1
|
Zhang W, Guo S, Dou J, Zhang X, Shi F, Zhang C, Zhang H, Lan X, Su Y. Berberine and its derivatives: mechanisms of action in myocardial vascular endothelial injury - a review. Front Pharmacol 2025; 16:1543697. [PMID: 40103596 PMCID: PMC11914797 DOI: 10.3389/fphar.2025.1543697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 01/31/2025] [Indexed: 03/20/2025] Open
Abstract
Myocardial vascular endothelial injury serves as a crucial inducer of cardiovascular diseases. Mechanisms such as endoplasmic reticulum stress, apoptosis, inflammation, oxidative stress, autophagy, platelet dysfunction, and gut microbiota imbalance are intimately linked to this condition. Berberine and its derivatives have demonstrated potential in modulating these mechanisms. This article reviews the pathogenesis of endothelial injury in myocardial vessels, the pharmacological effects of berberine and its derivatives, particularly their interactions with targets implicated in vascular endothelial injury. Furthermore, it discusses clinical applications, methods to enhance bioavailability, and toxicity concerns, aiming to lay a foundation for the development of BBR as a therapeutic agent for cardiovascular diseases.
Collapse
Affiliation(s)
- Wenhui Zhang
- Graduate School, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Siyi Guo
- First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jinjin Dou
- Department of Cardiovascular, The Fourth Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Xiwu Zhang
- Experimental Training Centre, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Fan Shi
- Graduate School, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Chun Zhang
- Graduate School, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Huxiao Zhang
- Graduate School, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Xiaodong Lan
- Graduate School, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Yi Su
- Graduate School, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| |
Collapse
|
2
|
Gong Z, Hu M, Zhao G, Liang N, Zhang H, Li H, Che Q, Guo J, Song T, Wang Y, Shi N, Liu B. Therapeutic Effects of Alkaloids on Influenza: A Systematic Review and Meta-Analysis of Preclinical Studies. Int J Mol Sci 2025; 26:1823. [PMID: 40076449 PMCID: PMC11899224 DOI: 10.3390/ijms26051823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/18/2025] [Accepted: 02/20/2025] [Indexed: 03/14/2025] Open
Abstract
Experimental evidence suggests that alkaloids have anti-influenza and anti-inflammatory effects. However, the risk of translating existing evidence into clinical practice is relatively high. We conducted a systematic review and meta-analysis of animal studies to evaluate the therapeutic effects of alkaloids in treating influenza, providing valuable references for future studies. Seven electronic databases were searched until October 2024 for relevant studies. The Review Manager 5.2 software was utilized to perform the meta-analysis. Our study was registered within the International Prospective Register of Systematic Reviews (PROSPERO) as number CRD42024607535. Alkaloids are significantly correlated with viral titers, pulmonary inflammation scores, survival rates, lung indices, and body weight. However, alkaloid therapy is not effective in reducing the levels of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). In addition, the therapeutic effects of alkaloids may be related to the inhibition of the Toll-like receptor 4 or 7/Nuclear factor (NF)-κB signaling pathway, NACHT, LRR, and PYD domains-containing protein 3 (NLRP3) inflammasome pathway, and the Antiviral innate immune response receptor RIG-I (RIG-I) pathway. Alkaloids are potential candidates for the prevention and treatment of influenza. However, extensive preclinical studies and clinical studies are needed to confirm the anti-influenza and anti-inflammatory properties of alkaloids.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Nannan Shi
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China; (Z.G.); (M.H.); (G.Z.); (N.L.); (H.Z.); (H.L.); (Q.C.); (J.G.); (T.S.); (Y.W.)
| | - Bin Liu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China; (Z.G.); (M.H.); (G.Z.); (N.L.); (H.Z.); (H.L.); (Q.C.); (J.G.); (T.S.); (Y.W.)
| |
Collapse
|
3
|
Feng J, Xu R, Dou Z, Hao Y, Xu R, Khoso MA, Shi Y, Liu L, Sun H, Chen C, Li X, Liu H, Han W, Cheng M, Tang P, Li J, Zhang Y, Liu X. Tetrahydroberberrubine improves hyperlipidemia by activating the AMPK/SREBP2/PCSK9/LDL receptor signaling pathway. Eur J Pharmacol 2025; 989:177228. [PMID: 39755242 DOI: 10.1016/j.ejphar.2024.177228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/07/2024] [Accepted: 12/23/2024] [Indexed: 01/06/2025]
Abstract
Hyperlipidemia is a major risk factor for hypertension, coronary heart disease, diabetes and stroke, triggering an intensified research efforts into its prevention and treatment. Tetrahydroberberrubine (THBru) is a derivative of berberine (BBR) that has been shown to have higher bioavailability and lower toxicity compared to its parent compound. However, its impact on hyperlipidemia has not been fully explored. This study was aimed to investigate the effects and potential mechanisms of THBru on hyperlipidemia. Herein, we constructed the hyperlipidemia animal model in C57BL/6J mice through the administration of a 20-week high-fat diet (HFD). The liver damage and lipid metabolism disorders in hyperlipidemic mice were effectively alleviated by THBru (25 or 50 mg/kg) administration. Molecular docking and cellular thermal shift assay (CETSA) have revealed a direct interaction between THBru and the adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK). THBru was found to downregulate the expression of sterol regulatory element-binding protein 2 (SREBP2) and proprotein convertase subtilisin/kexin type 9 (PCSK9), while upregulate the expression of low-density lipoprotein cholesterol (LDL-C) in the liver of hyperlipidemic mice and lipid metabolism abnormalities cells. The application of AMPK inhibitor in HepG2 cells was able to effectively reverse the regulatory effect of THBru on the AMPK/SREBP2/PCSK9/LDL receptor signaling pathway. In summary, this study for the first time found that THBru is a potential agonist of AMPK, regulate the SREBP2/PCSK9/LDL receptor pathway to improve hyperlipidemia, providing new insights into the prevention and treatment of hyperlipidemia.
Collapse
Affiliation(s)
- Jing Feng
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin, 150081, China; State Key Labratoray-Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin, 150081, China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, 150081, China
| | - Run Xu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin, 150081, China; State Key Labratoray-Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin, 150081, China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, 150081, China
| | - Zijia Dou
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin, 150081, China; State Key Labratoray-Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin, 150081, China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, 150081, China
| | - Yutong Hao
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin, 150081, China; State Key Labratoray-Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin, 150081, China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, 150081, China
| | - Ranchen Xu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin, 150081, China; State Key Labratoray-Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin, 150081, China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, 150081, China
| | - Muneer Ahmed Khoso
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin, 150081, China; State Key Labratoray-Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin, 150081, China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, 150081, China
| | - Yang Shi
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin, 150081, China; State Key Labratoray-Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin, 150081, China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, 150081, China
| | - Ling Liu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin, 150081, China; State Key Labratoray-Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin, 150081, China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, 150081, China
| | - Heyang Sun
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin, 150081, China; State Key Labratoray-Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin, 150081, China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, 150081, China
| | - Chen Chen
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin, 150081, China; State Key Labratoray-Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin, 150081, China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, 150081, China
| | - Xiaohan Li
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin, 150081, China; State Key Labratoray-Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin, 150081, China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, 150081, China
| | - Heng Liu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin, 150081, China; State Key Labratoray-Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin, 150081, China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, 150081, China
| | - Weina Han
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin, 150081, China; State Key Labratoray-Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin, 150081, China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, 150081, China
| | - Ming Cheng
- Cardiovascular Surgery Harbin Medical University, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150006, China
| | - Pengcheng Tang
- Cardiovascular Surgery Harbin Medical University, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150006, China
| | - Junquan Li
- Cardiovascular Surgery Harbin Medical University, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150006, China.
| | - Yong Zhang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin, 150081, China; State Key Labratoray-Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin, 150081, China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, 150081, China.
| | - Xin Liu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Department of Pharmacology, College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin, 150081, China; State Key Labratoray-Province Key Laboratories of Biomedicine-Pharmaceutics of China, and Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin, 150081, China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, 150081, China.
| |
Collapse
|
4
|
Comber ER, Strong J, Moore O, Khan A, O’Callaghan J, Manion B, Moore BJ, Smith MT. Evaluation of long-term outcomes with intrathecal opioid treatment: a comparison utilizing data derived from pain clinic populations in Australia and New Zealand. FRONTIERS IN PAIN RESEARCH 2025; 6:1527371. [PMID: 40026615 PMCID: PMC11868084 DOI: 10.3389/fpain.2025.1527371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 01/31/2025] [Indexed: 03/05/2025] Open
Abstract
Introduction An obstacle to analysis of the long-term effectiveness of intrathecal (IT) opioids is absence of historical patient baseline data. The electronic Persistent Pain Outcomes Collaboration (ePPOC) is an initiative of the Faculty of Pain Medicine of the Australian and New Zealand College of Anaesthetists. Recently published ePPOC data has provided justifiable surrogate baseline data allowing opportunities for pain outcomes research into select patient treatment groups. Our aim was to compare long-term outcomes of IT opioid therapy with a surrogate baseline utilizing a large ePPOC data set for patients at the time of initial presentation to 36 pain clinics in Australia and New Zealand. Methods Study participants were 49 consenting patients receiving IT opioids as part of a long-term pain management regime for treating chronic non-cancer pain. Their data were compared with the large ePPOC data set (n = 13,343). The questionnaires comprised a demographic questionnaire, the Brief Pain Inventory, the Depression, Anxiety and Stress Scale, the Pain Catastrophizing Questionnaire, and the Pain Self-Efficacy Questionnaire. Results Compared with the ePOCC group, participants who received IT opioids long-term for the relief of chronic non-cancer pain reported significantly lower (p ≤ 0.001) pain severity (4.3 vs. 6.4), and pain interference scores (5.5 vs. 7), significantly lower depression (20.2 vs. 13.7), anxiety (9.6 vs. 14.1), stress (15.5 vs. 21), rumination (6.9 vs. 10), magnification (3.8 vs. 5.9), helplessness (9.7 vs. 14.1), general catastrophizing (20.4 vs. 29.8), and higher self-efficacy (29.5 vs. 20.7). Discussion The observed improvements in all measured pain variables have occurred in the context of comprehensive pain management, and therefore, may be attributable to pain reduction and not directly to IT opioid use or the device itself. Favourable pain management outcomes, in a select patient treatment group utilizing long-term IT opioid therapy, were demonstrated using the large-data ePPOC initiative, highlighting the research opportunities it provides.
Collapse
Affiliation(s)
- Elouise Rose Comber
- Faculty of Science, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Jenny Strong
- Faculty of Health and Behavioural Sciences, School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Orla Moore
- Faculty of Medicine, School of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Asaduzzaman Khan
- Faculty of Health and Behavioural Sciences, School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, QLD, Australia
| | | | | | - Brendan Joseph Moore
- Axxon Pain Medicine, Brisbane, QLD, Australia
- Faculty of Medicine, School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Maree Therese Smith
- Faculty of Medicine, School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
5
|
Gao C, Wang H, Xue X, Qi L, Lin Y, Wang L. The Potential Role of Intestinal Microbiota on the Intestine-Protective and Lipid-Lowering Effects of Berberine in Zebrafish ( Danio rerio) Under High-Lipid Stress. Metabolites 2025; 15:118. [PMID: 39997743 PMCID: PMC11857631 DOI: 10.3390/metabo15020118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 01/24/2025] [Accepted: 02/07/2025] [Indexed: 02/26/2025] Open
Abstract
Background: Berberine has extremely low oral bioavailability, but shows a potent lipid-lowering effect, indicating its potential role in regulating intestinal microbiota, which has not been investigated. Methods: In the present study, five experimental diets, a control diet (Con), a high-lipid diet (HL), and high-lipid·diets·supplemented with an antibiotic cocktail (HLA), berberine (HLB), or both (HLAB) were fed to zebrafish (Danio rerio) for 30 days. Results: The HLB group showed significantly greater weight gain and feed intake than the HLA and other groups, respectively (p < 0.05). Hepatic triglyceride (TG) and total cholesterol (TC) levels, lipogenesis, and proinflammatory cytokine gene expression were significantly upregulated by the high-lipid diet, but significantly downregulated by berberine supplementation. Conversely, the expression levels of intestinal and/or hepatic farnesoid X receptor (fxr), Takeda G protein-coupled receptor 5 (tgr5), lipolysis genes, and zonula occludens 1 (zo1) exhibited the opposite trend. Compared with the HLB group, the HLAB group displayed significantly greater hepatic TG content and proinflammatory cytokine expression, but significantly lower intestinal bile salt hydrolase (BSH) activity and intestinal and/or hepatic fxr and tgr5 expression levels. The HL treatment decreased the abundance of certain probiotic bacteria (e.g., Microbacterium, Cetobacterium, and Gemmobacter) and significantly increased the pathways involved in cytochrome P450, p53 signaling, and ATP-binding cassette (ABC) transporters. The HLB group increased some probiotic bacteria abundance, particularly BSH-producing bacteria (e.g., Escherichia Shigella). Compared with the HLB group, the abundance of BSH-producing bacteria (e.g., Bifidobacterium and Enterococcus) and pathways related to Notch signaling and Wnt signaling were reduced in the HLAB group. Conclusions: This study revealed that berberine's lipid-lowering and intestine-protective effects are closely related to the intestinal microbiota, especially BSH-producing bacteria.
Collapse
Affiliation(s)
- Chang Gao
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-Founded by Anhui Province and Ministry of Education, Anhui Normal University, Wuhu 241002, China; (C.G.); (H.W.); (X.X.); (L.Q.)
| | - Heng Wang
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-Founded by Anhui Province and Ministry of Education, Anhui Normal University, Wuhu 241002, China; (C.G.); (H.W.); (X.X.); (L.Q.)
| | - Xuan Xue
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-Founded by Anhui Province and Ministry of Education, Anhui Normal University, Wuhu 241002, China; (C.G.); (H.W.); (X.X.); (L.Q.)
| | - Lishun Qi
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-Founded by Anhui Province and Ministry of Education, Anhui Normal University, Wuhu 241002, China; (C.G.); (H.W.); (X.X.); (L.Q.)
| | - Yanfeng Lin
- Fishery Bureau of Xiuning County, Huangshan 245400, China
| | - Lei Wang
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-Founded by Anhui Province and Ministry of Education, Anhui Normal University, Wuhu 241002, China; (C.G.); (H.W.); (X.X.); (L.Q.)
- Provincial Key Laboratory of Biotic Environment and Ecological Safety in Anhui, Wuhu 241002, China
| |
Collapse
|
6
|
Zhang Y, Lv S, Huang P, Xiao L, Lin N, Huang E. Network pharmacology study on the mechanism of berberine in Alzheimer's disease model. NPJ Sci Food 2025; 9:16. [PMID: 39900946 PMCID: PMC11790853 DOI: 10.1038/s41538-025-00378-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 01/06/2025] [Indexed: 02/05/2025] Open
Abstract
Research indicated that berberine (BBR) plays a protective role in modulating Alzheimer's disease (AD). This study aimed to explore the target genes of BBR associated with AD therapy using a network pharmacology study. Through network pharmacology analysis, two main potential target genes, β-amyloid precursor protein (APP) and peroxisome proliferator-activated receptor gamma (PPARG), of BBR for AD therapy were screened out. Further experiments demonstrated that BV2 and C8-D1A treated with BBR were decreased in the mRNA and protein expression of APP and presenilin 1 while PPARG was increased with a reduction in the NF-κB pathway. A similar result was shown in vivo. Through a network pharmacology study, this study supported that BBR played a protective role in the AD mice model via blocking APP processing and amyloid plaque formation. It also promotes PPARG expression to blockage of NF-κB pathway-mediated inflammatory response and neuroinflammation.
Collapse
Affiliation(s)
- Yaoyi Zhang
- Key Laboratory of Brain Aging and Neurodegenerative Diseases of Fujian Province, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Shuai Lv
- Department of Pediatrics, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Pinyuan Huang
- Key Laboratory of Brain Aging and Neurodegenerative Diseases of Fujian Province, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Lingmin Xiao
- Key Laboratory of Brain Aging and Neurodegenerative Diseases of Fujian Province, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Nan Lin
- Fujian Key Laboratory of Vascular Aging, Department of Geriatrics, Fujian Institute of Geriatrics, Fujian Clinical Research Center for Senile Vascular Aging and Brain Aging, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - En Huang
- Key Laboratory of Brain Aging and Neurodegenerative Diseases of Fujian Province, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, China.
- Scientific Research Center, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, China.
| |
Collapse
|
7
|
Kakoti BB, Zothantluanga JH, Deka K, Halder RK, Roy D. In silico design and computational screening of berberine derivatives for potential antidiabetic activity through allosteric activation of the AMPK pathway. In Silico Pharmacol 2025; 13:12. [PMID: 39780772 PMCID: PMC11704122 DOI: 10.1007/s40203-024-00295-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Globally, there is an increase in the prevalence of metabolic illnesses, including diabetes mellitus. However, current therapies for diabetes and other metabolic illnesses are not well understood. Pharmacological treatment of type 2 diabetes is challenging, moreover, the majority of antidiabetic medications are incompatible with individuals who have cardiac disease, renal illness, or liver damage. Despite the ongoing development of innovative medicines, the quest for an optimal treatment that serves both as a hypoglycaemic agent and mitigates diabetes-related problems remains unattained. Recent research demonstrates that berberine has significant promise in the treatment of diabetes. Berberine influences glucose metabolism by enhancing insulin secretion, promoting glycolysis, decreasing adipogenesis, disrupting the function of the mitochondria, stimulating the 5' adenosine monophosphate-activated protein kinase (AMPK) pathway, thereby augmenting glucokinase activity. In this study, we virtually designed and synthesized 5 berberine derivatives (data not yet published) to study their impact on the AMP-activated protein kinase (AMPK) pathway through molecular docking and dynamic simulation study. Activation of AMPK plays an important role by enhancing glucose uptake in cells. Berberine and its derivatives showed potential for allosteric activation of the AMPK pathway. The allosteric activation of AMPK α- & β-subunit involves complex interactions with standard activators like A-769662. Berberine and its derivatives showed potential binding affinity at the allosteric site of AMPK α- & β-subunit, forming similar interactions to A-769662. Molecular dynamic simulations indicated stability of these complexes. However, interactions of these derivatives with the AMPK γ-subunit were less stable, suggesting limited potential for allosteric activation at this site. Further studies are required to assess the long-term stability and efficacy of berberine and its derivatives as allosteric AMPK activators. Additionally, ADMET predictions suggest these derivatives to be safe, warranting further experimental and preclinical investigations as potential antidiabetic agents. Supplementary Information The online version contains supplementary material available at 10.1007/s40203-024-00295-0.
Collapse
Affiliation(s)
- Bibhuti Bhusan Kakoti
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam 786004 India
| | - James H. Zothantluanga
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam 786004 India
| | - Kangkan Deka
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam 786004 India
- NETES Institute of Pharmaceutical Science, NEMCARE Group of Institutions, Mirza, Kamrup, Guwahati, Assam 781125 India
| | - Raj Kumar Halder
- Ruhvenile Biomedical, Plot-8 OCF Pocket Institution, Sarita Vihar, Delhi, 110076 India
| | - Dhritiman Roy
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam 786004 India
| |
Collapse
|
8
|
Zhang Y, Zhu M, Dai Y, Gao L, Cheng L. Research Progress in Ulcerative Colitis: The Role of Traditional Chinese Medicine on Gut Microbiota and Signaling Pathways. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:2277-2336. [PMID: 39756829 DOI: 10.1142/s0192415x24500885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Ulcerative colitis (UC), one among other refractory diseases worldwide, has shown an increasing trend of progression to colorectal cancer in recent years. In the treatment of UC, traditional Chinese medicine has demonstrated good efficacy, with a high cure rate, fewer adverse effects, great improvement in the quality of patient survival, and reduction in the tendency of cancerous transformation. It shows promise as a complementary and alternative therapy. This review aims to evaluate and discuss the current research on UC, signaling pathways, and gut microbiota. We also summarized the mechanisms of action of various Chinese medicines (active ingredients or extracts) and herbal formulas, through signaling pathways and gut microbiota, with the expectation that they can provide references and evidence for treating UC and preventing inflammation-associated colorectal cancer by traditional Chinese medicine. We illustrate that multiple signaling pathways, such as TLR4, STAT3, PI3K/Akt, NF-[Formula: see text]B, and Keap1/Nrf2, can be inhibited by Chinese herbal treatments through the combined regulation of signaling pathways and gut microbiota, which can act individually or synergistically to inhibit intestinal inflammatory cell infiltration, attenuate gut oxidative responses, and repair the intestinal barrier.
Collapse
Affiliation(s)
- Yuyi Zhang
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, P. R. China
| | - Mingfang Zhu
- Graduate School, Zunyi Medical University Zunyi, P. R. China
| | - Yueying Dai
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, P. R. China
| | - Longying Gao
- Department of Anorectal, The First Affiliated Hospital of Heilongjiang, University of Chinese Medicine Harbin, P. R. China
| | - Limin Cheng
- Department of Anorectal, The First Affiliated Hospital of Heilongjiang, University of Chinese Medicine Harbin, P. R. China
| |
Collapse
|
9
|
Liu XZ, Du XY, Xie WS, Ding J, Zhu MZ, Feng ZQ, Wang H, Feng Y, Yu MJ, Liu SM, Liu WT, Zhu XH, Liang JH. Redesigning Berberines and Sanguinarines to Target Soluble Epoxide Hydrolase for Enhanced Anti-Inflammatory Efficacy. J Med Chem 2024; 67:22168-22190. [PMID: 39658523 DOI: 10.1021/acs.jmedchem.4c02202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Amino-berberine has remained underexplored due to limited biological evaluation and total synthesis approaches. In inflammation therapy, soluble Epoxide Hydrolase (sEH) is a promising target, yet natural scaffolds remain underutilized. Our study advances the field by redesigning natural compounds─berberine and sanguinarine─with strategic urea modifications and hydrogenated frameworks, creating novel sEH inhibitors with enhanced in vivo efficacy. Through total synthesis and structure-activity relationship studies of amino-berberine derivatives, chiral tetrahydroberberine (R)-14i (coded LXZ-42) emerged as the most potent lead, with an IC50 value of 1.20 nM. (R)-14i showed reduced CYP enzyme impact, potent therapeutic effects on acute pancreatitis, no acute in vivo toxicity, and superior pharmacokinetic properties, with an oral bioavailability of 89.3%. Structural insights from crystallography of (R)-14i bound to sEH revealed key interactions: three with the tetrahydroberberine framework and three hydrogen bonds with the urea group, highlighting (R)-14i as a novel lead for sEH-targeted therapies in inflammation.
Collapse
Affiliation(s)
- Xing-Zhou Liu
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Xiao-Yu Du
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wei-Song Xie
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Jing Ding
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Min-Zhen Zhu
- Research Center for Brain Health, PazhouLab, Guangzhou 510330, China
| | - Zi-Qiang Feng
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Hao Wang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yue Feng
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ming-Jia Yu
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Si-Meng Liu
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Wen-Tian Liu
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Xin-Hong Zhu
- Research Center for Brain Health, PazhouLab, Guangzhou 510330, China
| | - Jian-Hua Liang
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| |
Collapse
|
10
|
Chen H, Ma J, Zhou F, Yang J, Jiang L, Chen Q, Zhou Y, Zhang J. A potential cocrystal strategy to tailor in-vitro dissolution and improve Caco-2 permeability and oral bioavailability of berberine. Int J Pharm 2024; 666:124789. [PMID: 39366529 DOI: 10.1016/j.ijpharm.2024.124789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/10/2024] [Accepted: 10/01/2024] [Indexed: 10/06/2024]
Abstract
Berberine hydrochloride (BER), a promising candidate in treating tumors, diabetes and pain management, has relatively low oral absorption and bioavailability due to its low intestinal permeability. To address these challenges, we developed a BER and lornoxicam cocrystal (BLCC) by a solvent evaporation method and characterized it using X-ray diffraction, differential scanning calorimetry and thermogravimetric analysis. Compared with BER, BLCC exhibited an instant release in pH 1.0 HCl and a sustained release up to 24 h in pH 6.8 buffer solutions and water. The Caco-2 permeability of BLCC has shown a remarkable increase compared to that of BER (i.e., Papp(a→b): 50.30 × 10-7vs 8.82 × 10-7 cm/s), which is attributed to the improved lipophilicity of BER (i.e., log P: 1.29 vs -1.83) and the reduced efflux amount of BER (i.e., ER: 1.71 vs 12.11). Furthermore, BLCC demonstrated a relative bioavailability of 410 % in comparison to the original BER, due to notably enhanced intestinal permeability of BLCC and its continuous dissolution in simulated intestinal fluid. BLCC has the potential to tailor the dissolution behavior, improve intestinal permeability, and boost the bioavailability of BER. This indicates that the cocrystal strategy holds promise as an effective approach to improving the oral absorption and bioavailability of active pharmaceutical molecules with low permeability during drug development.
Collapse
Affiliation(s)
- Hui Chen
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China; Ningbo Cixi Institute of Biomedical Engineering, Cixi 315300, PR China
| | - Jiangpo Ma
- Ningbo No. 2 Hospital, Ningbo 315010, PR China; Cixi Biomedical Research Institute, Wenzhou Medical University, Cixi 315300, PR China
| | - Feng Zhou
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China; Ningbo Cixi Institute of Biomedical Engineering, Cixi 315300, PR China
| | - Junhui Yang
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China; Ningbo Cixi Institute of Biomedical Engineering, Cixi 315300, PR China; Cixi Biomedical Research Institute, Wenzhou Medical University, Cixi 315300, PR China
| | - Lei Jiang
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China; Ningbo Cixi Institute of Biomedical Engineering, Cixi 315300, PR China
| | - Quanbing Chen
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China; Ningbo Cixi Institute of Biomedical Engineering, Cixi 315300, PR China
| | - Yang Zhou
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China; Ningbo Cixi Institute of Biomedical Engineering, Cixi 315300, PR China.
| | - Jiantao Zhang
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China; Ningbo Cixi Institute of Biomedical Engineering, Cixi 315300, PR China.
| |
Collapse
|
11
|
Werner R, Carnazza M, Li XM, Yang N. Effect of Small-Molecule Natural Compounds on Pathologic Mast Cell/Basophil Activation in Allergic Diseases. Cells 2024; 13:1994. [PMID: 39682741 DOI: 10.3390/cells13231994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/04/2024] [Accepted: 10/08/2024] [Indexed: 12/18/2024] Open
Abstract
Pathologic mast cells and basophils, key effector cells in allergic reactions, play pivotal roles in initiating and perpetuating IgE-mediated allergic responses. Conventional therapies for allergies have limitations, prompting exploration into alternative approaches such as small-molecule natural compounds derived from botanical sources. This review synthesizes the existing literature on the effects of these compounds on pathologic mast cells and basophils, highlighting their potential in allergy management, and utilizes the PubMed database for literature acquisition, employing keyword-based searches to identify relevant peer-reviewed sources. Additionally, mechanistic insights were evaluated to contextualize how small-molecule natural compounds can inhibit mast cell/basophil activation, degranulation, and signaling pathways crucial for IgE-mediated allergic reactions. Small-molecule natural compounds exhibit promising anti-allergic effects, yet despite these findings, challenges persist in the development and translation of natural compound-based therapies, including bioavailability and standardization issues. Future research directions include optimizing dosing regimens, exploring synergistic effects with existing therapies, and employing systems pharmacology approaches for a holistic understanding of their mechanisms of action. By harnessing the therapeutic potential of small-molecule natural compounds, effective treatments for allergic diseases may be realized, offering hope for individuals with allergies.
Collapse
Affiliation(s)
- Robert Werner
- Division of R&D, General Nutraceutical Technology LLC, Elmsford, NY 10523, USA
| | - Michelle Carnazza
- Division of R&D, General Nutraceutical Technology LLC, Elmsford, NY 10523, USA
| | - Xiu-Min Li
- Department of Pathology, Microbiology & Immunology, New York Medical College, Valhalla, NY 10595, USA
- Department of Otolaryngology, School of Medicine, New York Medical College, Valhalla, NY 10595, USA
- Department of Dermatology, New York Medical College, Valhalla, NY 10595, USA
| | - Nan Yang
- Division of R&D, General Nutraceutical Technology LLC, Elmsford, NY 10523, USA
| |
Collapse
|
12
|
Wang X, Wang Y, Yuan T, Wang H, Zeng Z, Tian L, Cui L, Guo J, Chen Y. Network pharmacology provides new insights into the mechanism of traditional Chinese medicine and natural products used to treat pulmonary hypertension. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156062. [PMID: 39305743 DOI: 10.1016/j.phymed.2024.156062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/31/2024] [Accepted: 09/14/2024] [Indexed: 12/01/2024]
Abstract
BACKGROUND Pulmonary hypertension (PH) is a rare cardiovascular disease with high morbidity and mortality rates. It is characterized by increased pulmonary arterial pressure. Current research into relevant therapeutic drugs and targets for PH, however, is insufficient still. Traditional Chinese medicine (TCM) and natural products have a long history as therapeutics for PH. Network pharmacology is an approach that integrates drug-target interactions and signaling pathways based on biomarkers information obtained from drug and disease databases. The concept of network pharmacology shows many similarities with the TCM philosophy. Network pharmacology help elucidate the mechanisms of TCM in PH. This review presents representative applications of network pharmacology in the study of the mechanisms of TCM and natural products for the treatment of PH. METHODS In this review, we used ("pulmonary hypertension" OR "pulmonary arterial hypertension" OR "chronic thromboembolic pulmonary hypertension") AND ("network pharmacology" OR "systematic pharmacology") as keywords to search for reports from PubMed, Web of Science, and Google Scholar databases from ten years ago. The studies were screened and those chosen are summarized here. The TCM and natural products inPH and their corresponding targets and signaling pathways are described. Additionally, we discuss the application of network pharmacology in the study of TCM in PH to provide insights for future application strategies. RESULTS Network pharmacology have shown that AKT-related pathways, HIF-1 signaling pathway, MAPK signaling pathway, TGF-β-Smad pathway, cell cycle-related pathways and inflammation-related pathways are the main signaling pathways enriched in the PH targets of TCM. Reservatrol, curcumol, genistin, formononetin, wogonin, luteolin, baicalein, berberine, triptolide and tanshinone llA are active ingredients specific for PH treatment. A number of databases and tools specific for the treatment of PH are used in network pharmacology and natural product research. CONCLUSION Through the reasonable combination of molecular docking, omics technology and bioinformatics technology, the mechanism of multi-targets can be explained more comprehensively. Analyzing the complex mechanism of TCM from the clinical perspective may be a potential development trend of network pharmacology. Combination of predicted targets and traditional pharmacology improves efficiency of drug development.
Collapse
Affiliation(s)
- Xinyue Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yichen Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Tianyi Yuan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Hongjuan Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zuomei Zeng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Leiyu Tian
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Lidan Cui
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jian Guo
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Yucai Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
13
|
Cui X, Geng H, Guo H, Wang L, Zhu Z, Zhang Y, Chen P, Wang X, Sun C. Visualizing the transdermal delivery of berberine loaded within chitosan microneedles using mass spectrometry imaging. Anal Bioanal Chem 2024; 416:6869-6877. [PMID: 39400576 DOI: 10.1007/s00216-024-05584-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 09/05/2024] [Accepted: 10/01/2024] [Indexed: 10/15/2024]
Abstract
Berberine (BR), an alkaloid isolated from the Chinese traditional medicine Coptidis rhizoma, exhibits therapeutic effects on several diseases including bacterial infections, diabetes, and hyperlipidemia, but the oral availability is poor. In this work, we prepared the chitosan microneedle array-loaded BR (BR-CS MNAs) to transdermally deliver BR, and the spatial distribution of BR in heterogeneous skin tissues was analyzed and imaged by matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI). Some endogenous phospholipids with specific spatial distribution were used to differentiate the epidermis and dermis regions of the skin. The results showed that BR was effectively delivered and could permeate to both epidermis and dermis regions of the skin. This demonstrated the feasibility of MALDI-MSI to evaluate the transdermal delivery efficiency of microneedle arrays and suggested BR could be transdermally delivered by CS MNAs.
Collapse
Affiliation(s)
- Xiaoqing Cui
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Haoyuan Geng
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Huanying Guo
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Lei Wang
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Zihan Zhu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Yaqi Zhang
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Panpan Chen
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Xiao Wang
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China.
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China.
| | - Chenglong Sun
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China.
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China.
| |
Collapse
|
14
|
Pan X, Tao J, Xing Q, Wang B, Dou M, Zhang Y, Jin S, Wu J. Borneol promotes berberine-induced cardioprotection in a rat model of myocardial ischemia/reperfusion injury via inhibiting P-glycoprotein expression. Eur J Pharmacol 2024; 983:177009. [PMID: 39306269 DOI: 10.1016/j.ejphar.2024.177009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 09/11/2024] [Accepted: 09/17/2024] [Indexed: 09/27/2024]
Abstract
Berberine is reported to protect the heart against ischemia/reperfusion (I/R) injury, although efficacy is limited by low bioavailability. This study aims to determine whether borneol, a classic guiding drug, can enhance the cardioprotection induced by berberine and to clarify the underlying mechanisms involving P-glycoprotein (P-gp) in the heart. Adult male Sprague Dawley rats were gavaged with berberine (200 mg/kg) with or without borneol (100 mg/kg) for 7 consecutive days. A rat model of myocardial I/R injury was established by 30 min left coronary artery occlusion followed with 120 min reperfusion. The arrhythmia score, cardiac enzyme content, and myocardial infarct size were determined following reperfusion. Heart tissues were collected for Western blot and immunofluorescence analyses to measure the protein expression levels of Bcl-2, Bax, and P-gp. The results showed that administration of berberine protected the heart against I/R injury, as demonstrated by lower arrhythmia scores, serum cTnI contents, myocardial infarct size, and cardiomyocytes apoptosis. Moreover, borneol substantially enhanced the cardioprotective effects of berberine. Western blot and immunofluorescence analyses showed that both berberine and I/R injury did not alter P-gp expression in heart. In contrast, borneol combined with berberine significantly reduced P-gp levels by 43.4% (P = 0.0240). Interestingly, treatment with borneol alone decreased P-gp levels, but did not protect against myocardial I/R injury. These findings suggest that borneol, as an adjuvant drug, improved the cardioprotective effects of berberine by inhibiting P-gp expression in heart. Borneol combined with berberine administration provides a new strategy to protect the heart against I/R injury.
Collapse
Affiliation(s)
- Xinxin Pan
- Department of Anesthesiology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230601, China
| | - Jing Tao
- Department of Anesthesiology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230601, China; Department of Anesthesiology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, 233000, China
| | - Qijing Xing
- Department of Anesthesiology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230601, China
| | - Baoli Wang
- Department of Anesthesiology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230601, China
| | - Mengyun Dou
- Department of Anesthesiology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230601, China
| | - Ye Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230601, China.
| | - Shiyun Jin
- Department of Anesthesiology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230601, China.
| | - Juan Wu
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
| |
Collapse
|
15
|
Cui Y, Zhou Q, Jin M, Jiang S, Shang P, Dong X, Li L. Research progress on pharmacological effects and bioavailability of berberine. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:8485-8514. [PMID: 38888754 DOI: 10.1007/s00210-024-03199-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 05/29/2024] [Indexed: 06/20/2024]
Abstract
Berberine (BBR), a benzylisoquinoline alkaloid obtained from natural medicines such as coptidis rhizoma, has a wide range of pharmacological activities such as protecting the nervous system, protecting the cardiovascular system, anti-inflammatory, antidiabetic, antihyperlipidemic, antitumor, antibacterial, and antidiarrheal. However, factors such as poor solubility, low permeability, P-glycoprotein (P-gp) efflux, and hepatic-intestinal metabolism result in BBR having a low bioavailability (< 1%), which restricts its application in clinical settings. Therefore, improving its bioavailability is a prerequisite for its clinical applications. This review summarizes the various pharmacological effects of BBR and analyzes the main reasons for its poor bioavailability. It introduces methods to improve the bioavailability of BBR through the use of absorption enhancers and P-gp inhibitors, structural modification of BBR, and preparation of BBR salts and cocrystals as well as the development of new formulations and focuses on the bioavailability study of the new formulations of BBR. The research of BBR was also prospected in order to provide reference for the further research of BBR.
Collapse
Affiliation(s)
- Yulong Cui
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Quanying Zhou
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Min Jin
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Siqi Jiang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Peizhao Shang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaofan Dong
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lingjun Li
- Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
16
|
Liu X, Liang Q, Wang Y, Xiong S, Yue R. Advances in the pharmacological mechanisms of berberine in the treatment of fibrosis. Front Pharmacol 2024; 15:1455058. [PMID: 39372209 PMCID: PMC11450235 DOI: 10.3389/fphar.2024.1455058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/09/2024] [Indexed: 10/08/2024] Open
Abstract
The rising incidence of fibrosis poses a major threat to global public health, and the continuous exploration of natural products for the effective treatment of fibrotic diseases is crucial. Berberine (BBR), an isoquinoline alkaloid, is widely used clinically for its anti-inflammatory, anti-tumor and anti-fibrotic pharmacological effects. Until now, researchers have worked to explore the mechanisms of BBR for the treatment of fibrosis, and multiple studies have found that BBR attenuates fibrosis through different pathways such as TGF-β/Smad, AMPK, Nrf2, PPAR-γ, NF-κB, and Notch/snail axis. This review describes the anti-fibrotic mechanism of BBR and its derivatives, and the safety evaluation and toxicity studies of BBR. This provides important therapeutic clues and strategies for exploring new drugs for the treatment of fibrosis. Nevertheless, more studies, especially clinical studies, are still needed. We believe that with the continuous implementation of high-quality studies, significant progress will be made in the treatment of fibrosis.
Collapse
Affiliation(s)
- Xiaoqin Liu
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Clinical Medical School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Qingzhi Liang
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Clinical Medical School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | | | - Shuai Xiong
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Clinical Medical School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Rensong Yue
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Clinical Medical School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
17
|
Canfora I, Pierno S. Hypertriglyceridemia Therapy: Past, Present and Future Perspectives. Int J Mol Sci 2024; 25:9727. [PMID: 39273674 PMCID: PMC11395432 DOI: 10.3390/ijms25179727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/31/2024] [Accepted: 09/06/2024] [Indexed: 09/15/2024] Open
Abstract
Hypertriglyceridemia therapy is essential for preventing cardiovascular diseases. Fibrates belong to an important class of lipid-lowering drugs useful for the management of dyslipidaemia. By acting on the peroxisome proliferator-activated receptor (PPAR)-α, these drugs lower serum triglyceride levels and raise high-density lipoprotein cholesterol. Fibrate monotherapy is associated with a risk of myopathy and this risk is enhanced when these agents are administered together with statins. However, whereas gemfibrozil can increase plasma concentrations of statins, fenofibrate has less influence on the pharmacokinetics of statins. Pemafibrate is a new PPAR-α-selective drug considered for therapy, and clinical trials are ongoing. Apart from this class of drugs, new therapies have emerged with different mechanisms of action to reduce triglycerides and the risk of cardiovascular diseases.
Collapse
Affiliation(s)
- Ileana Canfora
- Section of Pharmacology, Department of Pharmacy and Drug Sciences, University of Bari "Aldo Moro", 70121 Bari, Italy
| | - Sabata Pierno
- Section of Pharmacology, Department of Pharmacy and Drug Sciences, University of Bari "Aldo Moro", 70121 Bari, Italy
| |
Collapse
|
18
|
Sajeev A, Sailo B, Unnikrishnan J, Talukdar A, Alqahtani MS, Abbas M, Alqahtani A, Sethi G, Kunnumakkara AB. Unlocking the potential of Berberine: Advancing cancer therapy through chemosensitization and combination treatments. Cancer Lett 2024; 597:217019. [PMID: 38849013 DOI: 10.1016/j.canlet.2024.217019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/07/2024] [Accepted: 06/02/2024] [Indexed: 06/09/2024]
Abstract
Despite considerable progress in cancer treatment options, resistance to chemotherapeutic drugs remains a significant challenge. This review focuses on Berberine (BBR), an isoquinoline alkaloid found in various medicinal plants, which has garnered attention in the field of oncology for its anticancer potential either alone or in combination with other compounds and its ability to modulate chemoresistance, acting as a natural chemosensitizer. BBR's ability to modulate chemoresistance is attributed to its diverse mechanisms of action, including inducing DNA breaks, inhibition of drug efflux pumps, modulation of apoptosis and necroptosis, downregulating multidrug resistance genes, enhancing immune response, suppressing angiogenesis and targeting multiple pathways within cancer cells, including protein kinase B/mammalian target of rapamycin (Akt/mTOR), epidermal growth factor receptor (EGFR), mitogen-activated protein kinase (MAPK), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), poly(ADP-ribose) polymerase (PARP1), janus kinase/signal transducers and activators of transcription (JAK-STAT), Wnt/β-catenin etc. Moreover, BBR, in combination with other compounds, also offers a promising approach to cancer therapy, enforcing its broad-spectrum anticancer effects. Therefore, this review aims to elucidate the intricate mechanism of action of BBR in combinatorial therapy as a potential chemosensitizer to increase the efficiency of several drugs, including cisplatin, doxorubicin, lapatinib, tamoxifen, irinotecan, niraparib, etc. in various cancers. Additionally, this review briefly covers the origin and biological activities of BBR, exploring the specific actions underlying its anticancer effects. Further, pharmacokinetic properties of BBR are also discussed, providing insight into its therapeutic potential and optimization of its use in cancer treatment.
Collapse
Affiliation(s)
- Anjana Sajeev
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, 781039, India
| | - Bethsebie Sailo
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, 781039, India
| | - Jyothsna Unnikrishnan
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, 781039, India
| | - Ayesha Talukdar
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, 781039, India
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha, 61421, Saudi Arabia; BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester, LE1 7RH, United Kingdom
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha, 61421, Saudi Arabia
| | - Athba Alqahtani
- Research Centre, King Fahad Medical City. P.O. Box: 59046, Riyadh, 11525, Saudi Arabia
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, 117600, Singapore; NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, 117599, Singapore.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, 781039, India.
| |
Collapse
|
19
|
Jia B, Shi Y, Yan Y, Shi H, Zheng J, Liu J. Engineering of Erythrocytes as Drug Carriers for Therapeutic Applications. Adv Biol (Weinh) 2024:e2400242. [PMID: 39037400 DOI: 10.1002/adbi.202400242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/18/2024] [Indexed: 07/23/2024]
Abstract
Erythrocytes, also known as red blood cells (RBCs), have garnered considerable attention as potential carriers for drug delivery, owing to their inherent properties such as biocompatibility, biodegradability, and prolonged circulation half-life. This paper presents a comprehensive overview of the role of erythrocytes in drug delivery, elucidating recent advancements in delivering a diverse array of therapeutic agents, including small molecules, nucleic acids, antibodies, protein enzymes, and nanoparticles. Two primary strategies for encapsulating drugs within erythrocytes are systematically discussed: internal loading and surface loading. Each strategy offers distinct advantages in terms of drug stability and release kinetics. Notably, the utilization of erythrocyte membrane camouflaged nanocarriers holds promise for enhancing the biocompatibility of conventional nanoparticles and facilitating targeted drug delivery. Furthermore, the broad spectrum of biomedical applications of erythrocyte-based drug delivery systems are examined, ranging from cancer treatment to diabetes management, thrombosis prevention, and immunotherapy. This review provides a comprehensive evaluation of current technologies in erythrocyte-loaded drug delivery, highlighting the strengths, weaknesses, and future directions for advancing therapeutic interventions in various disease contexts.
Collapse
Affiliation(s)
- Baoshuo Jia
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, P. R. China
| | - Yujie Shi
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, P. R. China
| | - Yuling Yan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, P. R. China
| | - Hui Shi
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, P. R. China
| | - Jing Zheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, P. R. China
| | - Jianbo Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, P. R. China
| |
Collapse
|
20
|
Marques C, Grenho L, Fernandes MH, Costa Lima SA. Improving the Antimicrobial Potency of Berberine for Endodontic Canal Irrigation Using Polymeric Nanoparticles. Pharmaceutics 2024; 16:786. [PMID: 38931907 PMCID: PMC11207060 DOI: 10.3390/pharmaceutics16060786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/15/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
To address the challenges posed by biofilm presence and achieve a substantial reduction in bacterial load within root canals during endodontic treatment, various irrigants, including nanoparticle suspensions, have been recommended. Berberine (BBR), a natural alkaloid derived from various plants, has demonstrated potential applications in dentistry treatments due to its prominent antimicrobial, anti-inflammatory, and antioxidant properties. This study aimed to produce and characterize a novel polymeric nanoparticle of poly (lactic-co-glycolic acid) (PLGA) loaded with berberine and evaluate its antimicrobial activity against relevant endodontic pathogens, Enterococcus faecalis, and Candida albicans. Additionally, its cytocompatibility using gingival fibroblasts was assessed. The polymeric nanoparticle was prepared by the nanoprecipitation method. Physicochemical characterization revealed spheric nanoparticles around 140 nm with ca, -6 mV of surface charge, which was unaffected by the presence of BBR. The alkaloid was successfully incorporated at an encapsulation efficiency of 77% and the designed nanoparticles were stable upon 20 weeks of storage at 4 °C and 25 °C. Free BBR reduced planktonic growth at ≥125 μg/mL. Upon incorporation into PLGA nanoparticles, 20 μg/mL of [BBR]-loaded nanoparticles lead to a significant reduction, after 1 h of contact, of both planktonic bacteria and yeast. Sessile cells within biofilms were also considered. At 30 and 40 μg/mL, [BBR]-loaded PLGA nanoparticles reduced the viability of the sessile endodontic bacteria, upon 24 h of exposure. The cytotoxicity of BBR-loaded nanoparticles to oral fibroblasts was negligible. The novel berberine-loaded polymeric nanoparticles hold potential as a promising supplementary approach in the treatment of endodontic infections.
Collapse
Affiliation(s)
- Célia Marques
- IUCS-CESPU, University Institute of Health Sciences (IUCS), Advanced Polytechnic and University Cooperative (CESPU), CRL, 4585-116 Gandra, Portugal;
- LAQV, REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Liliana Grenho
- BoneLab—Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, 4200-393 Porto, Portugal; (L.G.); (M.H.F.)
| | - Maria Helena Fernandes
- BoneLab—Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, 4200-393 Porto, Portugal; (L.G.); (M.H.F.)
| | - Sofia A. Costa Lima
- LAQV, REQUIMTE, ICBAS—School of Medicine and Biomedical Sciences, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| |
Collapse
|
21
|
Gao R, Lu Y, Zhang W, Zhang Z. The Application of Berberine in Fibrosis and the Related Diseases. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:753-773. [PMID: 38716621 DOI: 10.1142/s0192415x24500307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
The formation of fibrotic tissue, characterized by the excessive accumulation of extracellular matrix (ECM) components such as collagen and fibronectin, is a normal and crucial stage of tissue repair in all organs. The over-synthesis, deposition, and remodeling of ECM components lead to organ dysfunction, posing a significant medical burden. Berberine, an isoquinoline alkaloid, is commonly used in the treatment of gastrointestinal diseases. With the deepening of scientific research, it has been gradually discovered that berberine also plays an important role in fibrotic diseases. In this review, we systematically introduce the effective role of berberine in fibrosis-related diseases. Specifically, this paper aims to provide a comprehensive review of the therapeutic role of berberine in treating fibrosis in organs such as the heart, liver, lungs, and kidneys. By summarizing its various pathways and mechanisms of action, including the inhibition of the transforming growth factor-[Formula: see text]/Smad signaling pathway, PI3K/Akt signaling pathway, MAPK signaling pathway, RhoA/ROCK signaling, and mTOR/p70S6K signaling pathway, as well as its activation of the Nrf2-ARE signaling pathway, AMPK signaling pathway, phosphorylated Smad 2/3 and Smad 7, and other signaling pathways, this review offers additional evidence to support the treatment of fibrotic diseases.
Collapse
Affiliation(s)
- Rongmao Gao
- Department of Critical Care Medicine, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, P. R. China
| | - Yuanyu Lu
- Department of Critical Care Medicine, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, P. R. China
| | - Wei Zhang
- Department of Critical Care Medicine, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu 610057, P. R. China
| | - Zhao Zhang
- Department of Critical Care Medicine, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, P. R. China
| |
Collapse
|
22
|
Yang Q, Fan L, Hao E, Hou X, Deng J, Xia Z, Du Z. Construction of An Oral Bioavailability Prediction Model Based on Machine Learning for Evaluating Molecular Modifications. J Pharm Sci 2024; 113:1155-1167. [PMID: 38430955 DOI: 10.1016/j.xphs.2024.02.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/26/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024]
Abstract
OBJECTIVE This study aims to explore the impact of ADME on the Oral Bioavailability (OB) of drugs and to construct a machine learning model for OB prediction. The model is then applied to predict the OB of modified berberine and atenolol molecules to obtain structures with higher OB. METHODS Initially, a drug OB database was established, and corresponding ADME characteristics were obtained. The relationship between ADME and OB was analyzed using machine learning, with Morgan fingerprints serving as molecular descriptors. Compounds from the database were input into Random Forest, XGBoost, CatBoost, and LightGBM machine learning models to train the OB 7prediction model and evaluate its performance. Subsequently, berberine and atenolol were modified using Chemdraw software with ten different substituents for mono-substitution, and chlorine atoms for a full range of double substitutions. The modified molecular structures were converted into the same format as the training set for OB prediction. The predicted OB values of the modified structures of berberine and atenolol were compared. RESULTS An OB database of 386 drugs was obtained. It was found that smaller molecular weight and a higher number of rotatable bonds (ten or less) could potentially lead to higher OB. The four machine learning models were evaluated using MSE, R2 score, MAE, and MFE as metrics, with Random Forest performing the best. The models' predictions for the test set were particularly accurate when OB ranged from 30% to 90%. After mono-substitution and double substitution of berberine and atenolol, the OB of both drugs was significantly improved. CONCLUSIONS This study found that some ADME properties of molecules do not have an absolute impact on OB. The database played a decisive role in the process of the machine learning OB prediction model, and the performance of the model was evaluated based on predictions within a range of strong generalization ability. In most cases, mono-substitution and double substitution were beneficial for enhancing the OB of berberine and atenolol. In summary, this study successfully constructed a machine learning regression prediction model that can accurately predict drug OB, which can guide drug design to achieve higher OB to some extent.
Collapse
Affiliation(s)
- Qi Yang
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Lili Fan
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China.
| | - Erwei Hao
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530200, China; Guangxi Collaborative Innovation Center for Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning 530200, China; Guangxi Key Laboratory of Traditional Chinese Medicine Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Xiaotao Hou
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530200, China; Guangxi Collaborative Innovation Center for Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning 530200, China; Guangxi Key Laboratory of Traditional Chinese Medicine Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Jiagang Deng
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530200, China; Guangxi Collaborative Innovation Center for Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning 530200, China; Guangxi Key Laboratory of Traditional Chinese Medicine Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Zhongshang Xia
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530200, China; Guangxi Collaborative Innovation Center for Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning 530200, China; Guangxi Key Laboratory of Traditional Chinese Medicine Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning 530200, China.
| | - Zhengcai Du
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530200, China; Guangxi Collaborative Innovation Center for Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning 530200, China; Guangxi Key Laboratory of Traditional Chinese Medicine Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning 530200, China; Guangxi Scientific Research Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning 530200, China
| |
Collapse
|
23
|
De Rubis G, Paudel KR, Corrie L, Mehndiratta S, Patel VK, Kumbhar PS, Manjappa AS, Disouza J, Patravale V, Gupta G, Manandhar B, Rajput R, Robinson AK, Reyes RJ, Chakraborty A, Chellappan DK, Singh SK, Oliver BGG, Hansbro PM, Dua K. Applications and advancements of nanoparticle-based drug delivery in alleviating lung cancer and chronic obstructive pulmonary disease. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:2793-2833. [PMID: 37991539 DOI: 10.1007/s00210-023-02830-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 10/30/2023] [Indexed: 11/23/2023]
Abstract
Lung cancer (LC) and chronic obstructive pulmonary disease (COPD) are among the leading causes of mortality worldwide. Cigarette smoking is among the main aetiologic factors for both ailments. These diseases share common pathogenetic mechanisms including inflammation, oxidative stress, and tissue remodelling. Current therapeutic approaches are limited by low efficacy and adverse effects. Consequentially, LC has a 5-year survival of < 20%, while COPD is incurable, underlining the necessity for innovative treatment strategies. Two promising emerging classes of therapy against these diseases include plant-derived molecules (phytoceuticals) and nucleic acid-based therapies. The clinical application of both is limited by issues including poor solubility, poor permeability, and, in the case of nucleic acids, susceptibility to enzymatic degradation, large size, and electrostatic charge density. Nanoparticle-based advanced drug delivery systems are currently being explored as flexible systems allowing to overcome these limitations. In this review, an updated summary of the most recent studies using nanoparticle-based advanced drug delivery systems to improve the delivery of nucleic acids and phytoceuticals for the treatment of LC and COPD is provided. This review highlights the enormous relevance of these delivery systems as tools that are set to facilitate the clinical application of novel categories of therapeutics with poor pharmacokinetic properties.
Collapse
Affiliation(s)
- Gabriele De Rubis
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Keshav Raj Paudel
- Centre of Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, 2007, Australia
| | - Leander Corrie
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Samir Mehndiratta
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Vyoma K Patel
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Popat S Kumbhar
- Department of Pharmaceutics, Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur, Maharashtra, 416113, India
| | - Arehalli Sidramappa Manjappa
- Department of Pharmaceutics, Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur, Maharashtra, 416113, India
- Department of Pharmaceutics, Vasantidevi Patil Institute of Pharmacy, Kodoli, Kolkapur, Maharashtra, 416114, India
| | - John Disouza
- Department of Pharmaceutics, Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur, Maharashtra, 416113, India
| | - Vandana Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai, 400019, Maharashtra, India
| | - Gaurav Gupta
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India, Chennai, India
- School of Pharmacy, Graphic Era Hill University, Dehradun, 248007, India
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, 302017, India
| | - Bikash Manandhar
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Rashi Rajput
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Alexandra Kailie Robinson
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Ruby-Jean Reyes
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Amlan Chakraborty
- Division of Immunology, Immunity to Infection and Respiratory Medicine (DIIIRM), School of Biological Sciences I Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Dinesh Kumar Chellappan
- School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Sachin Kumar Singh
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, Australia
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Brian Gregory George Oliver
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW, 2007, Australia
- Woolcock Institute of Medical Research, Macquarie University, Sydney, New South Wales, Australia
| | - Philip Michael Hansbro
- Centre of Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, 2007, Australia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, Australia.
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia.
| |
Collapse
|
24
|
Chen Y, Jiang X, Yuan Y, Chen Y, Wei S, Yu Y, Zhou Q, Yu Y, Wang J, Liu H, Hua X, Yang Z, Chen Z, Li Y, Wang Q, Chen J, Wang Y. Coptisine inhibits neointimal hyperplasia through attenuating Pak1/Pak2 signaling in vascular smooth muscle cells without retardation of re-endothelialization. Atherosclerosis 2024; 391:117480. [PMID: 38447436 DOI: 10.1016/j.atherosclerosis.2024.117480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 02/04/2024] [Accepted: 02/08/2024] [Indexed: 03/08/2024]
Abstract
BACKGROUND AND AIMS Vascular injury-induced endothelium-denudation and profound vascular smooth muscle cells (VSMCs) proliferation and dis-regulated apoptosis lead to post-angioplasty restenosis. Coptisine (CTS), an isoquinoline alkaloid, has multiple beneficial effects on the cardiovascular system. Recent studies identified it selectively inhibits VSMCs proliferation. However, its effects on neointimal hyperplasia, re-endothelialization, and the underlying mechanisms are still unclear. METHODS Cell viability was assayed by 3-[4,5-dimethylthiazole-2-yl]-2,5-diphenyltetrazolium bromide (MTT) and cell counting kit-8 (CCK-8). Cell proliferation and apoptosis were measured by flow cytometry and immunofluorescence of Ki67 and TUNEL. Quantitative phosphoproteomics (QPP) was employed to screen CTS-responsive phosphor-sites in the key regulators of cell proliferation and apoptosis. Neointimal hyperplasia was induced by balloon injury of rat left carotid artery (LCA). Adenoviral gene transfer was conducted in both cultured cells and LCA. Re-endothelialization was evaluated by Evan's blue staining of LCA. RESULTS 1) CTS had strong anti-proliferative and pro-apoptotic effects in cultured rat VSMCs, with the EC50 4∼10-folds lower than that in endothelial cells (ECs). 2) Rats administered with CTS, either locally to LCA's periadventitial space or orally, demonstrated a potently inhibited balloon injury-induced neointimal hyperplasia, but had no delaying effect on re-endothelialization. 3) The QPP results revealed that the phosphorylation levels of Pak1S144/S203, Pak2S20/S197, Erk1T202/Y204, Erk2T185/Y187, and BadS136 were significantly decreased in VSMCs by CTS. 4) Adenoviral expression of phosphomimetic mutants Pak1D144/D203/Pak2D20/D197 enhanced Pak1/2 activities, stimulated the downstream pErk1T202/Y204/pErk2T185/Y187/pErk3S189/pBadS136, attenuated CTS-mediated inhibition of VSMCs proliferation and promotion of apoptosis in vitro, and potentiated neointimal hyperplasia in vivo. 5) Adenoviral expression of phosphoresistant mutants Pak1A144/A203/Pak2A20/A197 inactivated Pak1/2 and totally simulated the inhibitory effects of CTS on platelet-derived growth factor (PDGF)-stimulated VSMCs proliferation and PDGF-inhibited apoptosis in vitro and neointimal hyperplasia in vivo. 6) LCA injury significantly enhanced the endogenous phosphorylation levels of all but pBadS136. CTS markedly attenuated all the enhanced levels. CONCLUSIONS These results indicate that CTS is a promising medicine for prevention of post-angioplasty restenosis without adverse impact on re-endothelialization. CTS-directed suppression of pPak1S144/S203/pPak2S20/S197 and the subsequent effects on downstream pErk1T202/Y204/pErk2T185/Y187/pErk3S189 and pBadS136 underline its mechanisms of inhibition of VSMCs proliferation and stimulation of apoptosis. Therefore, the phosphor-sites of Pak1S144/S203/Pak2S20/S197 constitute a potential drug-screening target for fighting neointimal hyperplasia restenosis.
Collapse
Affiliation(s)
- Yuhan Chen
- Molecular Cardiology Research Laboratory, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China
| | - Xueze Jiang
- Molecular Cardiology Research Laboratory, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China; Department of Cardiology, Baoshan Branch of Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200444, China
| | - Yuchan Yuan
- Molecular Cardiology Research Laboratory, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China
| | - Yuanyuan Chen
- Molecular Cardiology Research Laboratory, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China
| | - Sisi Wei
- Children Inherited Metabolism and Endocrine Department, Guangdong Women and Children Hospital, Panyu District, Guangzhou, Guangdong, 511400, China
| | - Ying Yu
- Molecular Cardiology Research Laboratory, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China
| | - Qing Zhou
- Molecular Cardiology Research Laboratory, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China
| | - Yi Yu
- Molecular Cardiology Research Laboratory, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China
| | - Julie Wang
- Department of Computer Science, Brown University, Providence, RI, 02912, USA
| | - Hua Liu
- Department of Intensive Care Med, Zhongshan Hospital of Fudan University, Shanghai, 200032, China
| | - Xuesheng Hua
- Molecular Cardiology Research Laboratory, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China
| | - Zhenwei Yang
- Molecular Cardiology Research Laboratory, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China
| | - Zhiyong Chen
- Molecular Cardiology Research Laboratory, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China
| | - Yigang Li
- Molecular Cardiology Research Laboratory, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China
| | - Qunshan Wang
- Molecular Cardiology Research Laboratory, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China.
| | - Jie Chen
- Molecular Cardiology Research Laboratory, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China.
| | - Yuepeng Wang
- Molecular Cardiology Research Laboratory, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
25
|
Gupta M, Rumman M, Singh B, Mahdi AA, Pandey S. Berberine ameliorates glucocorticoid-induced hyperglycemia: an in vitro and in vivo study. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1647-1658. [PMID: 37704773 DOI: 10.1007/s00210-023-02703-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/30/2023] [Indexed: 09/15/2023]
Abstract
Berberine (BBR), a bioactive compound isolated from Coptidis Rhizoma, possesses diverse pharmacological activities including anti-bacterial, anti-inflammatory, antitumor, hypolipidemic, and anti-diabetic. However, its role as an anti-diabetic agent in animal models of dexamethasone (Dex)-induced diabetes remains unknown. Studies have shown that natural compounds including aloe, caper, cinnamon, cocoa, green and black tea, and turmeric can be used for treating Type 2 diabetes mellitus (DM). Compared to conventional drugs, natural compounds have less side effects and are easily available. Herein, we studied the anti-diabetic effects of BBR in a mice model of Dex-induced diabetes. HepG2 cell line was used for glucose release and glycogen synthesis studies. Cell proliferation was measured by methylthiotetrazole (MTT) assay. For animal studies, mice were treated with Dex (2 mg/kg, i.m.) for 30 days and effect of BBR at the doses 100, 200, and 500 mg/kg (p.o.) was analyzed. Glucose, insulin, and pyruvate tests were performed for evaluating the development of the diabetic model. Echo MRI was performed to assess the fat mass. Further, to elucidate the mechanism of action of BBR, mRNA expression of genes regulating gluconeogenesis, glucose uptake, and glycolysis was analyzed. In vitro BBR had no impact on cell viability up to a concentration of 50 μM. Moreover, BBR suppressed the hepatic glucose release and improved glucose tolerance in HepG2 cells. In vivo, BBR improved glucose homeostasis in diabetic mice as evidenced by enhanced glucose clearance, increased glycolysis, elevated glucose uptake, and decreased gluconeogenesis. Further, Dex treatment increased the total fat mass in mice, which was ameliorated by BBR treatment. BBR improves glucose tolerance by increasing glucose clearance, inhibiting hepatic glucose release, and decreasing obesity. Thus, BBR may become a potential therapeutic agent for treating glucocorticoid-induced diabetes and obesity in the future.
Collapse
Affiliation(s)
- Mrinal Gupta
- Department of Biochemistry, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Mohammad Rumman
- Department of Biosciences, Integral University, Lucknow, Uttar Pradesh, India
| | - Babita Singh
- Department of Biochemistry, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Abbas Ali Mahdi
- Department of Biochemistry, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Shivani Pandey
- Department of Biochemistry, King George's Medical University, Lucknow, Uttar Pradesh, India.
| |
Collapse
|
26
|
Huang H, Zhao H, Wenqing L, Xu F, Wang X, Yao Y, Huang Y. Prospect of research on anti-atherosclerosis effect of main components of traditional Chinese medicine Yiqi Huoxue Huatan recipe through gut microbiota: A review. Medicine (Baltimore) 2024; 103:e37104. [PMID: 38306512 PMCID: PMC10843552 DOI: 10.1097/md.0000000000037104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/08/2024] [Indexed: 02/04/2024] Open
Abstract
The incidence and mortality rates of cardiovascular diseases are on the rise globally, posing a severe threat to human health. Atherosclerosis (AS) is considered a multi-factorial inflammatory disease and the main pathological basis of cardiovascular and cerebrovascular diseases, as well as the leading cause of death. Dysbiosis of the gut microbiota can induce and exacerbate inflammatory reactions, accelerate metabolic disorders and immune function decline, and affect the progression and prognosis of AS-related diseases. The Chinese herbal medicine clinicians frequently utilize Yiqi Huoxue Huatan recipe, an effective therapeutic approach for the management of AS. This article reviews the correlation between the main components of Yiqi Huoxue Huatan recipe and the gut microbiota and AS to provide new directions and a theoretical basis for the prevention and treatment of AS.
Collapse
Affiliation(s)
- Hongtao Huang
- Department of Cardiology, Shanghai Gongli Hospital, The Second Military Medical University, Shanghai, China
| | - Hanjun Zhao
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lv Wenqing
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Feiyue Xu
- Shanghai Pudong New District Pudong Hospital, Shanghai, China
| | - Xiaolong Wang
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yili Yao
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu Huang
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
27
|
Lin X, Zhang J, Chu Y, Nie Q, Zhang J. Berberine prevents NAFLD and HCC by modulating metabolic disorders. Pharmacol Ther 2024; 254:108593. [PMID: 38301771 DOI: 10.1016/j.pharmthera.2024.108593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 02/03/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a global metabolic disease with high prevalence in both adults and children. Importantly, NAFLD is becoming the main cause of hepatocellular carcinoma (HCC). Berberine (BBR), a naturally occurring plant component, has been demonstrated to have advantageous effects on a number of metabolic pathways as well as the ability to kill liver tumor cells by causing cell death and other routes. This permits us to speculate and make assumptions about the value of BBR in the prevention and defense against NAFLD and HCC by a global modulation of metabolic disorders. Herein, we briefly describe the etiology of NAFLD and NAFLD-related HCC, with a particular emphasis on analyzing the potential mechanisms of BBR in the treatment of NAFLD from aspects including increasing insulin sensitivity, controlling the intestinal milieu, and controlling lipid metabolism. We also elucidate the mechanism of BBR in the treatment of HCC. More significantly, we provided a list of clinical studies for BBR in NAFLD. Taking into account our conclusions and perspectives, we can make further progress in the treatment of BBR in NAFLD and NAFLD-related HCC.
Collapse
Affiliation(s)
- Xinyue Lin
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Juanhong Zhang
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China; College of Life Science, Northwest Normal University, Lanzhou 730070, China
| | - Yajun Chu
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Qiuying Nie
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Junmin Zhang
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
28
|
Ma X, Yu X, Li R, Cui J, Yu H, Ren L, Jiang J, Zhang W, Wang L. Berberine-silybin salt achieves improved anti-nonalcoholic fatty liver disease effect through regulating lipid metabolism. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117238. [PMID: 37774895 DOI: 10.1016/j.jep.2023.117238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/15/2023] [Accepted: 09/26/2023] [Indexed: 10/01/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Berberine (BBR) and silybin (SIY) are natural compounds obtained from Berberidaceae members and Silybum marianum (L.) Gaertn., respectively. These compounds have been demonstrated to regulate lipid metabolism and indue hepatoprotective effects, establishing their importance for the treatment of liver injury. Combination therapy has shown promise in treating ailments with complex pathophysiology, such as liver diseases. However, the inconsistent dissolution and poor absorption of BBR and SIY limit their efficacy. AIM OF THE STUDY This study compared the salt formulation (BSS) and physical mixture (BSP) of BBR and SIY for their efficacy in treating nonalcoholic fatty liver disease (NAFLD). MATERIALS AND METHODS The formation of the BSS was confirmed using various techniques, including nuclear magnetic resonance spectroscopy, Fourier-transform infrared spectroscopy, differential scanning calorimetry, scanning electron microscopy, and powder X-ray diffractometry. In addition, dissolution, trans-epithelial permeability, and bioavailability experiments were conducted to evaluate the absorption and distribution of drugs. Pharmacodynamics and mechanisms were investigated through in vivo experiments. RESULTS BSS form demonstrated synchronized dissolution of both components, unlike BSP. Additionally, the transepithelial permeability results revealed that BSS exhibited superior penetration and absorption of both BBR and SIY in comparison to BSP. Furthermore, BSS significantly increased the bioavailability of SIY in both plasma and the liver (2.2- and 4.5-fold, respectively) when compared with BSP. Moreover, BSS demonstrated a more potent inhibitory effect on lipid production in HepG2 cells than BSP. In mouse models (BALB/c) of NAFLD, BSS improved disease outcomes, as evidenced by decreased adipose levels, normalized blood lipid levels, and reduced liver parenchyma injury. Preliminary transcriptomics analysis suggested that BSS achieved its anti-NAFLD effect by regulating the expression of fatty acid transporter CD36, recombinant fatty acid binding protein 4, and stearyl coenzyme A dehydrogenase 1, which are associated with the synthesis and uptake of fatty acid-related proteins. CONCLUSIONS The study demonstrated that compared with physical mixing, salification improved the efficacy of BBR and SIY, as demonstrated in animal experiments. These findings provide valuable insights into the development of more effective treatments for NAFLD and provide new possibilities for combination therapies.
Collapse
Affiliation(s)
- Xiaolei Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Xiaoyou Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Rui Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Jinjin Cui
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Haoyang Yu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Ling Ren
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Jiandong Jiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China; Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.
| | - Wenxuan Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.
| | - Lulu Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.
| |
Collapse
|
29
|
Mahboubi Kancha M, Alizadeh M, Mehrabi M. Comparison of the protective effects of CS/TPP and CS/HPMCP nanoparticles containing berberine in ethanol-induced hepatotoxicity in rat. BMC Complement Med Ther 2024; 24:39. [PMID: 38225618 PMCID: PMC10789080 DOI: 10.1186/s12906-023-04318-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 12/16/2023] [Indexed: 01/17/2024] Open
Abstract
BACKGROUND Alcoholic liver disease (ALD) is a globally critical condition with no available efficient treatments. METHODS Herein, we generated chitosan (CS) nanoparticles cross-linked with two different agents, hydroxypropyl methylcellulose phthalate (HPMCP; termed as CS/HPMCP) and tripolyphosphate (TPP; termed as CS/TPP), and loaded them with berberine (BBr; referred to as CS/HPMCP/BBr and CS/TPP/BBr, respectively). Alongside the encapsulation efficiency (EE) and loading capacity (LC), the releasing activity of the nanoparticles was also measured in stimulated gastric fluid (SGF) and stimulated intestinal fluid (SIF) conditions. The effects of the prepared nanoparticles on the viability of mesenchymal stem cells (MSCs) were also evaluated. Ultimately, the protective effects of the nanoparticles were investigated in ALD mouse models. RESULTS SEM images demonstrated that CS/HPMCP and CS/TPP nanoparticles had an average size of 235.5 ± 42 and 172 ± 21 nm, respectively. The LC and EE for CS/HPMCP/BBr were calculated as 79.78% and 75.79%, respectively; while the LC and EE for CS/TPP/BBr were 84.26% and 80.05%, respectively. pH was a determining factor for releasing BBr from CS/HPMCP nanoparticles as a higher cargo-releasing rate was observed in a less acidic environment. Both the BBr-loaded nanoparticles increased the viability of MSCs in comparison with their BBr-free counterparts. In vivo results demonstrated CS/HPMCP/BBr and CS/TPP/BBr nanoparticles protected enzymatic liver functionality against ethanol-induced damage. They also prevented histopathological ethanol-induced damage. CONCLUSIONS Crosslinking CS nanoparticles with HPMCP can mediate controlled drug release in the intestine improving the bioavailability of BBr.
Collapse
Affiliation(s)
- Maral Mahboubi Kancha
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
- Department of Medical Nanotechnology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Morteza Alizadeh
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Mohsen Mehrabi
- Department of Medical Nanotechnology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran.
| |
Collapse
|
30
|
Valipour M, Zakeri Khatir Z, Abdollahi E, Ayati A. Recent Applications of Protoberberines as Privileged Starting Materials for the Development of Novel Broad-Spectrum Antiviral Agents: A Concise Review (2017-2023). ACS Pharmacol Transl Sci 2024; 7:48-71. [PMID: 38230282 PMCID: PMC10789142 DOI: 10.1021/acsptsci.3c00292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/30/2023] [Accepted: 12/05/2023] [Indexed: 01/18/2024]
Abstract
Berberine is a well-known phytochemical with significant antiviral activity against a wide range of viruses. Due to having a unique backbone consisting of four interconnected rings, it can be used as a platform for the design and development of novel semisynthetic antiviral agents. The question here is whether novel broad-spectrum antiviral drugs with enhanced activity and toxicity potential can be obtained by attempting to modify the structure of this privileged lead compound. The present study aims to review the results of recent studies in which berberine and its close analogues (protoberberine alkaloids) have been used as starting materials for the production of new semisynthetic antiviral structures. For this purpose, relevant studies published in high-quality journals indexed in databases such as Scopus, Web of Science, PubMed, etc. in the time frame of 2017 to 2023 were collected. Our selection criterion in the current review focuses on the studies in which protoberberines were used as starting materials for the production of semisynthetic agents with antiviral activity during the indicated time period. Correspondingly, studies were identified in which semisynthetic derivatives with significant inhibitory activity against a wide range of viruses including human immunodeficiency virus (HIV), enterovirus 71 (EV71), zika virus (ZIKV), influenza A/B, cytomegalovirus (CMV), respiratory syncytial virus (RSV), and coxsackieviruses were designed and synthesized. Our conclusion is that, despite the introduction of diverse semisynthetic derivatives of berberine with improved activity profiles compared to the parent natural leads, sufficient derivatization has not been done yet and more studies are needed.
Collapse
Affiliation(s)
- Mehdi Valipour
- Razi
Drug Research Center, Iran University of
Medical Sciences, Tehran 1449614535, Iran
| | - Zahra Zakeri Khatir
- Department
of Medicinal Chemistry, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari 6964114483, Iran
- Student
Research Committee, Mazandaran University
of Medical Sciences, Sari 6964114483, Iran
| | - Elaheh Abdollahi
- Department
of Pharmacology and Toxicology, School of Pharmacy, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Adileh Ayati
- Department
of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences
Research Center, Tehran University of Medical
Sciences, Tehran 1416753955, Iran
| |
Collapse
|
31
|
Gasmi A, Asghar F, Zafar S, Oliinyk P, Khavrona O, Lysiuk R, Peana M, Piscopo S, Antonyak H, Pen JJ, Lozynska I, Noor S, Lenchyk L, Muhammad A, Vladimirova I, Dub N, Antoniv O, Tsal O, Upyr T, Bjørklund G. Berberine: Pharmacological Features in Health, Disease and Aging. Curr Med Chem 2024; 31:1214-1234. [PMID: 36748808 DOI: 10.2174/0929867330666230207112539] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 12/15/2022] [Accepted: 12/29/2022] [Indexed: 02/08/2023]
Abstract
BACKGROUND Berberine is the main active compound of different herbs and is defined as an isoquinoline quaternary botanical alkaloid found in barks and roots of numerous plants. It exhibits a wide range of pharmacological effects, such as anti-obesity and antidiabetic effects. Berberine has antibacterial activity against a variety of microbiota, including many bacterial species, protozoa, plasmodia, fungi, and trypanosomes. OBJECTIVE This review describes the role of berberine and its metabolic effects. It also discusses how it plays a role in glucose metabolism, fat metabolism, weight loss, how it modulates the gut microbiota, and what are its antimicrobial properties along with its potential side effects with maximal tolerable dosage. METHODS Representative studies were considered and analyzed from different scientific databases, including PubMed and Web of Science, for the years 1982-2022. RESULTS Literature analysis shows that berberine affects many biochemical and pharmacological pathways that theoretically yield a positive effect on health and disease. Berberine exhibits neuroprotective properties in various neurodegenerative and neuropsychological ailments. Despite its low bioavailability after oral administration, berberine is a promising tool for several disorders. A possible hypothesis would be the modulation of the gut microbiome. While the evidence concerning the aging process in humans is more limited, preliminary studies have shown positive effects in several models. CONCLUSION Berberine could serve as a potential candidate for the treatment of several diseases. Previous literature has provided a basis for scientists to establish clinical trials in humans. However, for obesity, the evidence appears to be sufficient for hands-on use.
Collapse
Affiliation(s)
- Amin Gasmi
- Société Francophone de Nutrithérapie et de Nutrigénétique Appliquée, Villeurbanne, France
| | - Farah Asghar
- Department of Microbiology and Molecular Genetics (MMG), University of the Punjab, Lahore, Pakistan
| | - Saba Zafar
- Department of Research, The Women University, Multan, Pakistan
| | - Petro Oliinyk
- Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Oksana Khavrona
- Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Roman Lysiuk
- Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Massimiliano Peana
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Sassari, Italy
| | - Salva Piscopo
- Société Francophone de Nutrithérapie et de Nutrigénétique Appliquée, Villeurbanne, France
| | - Halyna Antonyak
- Department of Ecology, Ivan Franko National University of Lviv, Lviv, Ukraine
| | - Joeri J Pen
- Diabetes Clinic, Department of Internal Medicine, UZ Brussel, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Department of Nutrition, UZ Brussel, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Iryna Lozynska
- Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Sadaf Noor
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
| | - Larysa Lenchyk
- Department of Research, National University of Pharmacy, Kharkiv, Ukraine
- CONEM Ukraine Pharmacognosy and Natural Product Chemistry Research Group, National University of Pharmacy, Kharkiv, Ukraine
| | - Akram Muhammad
- Department of Research, Government College University, Faisalabad, Pakistan
| | - Inna Vladimirova
- Department of Research, National University of Pharmacy, Kharkiv, Ukraine
- CONEM Ukraine Pharmacognosy and Natural Product Chemistry Research Group, National University of Pharmacy, Kharkiv, Ukraine
| | - Natalia Dub
- Andrei Krupynskyi Lviv Medical Academy, Lviv, Ukraine
| | - Olha Antoniv
- Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Oksana Tsal
- Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Taras Upyr
- Department of Research, National University of Pharmacy, Kharkiv, Ukraine
- CONEM Ukraine Pharmacognosy and Natural Product Chemistry Research Group, National University of Pharmacy, Kharkiv, Ukraine
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Mo i Rana, Norway
| |
Collapse
|
32
|
Li H, Yang W, Wu X, Tian L, Zhang W, Tian H, Liang X, Huang L, Guo L, Li X, Gao W. Cationic fructan-based pH and intestinal flora dual stimulation nanoparticle with berberine for targeted therapy of IBD. Int J Biol Macromol 2024; 256:127987. [PMID: 37979767 DOI: 10.1016/j.ijbiomac.2023.127987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/20/2023]
Abstract
Inflammatory bowel disease (IBD) can cause intestinal microbial imbalance and aggravate intestinal inflammation. Mixed fructan is more easily fermented by colonic microorganisms and can be used as colonic drug delivery materials. Here, we constructed a mixed fructan based nanoparticle with dual targeted stimulation of pH and intestinal flora to effectively deliver berberine for the treatment of ulcerative colitis (UC). The complex of fructan based nanoparticle and berberine (BBRNPs) significantly ameliorated the inflammatory response of sodium dextran sulfate (DSS)-induced colitis in mice by inhibiting the activation of NF-κB/STAT-3 pathway and increasing tight junction protein expression in vivo. Importantly, BBRNPs improved the responsiveness of colitis microbiome and effectively regulated the relative homeostasis of harmful flora Enterobacteriaceae and Escherichia-shigolla, and beneficial flora Ruminococcaceae and Akkermansiaceae. This study provides a promising strategy for the effective treatment of UC and expands the application of branched fructan in pharmaceutics.
Collapse
Affiliation(s)
- Hongyu Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300193, China; Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun 130112, China
| | - Wenna Yang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300193, China
| | - Xiongzhi Wu
- Tianjin Hospital of Integrated Chinese and Western Medicine Nankai Hospital, No. 6 Changjiang Road, Nankai District, Tianjin 300100, China
| | - Luyao Tian
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300193, China
| | - Weimei Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300193, China
| | - Hongyue Tian
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300193, China
| | - Xu Liang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300193, China
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Lanping Guo
- National Resource Center for Chinese Materia Medica, Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Xia Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300193, China.
| | - Wenyuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300193, China.
| |
Collapse
|
33
|
Mushtaq Z, Imran M, Saeed F, Imran A, Ali SW, Shahbaz M, Alsagaby SA, Guerrero Sánchez Y, Umar M, Hussain M, Al Abdimonem W, Al Jbawi E, Mahwish, El-Ghorab AH, Abdelgawad MA. Berberine: a comprehensive Approach to combat human maladies. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2023. [DOI: 10.1080/10942912.2023.2184300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Affiliation(s)
- Zarina Mushtaq
- Department of Food Sciences, Government College University Faisalabad, Pakistan
| | - Muhammad Imran
- Department of Food Science and Technology, University of Narowal-Pakistan, Pakistan
| | - Farhan Saeed
- Department of Food Sciences, Government College University Faisalabad, Pakistan
| | - Ali Imran
- Department of Food Sciences, Government College University Faisalabad, Pakistan
| | - Shinawar Waseem Ali
- Institute of Agricultural Sciences, University of the Punjab, Quid-i-Azam Campus, Lahore, Pakistan
| | - Muhammad Shahbaz
- Department of Food Science and Technology, MNS-University Multan, Pakistan
| | - Suliman A. Alsagaby
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al-Majmaah, Saudi Arabia
| | | | - Maryam Umar
- Department of Food Sciences, Government College University Faisalabad, Pakistan
| | - Muzzamal Hussain
- Department of Food Sciences, Government College University Faisalabad, Pakistan
| | - Waleed Al Abdimonem
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | | | - Mahwish
- Department of Nutritional Sciences, Government College Women University Faisalabad, Pakistan
| | - Ahmed H. El-Ghorab
- Department of Chemistry, College of Science, Jouf University, Sakaka, Saudi Arabia
| | - Mohamed A. Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| |
Collapse
|
34
|
Um JH, Lee KM, Kim YY, Lee DY, Kim E, Kim DH, Yun J. Berberine Induces Mitophagy through Adenosine Monophosphate-Activated Protein Kinase and Ameliorates Mitochondrial Dysfunction in PINK1 Knockout Mouse Embryonic Fibroblasts. Int J Mol Sci 2023; 25:219. [PMID: 38203389 PMCID: PMC10779002 DOI: 10.3390/ijms25010219] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Mitophagy stimulation has been shown to have a therapeutic effect on various neurodegenerative diseases. However, nontoxic mitophagy inducers are still very limited. In this study, we found that the natural alkaloid berberine exhibited mitophagy stimulation activity in various human cells. Berberine did not interfere with mitochondrial function, unlike the well-known mitophagy inducer carbonyl cyanide m-chlorophenyl hydrazone (CCCP), and subsequently induced mitochondrial biogenesis. Berberine treatment induced the activation of adenosine monophosphate-activated protein kinase (AMPK), and the AMPK inhibitor compound C abolished berberine-induced mitophagy, suggesting that AMPK activation is essential for berberine-induced mitophagy. Notably, berberine treatment reversed mitochondrial dysfunction in PINK1 knockout mouse embryonic fibroblasts. Our results suggest that berberine is a mitophagy-specific inducer and can be used as a therapeutic treatment for neurodegenerative diseases, including Parkinson's disease, and that natural alkaloids are potential sources of mitophagy inducers.
Collapse
Affiliation(s)
- Jee-Hyun Um
- Department of Biochemistry, College of Medicine, Dong-A University, Busan 49201, Republic of Korea; (J.-H.U.); (K.-M.L.); (Y.-Y.K.)
- Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Busan 49201, Republic of Korea
| | - Kang-Min Lee
- Department of Biochemistry, College of Medicine, Dong-A University, Busan 49201, Republic of Korea; (J.-H.U.); (K.-M.L.); (Y.-Y.K.)
- Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Busan 49201, Republic of Korea
| | - Young-Yeon Kim
- Department of Biochemistry, College of Medicine, Dong-A University, Busan 49201, Republic of Korea; (J.-H.U.); (K.-M.L.); (Y.-Y.K.)
- Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Busan 49201, Republic of Korea
| | - Da-Ye Lee
- Department of Biochemistry, College of Medicine, Dong-A University, Busan 49201, Republic of Korea; (J.-H.U.); (K.-M.L.); (Y.-Y.K.)
- Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Busan 49201, Republic of Korea
| | - Eunmi Kim
- Department of Biochemistry, College of Medicine, Dong-A University, Busan 49201, Republic of Korea; (J.-H.U.); (K.-M.L.); (Y.-Y.K.)
- Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Busan 49201, Republic of Korea
| | - Dong-Hyun Kim
- Department of Pharmacology, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea;
- Department of Advanced Translational Medicine, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Jeanho Yun
- Department of Biochemistry, College of Medicine, Dong-A University, Busan 49201, Republic of Korea; (J.-H.U.); (K.-M.L.); (Y.-Y.K.)
- Department of Translational Biomedical Sciences, Graduate School of Dong-A University, Busan 49201, Republic of Korea
| |
Collapse
|
35
|
Cai Y, Shi H, Zheng Y, Zhou Y, Guo W, Liao J, Wang S. Long-Term Phellodendri Cortex Supplementation in the Tiger Grouper ( Epinephelus fuscoguttatus): Dual Effects on Intestinal Health Revealed by Transcriptome Analysis. Life (Basel) 2023; 13:2336. [PMID: 38137937 PMCID: PMC10745030 DOI: 10.3390/life13122336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/01/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
The tiger grouper (Epinephelus fuscoguttatus), an important mariculture fish in Southeast Asia, faces increasing health issues in recent years. Phellodendri Cortex (PC) is a traditional Chinese herbal medicine that exhibits a variety of beneficial effects on tiger groupers. The effects of PC, however, varies with the period of dietary intervention. This study aims to investigate the long-term effects of 1% PC supplementation on tiger groupers, focusing on growth, immunity, disease resistance, and intestinal gene expression. The tiger groupers (with an initial mean weight of 27.5 ± 0.5 g) were fed with a diet of Phellodendri Cortex supplementation and a control diet for 8 weeks. Our results indicate that the long-term PC supplementation did not affect growth or Vibrio disease resistance in tiger groupers. However, the transcriptome analysis revealed potential damage to the structural and functional integrity of the groupers' intestines. On the other hand, anti-inflammatory and cathepsin inhibition effects were also observed, offering potential benefits to fish enteritis prevention and therapy. Therefore, long-term PC supplementation in grouper culture should be applied with caution.
Collapse
Affiliation(s)
- Yan Cai
- Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou 570228, China; (Y.C.); (H.S.)
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China
| | - Huizhong Shi
- Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou 570228, China; (Y.C.); (H.S.)
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China
| | - Yu Zheng
- Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou 570228, China; (Y.C.); (H.S.)
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China
| | - Yongcan Zhou
- Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou 570228, China; (Y.C.); (H.S.)
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China
| | - Weiliang Guo
- Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou 570228, China; (Y.C.); (H.S.)
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China
| | - Jingqiu Liao
- Guangxi Academy of Sciences, Nanning 530007, China
| | - Shifeng Wang
- Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou 570228, China; (Y.C.); (H.S.)
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China
| |
Collapse
|
36
|
Phukan BC, Roy R, Gahatraj I, Bhattacharya P, Borah A. Therapeutic considerations of bioactive compounds in Alzheimer's disease and Parkinson's disease: Dissecting the molecular pathways. Phytother Res 2023; 37:5657-5699. [PMID: 37823581 DOI: 10.1002/ptr.8012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 10/13/2023]
Abstract
Leading neurodegenerative diseases Alzheimer's disease (AD) and Parkinson's disease (PD) are characterized by the impairment of memory and motor functions, respectively. Despite several breakthroughs, there exists a lack of disease-modifying treatment strategies for these diseases, as the available drugs provide symptomatic relief and bring along side effects. Bioactive compounds are reported to bear neuroprotective properties with minimal toxicity, however, a detailed elucidation of their modes of neuroprotection is lacking. The review elucidates the neuroprotective mechanism(s) of some of the major phyto-compounds in pre-clinical and clinical studies of AD and PD to understand their potential in combating these diseases. Curcumin, eugenol, resveratrol, baicalein, sesamol and so on have proved efficient in countering the pathological hallmarks of AD and PD. Curcumin, resveratrol, caffeine and so on have reached the clinical phases of these diseases, while aromadendrin, delphinidin, cyanidin and xanthohumol are yet to be extensively explored in pre-clinical phases. The review highlights the need for extensive investigation of these compounds in the clinical stages of these diseases so as to utilize their disease-modifying abilities in the real field of treatment. Moreover, poor pharmacokinetic properties of natural compounds are constraints to their therapeutic yields and this review suggests a plausible contribution of nanotechnology in overcoming these limitations.
Collapse
Affiliation(s)
| | - Rubina Roy
- Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, India
| | - Indira Gahatraj
- Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, India
| | - Pallab Bhattacharya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Gandhinagar, Gujarat, India
| | - Anupom Borah
- Department of Life Science and Bioinformatics, Assam University, Silchar, Assam, India
| |
Collapse
|
37
|
Cai Y, Yang Q, Yu Y, Yang F, Bai R, Fan X. Efficacy and underlying mechanisms of berberine against lipid metabolic diseases: a review. Front Pharmacol 2023; 14:1283784. [PMID: 38034996 PMCID: PMC10684937 DOI: 10.3389/fphar.2023.1283784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 11/03/2023] [Indexed: 12/02/2023] Open
Abstract
Lipid-lowering therapy is an important tool for the treatment of lipid metabolic diseases, which are increasing in prevalence. However, the failure of conventional lipid-lowering drugs to achieve the desired efficacy in some patients, and the side-effects of these drug regimens, highlight the urgent need for novel lipid-lowering drugs. The liver and intestine are important in the production and removal of endogenous and exogenous lipids, respectively, and have an important impact on circulating lipid levels. Elevated circulating lipids predisposes an individual to lipid deposition in the vascular wall, affecting vascular function. Berberine (BBR) modulates liver lipid production and clearance by regulating cellular targets such as cluster of differentiation 36 (CD36), acetyl-CoA carboxylase (ACC), microsomal triglyceride transfer protein (MTTP), scavenger receptor class B type 1 (SR-BI), low-density lipoprotein receptor (LDLR), and ATP-binding cassette transporter A1 (ABCA1). It influences intestinal lipid synthesis and metabolism by modulating gut microbiota composition and metabolism. Finally, BBR maintains vascular function by targeting proteins such as endothelial nitric oxide synthase (eNOS) and lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1). This paper elucidates and summarizes the pharmacological mechanisms of berberine in lipid metabolic diseases from a multi-organ (liver, intestine, and vascular system) and multi-target perspective.
Collapse
Affiliation(s)
- Yajie Cai
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qiaoning Yang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- NMPA Key Laboratory for Clinical Research and Evaluation of Traditional Chinese Medicine, Beijing, China
| | - Yanqiao Yu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Department of Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Furong Yang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ruina Bai
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaodi Fan
- Institute of Basic Medical Sciences, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
- Key Laboratory of Pharmacology of Chinese Materia Medica, Beijing, China
| |
Collapse
|
38
|
Solnier J, Zhang Y, Kuo YC, Du M, Roh K, Gahler R, Wood S, Chang C. Characterization and Pharmacokinetic Assessment of a New Berberine Formulation with Enhanced Absorption In Vitro and in Human Volunteers. Pharmaceutics 2023; 15:2567. [PMID: 38004546 PMCID: PMC10675484 DOI: 10.3390/pharmaceutics15112567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/20/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
Berberine is a plant-origin quaternary isoquinoline alkaloid with a vast array of biological activities, including antioxidant and blood-glucose- and blood-lipid-lowering effects. However, its therapeutic potential is largely limited by its poor oral bioavailability. The aim of this study was to investigate the in vitro solubility and Caco-2 cell permeability followed by pharmacokinetic profiling in healthy volunteers of a new food-grade berberine delivery system (i.e., Berberine LipoMicel®). X-ray diffractometry (XRD), in vitro solubility, and Caco-2 cell permeability indicated higher bioavailability of LipoMicel Berberine (LMB) compared to the standard formulation. Increased aqueous solubility (up to 1.4-fold), as well as improved Caco-2 cell permeability of LMB (7.18 × 10-5 ± 7.89 × 10-6 cm/s), were observed when compared to standard/unformulated berberine (4.93 × 10-6 ± 4.28 × 10-7 cm/s). Demonstrating better uptake, LMB achieved significant increases in AUC0-24 and Cmax compared to the standard formulation (AUC: 78.2 ± 14.4 ng h/mL vs. 13.4 ± 1.97 ng h/mL, respectively; p < 0.05; Cmax: 15.8 ± 2.6 ng/mL vs. 1.67 ± 0.41 ng/mL) in a pilot study of healthy volunteers (n = 10). No adverse reactions were reported during the study period. In conclusion, LMB presents a highly bioavailable formula with superior absorption (up to six-fold) compared to standard berberine formulation and may, therefore, have the potential to improve the therapeutic efficacy of berberine. The study has been registered on ClinicalTrials.gov with Identifier NCT05370261.
Collapse
Affiliation(s)
- Julia Solnier
- ISURA, Burnaby, BC V3N 4S9, Canada; (Y.Z.); (Y.C.K.); (M.D.); (K.R.); (C.C.)
| | - Yiming Zhang
- ISURA, Burnaby, BC V3N 4S9, Canada; (Y.Z.); (Y.C.K.); (M.D.); (K.R.); (C.C.)
| | - Yun Chai Kuo
- ISURA, Burnaby, BC V3N 4S9, Canada; (Y.Z.); (Y.C.K.); (M.D.); (K.R.); (C.C.)
| | - Min Du
- ISURA, Burnaby, BC V3N 4S9, Canada; (Y.Z.); (Y.C.K.); (M.D.); (K.R.); (C.C.)
| | - Kyle Roh
- ISURA, Burnaby, BC V3N 4S9, Canada; (Y.Z.); (Y.C.K.); (M.D.); (K.R.); (C.C.)
| | | | - Simon Wood
- School of Public Health, Faculty of Health Sciences, Curtin University, Perth, WA 6845, Australia;
- InovoBiologic Inc., Calgary, AB Y2N 4Y7, Canada
- Food, Nutrition and Health Program, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Chuck Chang
- ISURA, Burnaby, BC V3N 4S9, Canada; (Y.Z.); (Y.C.K.); (M.D.); (K.R.); (C.C.)
| |
Collapse
|
39
|
Zhang L, Yang C, Zhao Y, Yang Z, Meng X, Yan D. Comparative pharmacokinetic analysis of six major bioactive constituents using UPLC-MS/MS in samples isolated from normal and diabetic nephropathy rats after oral administration of Gushen Jiedu capsule. J Pharm Biomed Anal 2023; 235:115638. [PMID: 37633162 DOI: 10.1016/j.jpba.2023.115638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/07/2023] [Accepted: 08/07/2023] [Indexed: 08/28/2023]
Abstract
Berberine, palmatine, physcion, rhein, calycosin-7-O-glucoside, and ferulic acid are six major active consituents that are present in Gushen Jiedu capsule (GSJD) extracts. The aim of this study was to determine the pharmacokinetics of the six active consituents in vivo by a rapid, sensitive, and precise UPLC-MS/MS method, which were compared between normal and diabetic nephropathy (DN) rats. Good separation of the target analytes and internal standards (ketoprofen and puerarin) was obtained on a Waters BEH C18 UPLC column with a mobile phase of 0.1 % formic acid acetonitrile-0.1 % formic acid water. All the calibration curves showed good linearity with a regression coefficient (r2) of ≥ 0.9908. The lower limits of quantification (LLOQ) for berberine, palmatine, physcion, rhein, calycosin-7-O-glucoside, and ferulic acid were 20, 2.5, 20, 20, 2.5, and 2.5 ng/mL, respectively. The relative standard deviations (RSDs) of intra-day and inter-day precision were all within 12.66 %, and the relative errors of intra-day and inter-day accuracy ranged from - 15.00 to 14.93 %. Good extraction recovery and matrix effects were obtained. The stability study confirmed the stability of the six analytes (RSD < 15 %). Finally, the data showed that the pharmacokinetic parameters (especially CLz/F, AUC and Tmax) of the six target analytes in DN rats were significantly different from those in normal rats. PK studies under pathological conditions could provide new thoughts to elucidate the underlying mechanism of GSJD and promote the clinical development of GSJD to treat DN.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Pharmacy, Beijing Shijitan Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Bio-characteristic Profiling for Evaluation of Rational Drug Use, Beijing, China
| | - Chunjing Yang
- Department of Pharmacy, Beijing Shijitan Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Bio-characteristic Profiling for Evaluation of Rational Drug Use, Beijing, China
| | - Yidan Zhao
- Department of Pharmacy, Fuwai Central China Cardiovascular Hospital, Zhengzhou, China
| | - Zhirui Yang
- Beijing Key Laboratory of Bio-characteristic Profiling for Evaluation of Rational Drug Use, Beijing, China; Beijing Institute of Clinical Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xintong Meng
- Beijing Key Laboratory of Bio-characteristic Profiling for Evaluation of Rational Drug Use, Beijing, China
| | - Dan Yan
- Beijing Institute of Clinical Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, China; Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
40
|
Tian E, Sharma G, Dai C. Neuroprotective Properties of Berberine: Molecular Mechanisms and Clinical Implications. Antioxidants (Basel) 2023; 12:1883. [PMID: 37891961 PMCID: PMC10604532 DOI: 10.3390/antiox12101883] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Berberine (BBR), an isoquinoline alkaloid natural product, is isolated primarily from Coptis chinensis and other Berberis plants. BBR possesses various bioactivities, including antioxidant, anti-inflammation, anticancer, immune-regulation, and antimicrobial activities. Growing scientific evidence underscores BBR's substantial neuroprotective potential, prompting increased interest and scrutiny. In this comprehensive review, we elucidate the neuroprotective attributes of BBR, delineate the underlying molecular mechanisms, and assess its clinical safety and efficacy. The multifaceted molecular mechanisms responsible for BBR's neuroprotection encompass the attenuation of oxidative stress, mitigation of inflammatory responses, inhibition of apoptotic pathways, facilitation of autophagic processes, and modulation of CYP450 enzyme activities, neurotransmitter levels, and gut microbiota composition. Furthermore, BBR engages numerous signaling pathways, including the PI3K/Akt, NF-κB, AMPK, CREB, Nrf2, and MAPK pathways, to confer its neuroprotective effects. This comprehensive review aims to provide a substantial knowledge base, stimulate broader scientific discourse, and facilitate advancements in the application of BBR for neuroprotection.
Collapse
Affiliation(s)
- Erjie Tian
- College of Animal Science and Technology, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang 471000, China
| | - Gaurav Sharma
- Cardiovascular and Thoracic Surgery and Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75230, USA
| | - Chongshan Dai
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| |
Collapse
|
41
|
Kong Y, Xing QQ, Tian YX, Li L, Yu P, Zhao LG, Li DD. Design, synthesis, and biological activity of 9- O-cinnamoylberberines as novel lipid-lowering agents. Nat Prod Res 2023; 37:3452-3460. [PMID: 35695154 DOI: 10.1080/14786419.2022.2085697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 05/23/2022] [Accepted: 05/26/2022] [Indexed: 11/09/2022]
Abstract
Berberine possesses a wide spectrum of lipid regulation, and yet it has poor physicochemical property and cytotoxicity as a drug candidate. In order to alleviate the problems, a total of twenty-one 9-O-cinnamoylberberines and twenty 9-O-cinnamoyltetrahydroberberines were designed, synthesized, and evaluated by in vitro cell viability experiment and four classical lipid-lowering assays involving with total cholesterol, triglyceride, low density lipoprotein cholesterol, and high density lipoprotein cholesterol. A structure-activity relationship study of these compounds resulted in the discovery of two promising candidate molecules (5p and 7u). Compound 5p displayed the most potent inhibitory effect for TG formation, with the inhibitory rates of 40.5% and 76.8% in 3T3-L1 cells and HepG2 cells, respectively. Compound 7u exhibited the most promoting activity for the production of HDLC, with the increasing rates of 52.6% and 70.5% in both models, respectively. These two attractive compounds can be further investigated as new lipid-lowering agents in follow-up researches.
Collapse
Affiliation(s)
- Yuan Kong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, China
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Qi-Qi Xing
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, China
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Yu-Xuan Tian
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, China
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Lin Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, China
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Pan Yu
- Institute of Environmentally Friendly Materials and Occupational Health, Anhui University of Science and Technology, Wuhu, China
| | - Lin-Guo Zhao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, China
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Dong-Dong Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, China
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
42
|
Makeiff DA, Smith B, Azyat K, Xia M, Alam SB. Development of Gelled-Oil Nanoparticles for the Encapsulation and Release of Berberine. ACS OMEGA 2023; 8:33774-33784. [PMID: 37744867 PMCID: PMC10515596 DOI: 10.1021/acsomega.3c04230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/25/2023] [Indexed: 09/26/2023]
Abstract
In this study, a new drug carrier based on gelled-oil nanoparticles (GNPs) was designed and synthesized for the encapsulation and release of the model hydrophobic drug, berberine chloride (BCl). Two compositions with different oil phases were examined, sesame oil (SO) and cinnamaldehyde (Cin), which were emulsified with water, stabilized with Tween 80 (Tw80), and gelled using an N-alkylated primary oxalamide low-molecular-weight gelator (LMWG) to give stable dispersions of GNPs between 100 and 200 nm in size. The GNP formulation with Cin was significantly favored over SO due to (1) lower gel melting temperatures, (2) higher gel mechanical strength, and (3) significantly higher solubility, encapsulation efficiency, and loading of BCl. Also, the solubility and loading of BCl in Cin were significantly increased (at least 7-fold) with the addition of cinnamic acid. In vitro release studies showed that the release of BCl from the GNPs was independent of gelator concentration and lower than that for BCl solution and the corresponding nanoemulsion (no LWMG). Also, cell internalization studies suggested that the N-alkylated primary oxalamide LMWG did not interfere with the internalization efficiency of BCl into mouse mast cells. Altogether, this work demonstrates the potential use of these new GNP formulations for biomedical studies involving the encapsulation of drugs and nutraceuticals and their controlled release.
Collapse
Affiliation(s)
- Darren A. Makeiff
- Nanotechnology Research Center, National Research Council of Canada, 11421 Saskatchewan Drive, Edmonton, Alberta T6G
2M9, Canada
| | - Brad Smith
- Nanotechnology Research Center, National Research Council of Canada, 11421 Saskatchewan Drive, Edmonton, Alberta T6G
2M9, Canada
| | - Khalid Azyat
- Nanotechnology Research Center, National Research Council of Canada, 11421 Saskatchewan Drive, Edmonton, Alberta T6G
2M9, Canada
| | - Mike Xia
- Nanotechnology Research Center, National Research Council of Canada, 11421 Saskatchewan Drive, Edmonton, Alberta T6G
2M9, Canada
| | - Syed Benazir Alam
- Nanotechnology Research Center, National Research Council of Canada, 11421 Saskatchewan Drive, Edmonton, Alberta T6G
2M9, Canada
| |
Collapse
|
43
|
Marques C, Fernandes MH, Lima SAC. Elucidating Berberine's Therapeutic and Photosensitizer Potential through Nanomedicine Tools. Pharmaceutics 2023; 15:2282. [PMID: 37765251 PMCID: PMC10535601 DOI: 10.3390/pharmaceutics15092282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Berberine, an isoquinoline alkaloid extracted from plants of the Berberidaceae family, has been gaining interest due to anti-inflammatory and antioxidant activities, as well as neuro and cardiovascular protective effects in animal models. Recently, photodynamic therapy demonstrated successful application in many fields of medicine. This innovative, non-invasive treatment modality requires a photosensitizer, light, and oxygen. In particular, the photosensitizer can selectively accumulate in diseased tissues without damaging healthy cells. Berberine's physicochemical properties allow its use as a photosensitising agent for photodynamic therapy, enabling reactive oxygen species production and thus potentiating treatment efficacy. However, berberine exhibits poor aqueous solubility, low oral bioavailability, poor cellular permeability, and poor gastrointestinal absorption that hamper its therapeutic and photodynamic efficacy. Nanotechnology has been used to minimize berberine's limitations with the design of drug delivery systems. Different nanoparticulate delivery systems for berberine have been used, as lipid-, inorganic- and polymeric-based nanoparticles. These berberine nanocarriers improve its therapeutic properties and photodynamic potential. More specifically, they extend its half-life, increase solubility, and allow a high permeation and targeted delivery. This review describes different nano strategies designed for berberine delivery as well as berberine's potential as a photosensitizer for photodynamic therapy. To benefit from berberine's overall potential, nanotechnology has been applied for berberine-mediated photodynamic therapy.
Collapse
Affiliation(s)
- Célia Marques
- IUCS-CESPU, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal;
- LAQV, REQUIMTE, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - Maria Helena Fernandes
- BoneLab-Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, LAQV, REQUIMTE, U. Porto, 4200-393 Porto, Portugal
| | - Sofia A. Costa Lima
- IUCS-CESPU, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal;
- LAQV, REQUIMTE, Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| |
Collapse
|
44
|
Peng X, Yang Y, Guo C, He Q, Li Y, Gong T, Li J. A sustained-release phospholipid-based phase separation gel loaded with berberine for treating rheumatoid arthritis. Front Pharmacol 2023; 14:1210129. [PMID: 37547331 PMCID: PMC10397395 DOI: 10.3389/fphar.2023.1210129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/11/2023] [Indexed: 08/08/2023] Open
Abstract
Berberine (BBR) has a long history of use in the treatment of Rheumatoid arthritis (RA) and is considered one of the most promising natural product for the treatment of RA. However, oral administration of berberine has low bioavailability and requires frequent administration, resulting in poor patient compliance. In this study, we developed a BBR-loaded phospholipid-based phase separation gel (BBR-PPSG) to achieve sustained drug release and long-term therapeutic effect. The stability of BBR-PPSG was verified and it was found that it can be stored for a long time. The pharmacokinetic study on rats and rabbits showed that BBR-PPSG not only achieved 1-month of sustained release, but also significantly increased the area under the curve (AUC) by nearly 9-fold and prolonged the half-life (t1/2) by 10-fold. By constructing rat and rabbit models of RA, we also proved that BBR-PPSG administration once a month effectively alleviated joint swelling, and significantly reduce TNF-α levels in AIA rats and OIA rabbits. Histopathological analysis of rabbit joint sections revealed that after intra-articular injection of BBR-PPSG, the synovial cell layer remained intact, while in the model group, the synovial cells were significantly reduced and exhibited necrosis. MicroCT data analysis showed that the values of Tb.N and Tb. Sp in the BBR-PPSG group were significantly better than those in the model group (p < 0.05). This study addressed the limitations of frequent administration of BBR by developing a phospholipid-based phase separation gel system for berberine delivery, achieving long-term sustained release. The BBR-PPSG demonstrated good biocompatibility, simple preparation and excellent stability, thus holding potential as a novel pharmaceutical formulation for RA treatment.
Collapse
Affiliation(s)
- Xiong Peng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Yuping Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Chenqi Guo
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Qin He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Yan Li
- Sichuan Institute for Drug Control, NMPA Key Laboratory for Quality Control and Evaluation of Vaccines and Biological Products, Chengdu, China
| | - Tao Gong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Jia Li
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
45
|
Li C, Liu M, Deng L, Luo D, Ma R, Lu Q. Oxyberberine ameliorates TNBS-induced colitis in rats through suppressing inflammation and oxidative stress via Keap1/Nrf2/NF-κB signaling pathways. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 116:154899. [PMID: 37247589 DOI: 10.1016/j.phymed.2023.154899] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/10/2023] [Accepted: 05/22/2023] [Indexed: 05/31/2023]
Abstract
BACKGROUND Ulcerative colitis (UC) is a chronic, unspecific inflammatory bowel disorder lacking effective therapeutic targets and radical drugs. Oxyberberine (OBB), a novel intestinal flora-elicited oxidative metabolite of berberine (BBR), has been revealed to exhibit diverse pharmacological properties. PURPOSE In this follow-up study, we attempted to shed light on the possible therapeutic effect and latent mechanism of OBB on 2, 4, 6-trinitrobenzenesulfonic acid (TNBS)-evoked UC in rats. METHODS UC rats were established via a gentle enema of TNBS. Rats were sacrificed after intragastric administration of drugs for seven days. The weight reduction, disease activity index, macroscopic and histological colonic alterations were assessed. Further investigation on molecular mechanisms was conducted by ELISA, qRT-PCR, immunohistochemistry, or Western blot. RESULTS OBB treatment remarkably decreased the weight loss, macroscopic scores, and colonal weight/length ratio, as well as mitigated the colonic pathological deterioration and MPO vitality in colitis rats, achieving a superior protective effect to BBR. Additionally, OBB modulated the disequilibrium between pro- and anti-inflammatory factors by promoting the production of IL-13 and IL-4, and lowering the contents of TNF-α, IL-2, IL-8, and IL-22. Furthermore, OBB pretreatment dramatically ameliorated oxidative stress via enhancing antioxidant defense genes expressions (including HO-1, GCLM, GCLC, and NQO-1), thereby increasing SOD and GSH, and decreasing MDA and ROS activities. Furthermore, OBB strikingly restrained the translocation of NF-κB p65 and phosphorylation of IκBα, promoted HO-1 expression, Keap1 degradation and Nrf2 nuclear translocation. CONCLUSION The study firstly indicated that OBB had a superior therapeutic effect than BBR against TNBS-elicited colitis in rats. The protective effect of OBB might be closely related to the modulation of Keap1/Nrf2/NF-κB-mediated inflammatory response and oxidant stress. The evidences highlight the potentiality of OBB as a prospective candidate for the amelioration of colitis.
Collapse
Affiliation(s)
- Cailan Li
- Department of Pharmacology, Zunyi Medical University, Zhuhai Campus, Zhuhai 519041, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China; Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi 563000, China.
| | - Meigui Liu
- Department of Pharmaceutical Sciences, Zunyi Medical University, Zhuhai Campus, Zhuhai 519041, PR China
| | - Li Deng
- Department of Pharmacology, Zunyi Medical University, Zhuhai Campus, Zhuhai 519041, China
| | - Dandan Luo
- Department of Pharmacy, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
| | - Runfang Ma
- Department of Pharmaceutical Sciences, Zunyi Medical University, Zhuhai Campus, Zhuhai 519041, PR China
| | - Qiang Lu
- Department of Pharmaceutical Sciences, Zunyi Medical University, Zhuhai Campus, Zhuhai 519041, PR China.
| |
Collapse
|
46
|
Huang Z, Li M, Qin Z, Ma X, Huang R, Liu Y, Xie J, Zeng H, Zhan R, Su Z. Intestines-erythrocytes-mediated bio-disposition deciphers the hypolipidemic effect of berberine from Rhizoma Coptidis: A neglected insight. JOURNAL OF ETHNOPHARMACOLOGY 2023; 314:116600. [PMID: 37196811 DOI: 10.1016/j.jep.2023.116600] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 05/19/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Rhizoma Coptidis (RC), the dried rhizome of Coptis Chinensis Franch., can dispel dampness and heat within the body and has been traditionally used for the treatment of cardiovascular disease (CVD)-associated problems including hyperlipidemia in China. Berberine (BBR) is the main active component of RC, which has been shown to possess significant therapeutic potential. However, only 0.14% of BBR is metabolized in the liver, and the extremely low bioavailability (<1%) and blood concentration of BBR in experimental and clinical settings is insufficient to achieve the effects as observed under in vitro conditions, which imposes challenges to explain its excellent pharmacological actions. Intense efforts are currently being devoted to defining its specific pharmacological molecular targets, while the exploration from the perspective of its pharmacokinetic disposition has rarely been reported to date, which could hardly make a comprehensive understanding of its hypolipidemic enigma. AIM OF THE STUDY This study made a pioneering endeavor to unveil the hypolipidemic mechanism of BBR from RC focusing on its unique intestines-erythrocytes-mediated bio-disposition. MATERIALS AND METHODS The fate of BBR in intestines and erythrocytes was probed by a rapid and sensitive LC/MS-IT-TOF method. To analyze the disposition of BBR, a reliable HPLC method was subsequently developed and validated for simultaneous determination of BBR and its key active metabolite oxyberberine (OBB) in whole blood, tissues, and excreta. Meanwhile, the enterohepatic circulation (BDC) of BBR and OBB was verified by bile duct catheterization rats. Finally, lipid overloading models of L02 and HepG2 cells were employed to probe the lipid-lowering activity of BBR and OBB at in vivo concentration. RESULTS The results showed that BBR underwent biotransformation in both intestines and erythrocytes, and converted into the major metabolite oxyberberine (OBB). The AUC0-t ratio of total BBR to OBB was approximately 2:1 after oral administration. Besides, the AUC0-t ratio of bound BBR to its unbound counterpart was 4.6:1, and this ratio of OBB was 2.5:1, indicative of abundant binding-type form in the blood. Liver dominated over other organs in tissue distribution. BBR was excreted in bile, while the excretion of OBB in feces was significantly higher than that in bile. Furthermore, the bimodal phenomenon of both BBR and OBB disappeared in BDC rats and the AUC0-t was significantly lower than that in the sham-operated control rats. Interestingly, OBB significantly decreased triglycerides and cholesterol levels in lipid overloading models of L02 and HepG2 cells at in vivo-like concentration, which was superior to the prodrug BBR. CONCLUSIONS Cumulatively, BBR underwent unique extrahepatic metabolism and disposition into OBB by virtue of intestines and erythrocytes. BBR and OBB were mainly presented and transported in the protein-bound form within the circulating erythrocytes, potentially resulting in hepatocyte targeting accompanied by obvious enterohepatic circulation. The unique extrahepatic disposition of BBR via intestines and erythrocytes conceivably contributed enormously to its hypolipidemic effect. OBB was the important material basis for the hypolipidemic effect of BBR and RC.
Collapse
Affiliation(s)
- Ziwei Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510120, PR China
| | - Minhua Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510120, PR China
| | - Zehui Qin
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510120, PR China
| | - Xingdong Ma
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510120, PR China
| | - Ronglei Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510120, PR China
| | - Yuhong Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510120, PR China
| | - Jianhui Xie
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, PR China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, PR China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, 510120, PR China
| | - Huifang Zeng
- The First Affiliated Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510120, PR China.
| | - Ruoting Zhan
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510120, PR China.
| | - Ziren Su
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510120, PR China.
| |
Collapse
|
47
|
Sun Z, Zhang X, Fu J, Zhang L, Cheng M, Yang L, Liu Y. Collective Syntheses of 8-Oxoprotoberberines via Sequential In(OTf) 3-Catalyzed Cyclization and Pd(OAc) 2-Catalyzed Heck Coupling. J Org Chem 2023. [PMID: 37172220 DOI: 10.1021/acs.joc.3c00419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Six 8-oxoprotoberberines were synthesized collectively in four steps with acceptable yields (14-19%), of which the products 8-oxopalmatine, 8-oxopseudopalmatine, 8-oxoberberine, and 8-oxopseudoberberine come from nature. The synthetic route was featured with the In(OTf)3-catalyzed cyclization and Heck coupling. Moreover, the syntheses of the natural products berberine, canadine, and iambertine were achieved via various reductions from 8-oxoberberine, which provided a concise approach to the syntheses of this kind of alkaloids.
Collapse
Affiliation(s)
- Zenghui Sun
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
- Institute of Drug Research in Medicine Capital of China, Benxi 117000, P. R. China
| | - Xinhang Zhang
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
- Institute of Drug Research in Medicine Capital of China, Benxi 117000, P. R. China
| | - Jiayue Fu
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
- Institute of Drug Research in Medicine Capital of China, Benxi 117000, P. R. China
| | - Lianjie Zhang
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
- Institute of Drug Research in Medicine Capital of China, Benxi 117000, P. R. China
| | - Maosheng Cheng
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
- Institute of Drug Research in Medicine Capital of China, Benxi 117000, P. R. China
| | - Lu Yang
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
- Institute of Drug Research in Medicine Capital of China, Benxi 117000, P. R. China
| | - Yongxiang Liu
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
- Institute of Drug Research in Medicine Capital of China, Benxi 117000, P. R. China
| |
Collapse
|
48
|
Wang D, Qi M, Zhao H, Wu H, Chen H, Lan Y, Wang Y, Jiang Y, Wang J. Interventional effect of processing temperature on anti-angiogenesis of Coptis chinensis and screening of active components by UPLC-MS/MS on quail chick chorioallantoic membrane model. JOURNAL OF ETHNOPHARMACOLOGY 2023; 305:116014. [PMID: 36581161 DOI: 10.1016/j.jep.2022.116014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/16/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Coptis chinensis Franch. (CC), as a commonly used heat-clearing and toxin-resolving traditional Chinese herbal medicine, has gained increased attention for its anti-tumor activity. However, little is known about the anti-tumor angiogenesis effect of CC and its possible bioactive components. Also, it has been shown that temperature affects the quality of CC, albeit whether and how it affects the anti-angiogenic activity of CC is currently unknown. AIM OF THE STUDY To determine the processing temperatures (40, 60, 80, 120, 140, 150, 160 and 200 °C) at which CC has the strongest anti-angiogenic effect and speculate the possible bioactive components. MATERIALS AND METHODS The q-CAM model was constructed to explore the anti-angiogenesis agents of CC. The angiogenesis inhibition effects of CC samples at different processing temperatures and its seven alkaloids were determined based on morphological observation and vascular area proportion analysis. UPLC-MS/MS was employed to screen the potent active components of CC on anti-angiogenesis. RESULTS All the intervention by CC at different processing temperatures and its seven alkaloids could inhibit angiogenesis on q-CAM vessels, as evidenced by a poor vasular development in morphological observation and a low vascular area proportion in vascular quantitative analysis, most evident in CC processed at 40 °C and palmatine. LC-MS revealed that palmatine displayed strongest inhibitory effect on q-CAM vessels with a high absorption due to its stable structure. And the maternal nucleus transformation phenomenon of CC alkaloids was found in the quail embryo metabolism. CONCLUSIONS The q-CAM models in conjunction with the UPLC-MS/MS technique could be a useful tool for assessing tumor angiogenesis and screening tumor-targeted medicines. Processing temperature can affect the anti-angiogenesis effect of CC because of its function on the content of alkaloids, and palmatine can be considered as a prospective anti-angiogenic drug.
Collapse
Affiliation(s)
- Dan Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, PR China
| | - Miao Qi
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, PR China
| | - Hedi Zhao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, PR China
| | - Haozhong Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, PR China
| | - Han Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, PR China
| | - Yanan Lan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, PR China
| | - Yanmin Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, PR China
| | - Yani Jiang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, PR China
| | - Jingjuan Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, PR China.
| |
Collapse
|
49
|
Yang Y, Wang Y, Zhao L, Wang F, Li M, Wang Q, Luo H, Zhao Q, Zeng J, Zhao Y, Du F, Chen Y, Shen J, Wei S, Xiao Z, Wu X. Chinese herbal medicines for treating ulcerative colitis via regulating gut microbiota-intestinal immunity axis. CHINESE HERBAL MEDICINES 2023; 15:181-200. [PMID: 37265772 PMCID: PMC10230642 DOI: 10.1016/j.chmed.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/05/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Ulcerative colitis (UC) is one of types of inflammatory bowel disease with high recurrence. Recent studies have highlighted that microbial dysbiosis as well as abnormal gut immunity are crucial factors that initiate a series of inflammatory responses in the UC. Modulating the gut microbiota-intestinal immunity loop has been suggested as one of key strategies for relieving UC. Many Chinese herbal medicines including some of single herb, herbal formulas and the derived constituents have been reported with protective effect against UC through modulating gut microbiome and intestinal immunity. Some clinical trials have shown promising results. This review thus focused on the current knowledge on using Chinese herbal medicines for treating UC from the mechanism aspects of regulating intestinal homeostasis involving microbiota and gut immunity. The existing clinical trials are also summarized.
Collapse
Affiliation(s)
- Yifei Yang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Luzhou Key Laboratory of Cell Therapy & Cell Drugs, Luzhou 646000, China
| | - Yi Wang
- Sichuan Fifth People’s Hospital, Chengdu 610015, China
| | - Long Zhao
- Department of Spleen and Stomach Diseases, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, China
| | - Fang Wang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Luzhou Key Laboratory of Cell Therapy & Cell Drugs, Luzhou 646000, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Luzhou Key Laboratory of Cell Therapy & Cell Drugs, Luzhou 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, China
| | - Qin Wang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Luzhou Key Laboratory of Cell Therapy & Cell Drugs, Luzhou 646000, China
| | - Haoming Luo
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Luzhou Key Laboratory of Cell Therapy & Cell Drugs, Luzhou 646000, China
| | - Qianyun Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Luzhou Key Laboratory of Cell Therapy & Cell Drugs, Luzhou 646000, China
| | - Jiuping Zeng
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Luzhou Key Laboratory of Cell Therapy & Cell Drugs, Luzhou 646000, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Luzhou Key Laboratory of Cell Therapy & Cell Drugs, Luzhou 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Luzhou Key Laboratory of Cell Therapy & Cell Drugs, Luzhou 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, China
| | - Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Luzhou Key Laboratory of Cell Therapy & Cell Drugs, Luzhou 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Luzhou Key Laboratory of Cell Therapy & Cell Drugs, Luzhou 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, China
| | - Shulin Wei
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Luzhou Key Laboratory of Cell Therapy & Cell Drugs, Luzhou 646000, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Luzhou Key Laboratory of Cell Therapy & Cell Drugs, Luzhou 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Luzhou Key Laboratory of Cell Therapy & Cell Drugs, Luzhou 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, China
- State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao 999078, China
| |
Collapse
|
50
|
Singh N, Pandey AK, Pal RR, Parashar P, Singh P, Mishra N, Kumar D, Raj R, Singh S, Saraf SA. Assessment of Anti-Arthritic Activity of Lipid Matrix Encased Berberine in Rheumatic Animal Model. J Microencapsul 2023; 40:263-278. [PMID: 36989347 DOI: 10.1080/02652048.2023.2194414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
AIM The purpose of this study was to evaluate the drug delivery and therapeutic potential of berberine (Br) loaded nanoformulation in rheumatoid arthritis (RA)-induced animal model. METHOD The Br-loaded NLCs (nanostructured lipid carriers) were prepared employing melt-emulsification process, and optimized through box-behnken design. The prepared NLCs were assessed for in-vitro and in-vivo evaluations. RESULT The optimized NLCs exhibited a mean diameter of 180.2 ± 0.31nm with 88.32 ± 2.43% entrapment efficiency. An enhanced anti-arthritic activity with reduced arthritic scores to 0.66 ± 0.51, reduction in ankle diameter to 5.80 ± 0.27mm, decline in paw withdrawal timing, and improvements in walking behavior were observed in the Br-NLCs treated group. The radiographic images revealed a reduction in bone and cartilage deformation. CONCLUSION The Br-NLCs showed promising results in the management of RA disease, can be developed as an efficient delivery system at commercial levels, and may be explored for clinical application after suitable experiments in the future.
Collapse
Affiliation(s)
- Neelu Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University Lucknow (A Central University), Uttar Pradesh, VidyaVihar, Raebareli Road, Lucknow 226025, India
| | - Amit Kumar Pandey
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University Lucknow (A Central University), Uttar Pradesh, VidyaVihar, Raebareli Road, Lucknow 226025, India
| | - Ravi Raj Pal
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University Lucknow (A Central University), Uttar Pradesh, VidyaVihar, Raebareli Road, Lucknow 226025, India
| | - Poonam Parashar
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, 226028, India
| | - Priya Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University Lucknow (A Central University), Uttar Pradesh, VidyaVihar, Raebareli Road, Lucknow 226025, India
| | - Nidhi Mishra
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University Lucknow (A Central University), Uttar Pradesh, VidyaVihar, Raebareli Road, Lucknow 226025, India
| | - Dinesh Kumar
- Centre of Biomedical Research (CBMR), Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS) Campus, Uttar Pradesh, Raebareli Road, Lucknow, 226014, India
| | - Ritu Raj
- Centre of Biomedical Research (CBMR), Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS) Campus, Uttar Pradesh, Raebareli Road, Lucknow, 226014, India
| | - Sukhveer Singh
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Uttar Pradesh, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, India
| | - Shubhini A Saraf
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University Lucknow (A Central University), Uttar Pradesh, VidyaVihar, Raebareli Road, Lucknow 226025, India
| |
Collapse
|