |
Collapse
|