1
|
Abdin M, Alnadari F, El-Masry HG, Aly-Aldin MM, Naeem MA, Younes M, Kamel R, Shawir SMS, Ayyash M. Structure characterization and rheological properties of novel polysaccharides extracted from mango seed kernel, and their effects on immunomodulation and human gut microbiota. Food Chem 2025; 479:143841. [PMID: 40081062 DOI: 10.1016/j.foodchem.2025.143841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 03/06/2025] [Accepted: 03/09/2025] [Indexed: 03/15/2025]
Abstract
Mango seed kernel polysaccharides (MSKP) were investigated for their structural characteristics, rheological properties, immunomodulatory effects, and potential benefits for gut health. The molecular weight of extracted MSKP was 4.2 × 104 Da. The primary monosaccharide in MSKP was found to be xylose, which accounted for 25.74 mol% of the total. Fucose, 22.65 mol%, rhamnose, 12.72 mol%, mannose, 11.87 mol%, ribose, 9.21 mol%, glucose, 7.87 mol%, arabinose, 6.11 mol%, and galactose, 3.81 mol%. The proposed structure of MSKP is →4) β -d-Xyl(1 → 4)α-d-Glc(1 → 4) α -d-Gal(1 → 6)β-d-Rib(1 → 3)β-d-Ara(1 → 6)α-d-Glc(1 → 2)β-d-Fuc(1 → 6)α-d-Rha(1→. MSKP solutions exhibited shear-thinning behavior, where viscosity decreased with increasing shear rates. Using an advanced extraction technique, MSKP was shown to enhance immune responses by stimulating nitric oxide production, acid phosphatase activity, and phagocytosis in RAW 264.7 murine cells. Importantly, simulated digestive tests indicated MSKP's resilience, showing no changes in molecular weight, monosaccharide content, or reducing sugar levels, suggesting it could reach the large intestine intact. This resilience promotes the increase of short-chain fatty acids (SCFAs) in the gut, highlighting MSKP's potential as a functional food for supporting gut health and preventing disease.
Collapse
Affiliation(s)
- Mohamed Abdin
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University (UAEU), Al-Ain, United Arab Emirates; Agricultural Research Center, Food Technology Research Institute, Giza 12611, Egypt.
| | - Fawze Alnadari
- Research and Development Center of Jiangsu Tianmeijian Nature Bioengineering Co., Ltd., Nanjing 210046, China
| | - Hany G El-Masry
- Nutrition and Food Science Department, Home Economics, Helwan University, Helwan, Egypt
| | - Mohamed M Aly-Aldin
- Department of Food Science and Technology, Faculty of Agriculture, Menoufia University, Shibin El-Kom, Egypt
| | - Mohamed Ahmed Naeem
- Nutrition and Food Science of, Ain Shams University Specialized Hospital, Ain Shams University, Cairo, Egypt
| | - Mahmoud Younes
- Chair of Dates Industry and Technology, King Saud University, PO Box 2460, Riyadh 11451, Saudi Arabia.
| | - Reham Kamel
- Agricultural Engineering Research Institute, Agricultural Research Center, Giza 12611, Egypt
| | - Samar M S Shawir
- Home Economics Department, Faculty of Specifc Education, Alexandria University, Alexandria, Egypt
| | - Mutamed Ayyash
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University (UAEU), Al-Ain, United Arab Emirates.
| |
Collapse
|
2
|
Jalal H, Sucu E, Cavallini D, Giammarco M, Akram MZ, Karkar B, Gao M, Pompei L, Eduardo J, Prasinou P, Fusaro I. Rumen fermentation profile and methane mitigation potential of mango and avocado byproducts as feed ingredients and supplements. Sci Rep 2025; 15:16164. [PMID: 40346095 PMCID: PMC12064803 DOI: 10.1038/s41598-025-00675-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 04/29/2025] [Indexed: 05/11/2025] Open
Abstract
Fruit byproducts represent a sustainable alternative to conventional feed for ruminants, addressing food-feed competition and environmental concerns, particularly through their potential to reduce enteric methane emissions via bioactive compounds. This study explored the use of mango and avocado byproducts as feed ingredients and supplements. In experiment 1, mango peel (MP), mango seed kernel (MSK), mango seed coat (MSC), avocado peel (AP), and avocado seed (AS) were independently tested to determine their chemical composition, in vitro digestibility, and rumen fermentation parameters, including gas production and methane emissions. In experiment 2, rumen fermentation parameters were evaluated across five treatment groups: The control group received 200 mg of alfalfa hay alone, without any supplementation. The remaining four groups each received 200 mg of alfalfa hay as the basal diet, supplemented with 15 mg of one of the following microencapsulated extracts: mango peel extract (MPE), avocado peel extract (APE), mango seed kernel extract (MSKE), or avocado seed extract (ASE). Both experiments were conducted over three runs, with each run including three replicates per treatment group, resulting in a total of nine replicates per group. Data were analyzed using linear mixed models with Bonferroni-adjusted pairwise comparisons (p < 0.05). MSK had the highest crude protein content, whereas AP had the highest ether content. MSC and AP presented the highest fiber fractions. AP and MP showed higher total phenolic content and antioxidant capacity. In experiment 1, AS, MP and MSK resulted in greater in vitro dry matter digestibility, and cumulative gas production compared to MSC and AP. Acetate to propionate ratios were higher in AS, MSC, and MSK. Methane production (ml/g dry matter incubated) was highest in MSK (43.7), while AP (19.8) and MSC (18.7) produced the lowest, representing almost 55% reduction compared to MSK (P < 0.001). MP (40.9) and AS (42.2) had intermediate methane values. Ammonia nitrogen was highest in AP and lowest in MSC. In experiment 2, MSKE, ASE and the control had the highest cumulative gas production, whereas APE reduced methane production by 16% compared to the control and lowered the acetate-to-propionate ratio. Compared with the control, all the encapsulated extracts lowered the ammonia nitrogen concentration. Overall, MP, MSK, and AS have emerged as the most promising ingredients because of their relatively high digestibility, and fermentation efficiency, whereas APE and MPE have potential as feed supplements for reducing in vitro methane production.
Collapse
Affiliation(s)
- Hassan Jalal
- Department of Veterinary Medicine, University of Teramo, Loc. Piano d'Accio, 64100, Teramo, Italy
| | - Ekin Sucu
- Faculty of Agriculture, Department of Animal Science, Bursa Uludag University, 16059, Bursa, Türkiye
| | - Damiano Cavallini
- Department of Veterinary Sciences, University of Bologna, Bologna, Italy.
| | - Melania Giammarco
- Department of Veterinary Medicine, University of Teramo, Loc. Piano d'Accio, 64100, Teramo, Italy
| | - Muhammad Zeeshan Akram
- Nutrition and Animal-Microbiota Ecosystems Laboratory, Department of Biosystems, KU Leuven, 3001, Heverlee, Belgium
| | - Büşra Karkar
- Faculty of Science and Arts, Department of Chemistry, Bursa Uludag University, 16059, Bursa, Türkiye
| | - Min Gao
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, 010021, China
| | - Luigi Pompei
- Department of Veterinary Medicine, University of Teramo, Loc. Piano d'Accio, 64100, Teramo, Italy
| | - Jorge Eduardo
- Food Research Department, School of Chemistry, Universidad Autonoma de Coahuila, 25280, Saltillo, Coahuila, Mexico
| | - Paraskevi Prasinou
- Department of Veterinary Medicine, University of Teramo, Loc. Piano d'Accio, 64100, Teramo, Italy
| | - Isa Fusaro
- Department of Veterinary Medicine, University of Teramo, Loc. Piano d'Accio, 64100, Teramo, Italy
| |
Collapse
|
3
|
Wang J, Xie X, Li B, Yang L, Song F, Zhou Y, Jiang M. Complete genome analysis and antimicrobial mechanism of Bacillus velezensis GX0002980 reveals its biocontrol potential against mango anthracnose disease. Microbiol Spectr 2025:e0268524. [PMID: 40237490 DOI: 10.1128/spectrum.02685-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 03/15/2025] [Indexed: 04/18/2025] Open
Abstract
Post-harvest anthracnose significantly affects the yield and quality of mangoes. In this study, an antagonist bacterium, GX0002980, with strong inhibitory effect against Colletotrichum gloesporioides, the pathogen of mango anthracnose, was isolated from the rhizosphere soil of plants. Based on morphological characteristics, physiological and biochemical tests, and 16S rRNA gene and gyrB gene sequencing analysis, the strain was identified as Bacillus velezensis. Strain GX0002980 exhibits broad-spectrum antibacterial capabilities, and its volatile substances and sterile fermentation filtrate also demonstrate antagonistic effects against C. gloesporioides. This strain can produce antimicrobial substances that inhibit pathogen growth, such as amylase, cellulase, protease, pectinase, and siderophores, and has plant-growth-promoting characteristics, such as nitrogen fixation, NH3 production, and phosphate solubilization. Whole-genome sequencing results show that the genome size of GX0002980 is 3,907,381 bp with a guanine and cytosine content of 47.44%. The antiSMASH analysis predicts 14 antimicrobial biosynthesis gene clusters within the GX0002980 genome, including surfactin, fengycin, bacilysin, macrolactin H, bacillaene, difficidin, and bacillibactin. Liquid chromatography-mass spectrometry analysis revealed that the antimicrobial active substances secreted by GX0002980 include surfactin, bacilysin, butirosin A, and more. Strain GX0002980 has an in vitro control efficiency of 52% against mango anthracnose, and it can effectively suppress the occurrence of post-harvest diseases in mangoes, extending their storage time. In conclusion, B. velezensis GX0002980 possesses multiple biocontrol mechanisms and has potential for application in the biological control of mango anthracnose.IMPORTANCEBacillus velezensis GX0002980 showed biocontrol potential against Colletotrichum gloesporioides, a causative agent of mango anthracnose. B. velezensis GX0002980 produces a variety of secondary metabolites with antibacterial properties. Whole-genome sequencing revealed potential active metabolite synthesis gene clusters of B. velezensis GX0002980. B. velezensis GX0002980 has a significant effect on the control of post-harvest disease in mango fruits.
Collapse
Affiliation(s)
- Jing Wang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, Guangxi, China
| | - Xiaoying Xie
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, Guangxi, China
| | - Bo Li
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, Guangxi, China
| | - Lifang Yang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning, Guangxi, China
| | - Fuqiang Song
- Engineering Research Center of Agricultural Microbiology Technology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, Heilongjiang, China
| | - Yan Zhou
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, Guangxi, China
| | - Mingguo Jiang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, Guangxi, China
| |
Collapse
|
4
|
Kumoro AC, Wardhani DH, Kusworo TD, Ma'rifat Fajar Azis Y, Alhanif M, Ping TC. Unlocking the prebiotic carbohydrates: Insights into the types, preparation, health benefits and future utilizations of selected Indonesian exotic fruit seeds as a potential source of prebiotics. Food Chem X 2025; 27:102471. [PMID: 40321337 PMCID: PMC12047589 DOI: 10.1016/j.fochx.2025.102471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 04/09/2025] [Accepted: 04/15/2025] [Indexed: 05/08/2025] Open
Abstract
The human gastrointestinal tract, particularly the colon, is densely populated with microflora, primarily Bifidobacteria and Lactobacilli that are responsible for maintaining diet-based human health. Prebiotics, which are non-living dietary components, selectively stimulate the growth and activity of these beneficial gut microorganisms, offering numerous health benefits. This paper aims to explore the feasibility of utilizing Indonesian exotic fruit seeds as a potential source of prebiotic carbohydrates for functional foods and dietary additives. There are seven Indonesian exotic fruits that have large seed portions and are rich in various carbohydrates that function as prebiotics. These prebiotic carbohydrates, particularly oligosaccharides, can be extracted directly from fruit seeds or produced through enzymatic, fermentation, chemical, or thermal processes, each of which influences the prebiotic composition and effectiveness. Incorporating prebiotic carbohydrates into human health care and functional food production could reduce reliance on synthetic antibiotics. Furthermore, repurposing fruit seed residues for prebiotic production not only contributes to economic growth but also promotes environmental sustainability by minimizing waste.
Collapse
Affiliation(s)
- Andri Cahyo Kumoro
- Department of Chemical Engineering, Universitas Diponegoro, Semarang 50275, Indonesia
| | - Dyah Hesti Wardhani
- Department of Chemical Engineering, Universitas Diponegoro, Semarang 50275, Indonesia
| | - Tutuk Djoko Kusworo
- Department of Chemical Engineering, Universitas Diponegoro, Semarang 50275, Indonesia
| | | | - Misbahudin Alhanif
- Chemical Engineering Study Program, Faculty of Industrial Technology, Institut Teknologi Sumatera, Lampung Selatan 35365, Indonesia
| | - Tan Chin Ping
- Department of Food Technology, Universiti Putra Malaysia, Serdang 43400, Malaysia
| |
Collapse
|
5
|
Mitrevski J, Pantelić NĐ, Laličić-Petronijević J, Kojić JS, Zlatanović S, Gorjanović S, Avramov S, Dodevska MS, Antić VV. Low Glycemic Index Biscuits Enriched with Beetroot Powder as a Source of Betaine and Mineral Nutrients. Foods 2025; 14:814. [PMID: 40077517 PMCID: PMC11898679 DOI: 10.3390/foods14050814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/18/2025] [Accepted: 02/20/2025] [Indexed: 03/14/2025] Open
Abstract
This study aimed to evaluate the potential of beetroot powder (BP) as a functional ingredient in biscuits by investigating its effects on nutritional composition, sensory properties, and glycemic response. The primary goal was to determine whether BP could serve as a natural alternative to synthetic additives while maintaining product stability and consumer acceptability. Biscuits were formulated by replacing spelt flour with 15, 20, and 25% BP. The functional impact of the BP was assessed based on betaine content, macro- and microelements, glycemic index (GI), and acrylamide concentration. Thermal analysis (DSC and TGA) and water activity measurements confirmed the BP's stability during six months of storage. Increased BP content led to higher betaine levels and mineral enrichment, particularly with potassium and phosphorus among the macroelements and zinc among the microelements. Sensory analysis identified biscuits with 20% BP as the most preferred, maintaining acceptable ratings even after six months. Hardness initially increased with BP incorporation but decreased over time (p < 0.05). The acrylamide content in the BP-enriched biscuits was significantly lower than in control samples and well below the reference safety threshold. Notably, consuming beetroot biscuits did not trigger a sharp postprandial glucose spike, with the GI of the most acceptable sample (20% BP) measured at 49 ± 11. These findings confirm that BP improves the nutritional and sensory characteristics of biscuits while ensuring product safety and stability, supporting its application as a natural functional ingredient in confectionery products.
Collapse
Affiliation(s)
- Jasmina Mitrevski
- Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (J.M.); (J.L.-P.)
| | - Nebojša Đ. Pantelić
- Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (J.M.); (J.L.-P.)
| | | | - Jovana S. Kojić
- BioSense Institute, University of Novi Sad, Dr Zorana Djindjica 1, 21000 Novi Sad, Serbia;
| | - Snežana Zlatanović
- Institute of General and Physical Chemistry, Studentski Trg 12-16, 11000 Belgrade, Serbia; (S.Z.); (S.G.)
| | - Stanislava Gorjanović
- Institute of General and Physical Chemistry, Studentski Trg 12-16, 11000 Belgrade, Serbia; (S.Z.); (S.G.)
| | - Stevan Avramov
- Institute for Biological Research “Sinisa Stankovic”, National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia;
| | - Margarita S. Dodevska
- Institute of Public Health of Serbia “Dr Milan Jovanović Batut”, Center for Hygiene and Human Ecology, Dr Subotica 5, 11000 Belgrade, Serbia;
| | - Vesna V. Antić
- Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia; (J.M.); (J.L.-P.)
| |
Collapse
|
6
|
Selim S, Almuhayawi MS, Alruhaili MH, Alharbi MT, Alraddadi FA, Waznah MS, Bukhari DA, Alzahofi NN, Obaid WA, Saddiq AA, Baghdadi AM, Alzahrani AJ, Alfattah MA, Al Jaouni SK. Extraction of mango seed kernels via super fluid extraction and their anti-H. pylori, anti-ovarian and anti prostate cancer properties. Sci Rep 2025; 15:6359. [PMID: 39984557 PMCID: PMC11845699 DOI: 10.1038/s41598-025-90346-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 02/12/2025] [Indexed: 02/23/2025] Open
Abstract
Despite the discovery of many plant-based drugs, research is still ingoing, in addition to using safer and more effective methods in the extraction process. Presently, Super Fluid Extraction (SFE) was applied to extract the mango seed kernels (MSK) at two operating temperatures 30 and 50 °C with studying their biological activities. MSK extract via SFE at operating temperatures 30 °C showed high yield 0.268 g compared to that at 50 °C. High-performance liquid chromatography (HPLC) analysis demonstrated high content of compounds such as gallic acid (68503.01 µg/mL), chlorogenic acid (6541.68 µg/mL), ferulic acid (2555.12 µg/mL) and ellagic acid (2479.42 µg/mL) MSK while at 50 °C the concentrations were low. Helicobacter pylori was highly inhibited by MSK extract via SFE at operating temperature 30 °C with inhibition zone 29.17 ± 0.29 mm, MIC 15.62 µg/mL and MBC 31.25 µg/mL, while at operating temperature 50 °C the inhibition zone was 24.67 ± 0.58 mm, MIC was 62.5 µg/mL and MBC was 125 µg/mL. Moreover, low hemolysis was recorded by H. pylori treated by MSK extract via SFE at operating temperature 30 °C compared to that at 50 °C. Excellent antioxidant with IC50 values of 4.34 and 10.5 µg/mL was recorded for MSK extract via SFE at operating temperatures 30 °C and 50 °C, respectively. The recorded IC50 values 151.64 ± 0.53 and 73.81 ± 1.68 µg/mL compared to IC50 202.83 ± 1.78 µg/mL and 85.78 ± 0.52 µg/mL indicated the efficacy of MSK extract via SFE at operating temperature 30 °C compared to that at 50 °C against prostate (PC3), and ovarian (SK-OV3) cancer cells lines, respectively.
Collapse
Affiliation(s)
- Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, 72388, Saudi Arabia.
| | - Mohammed S Almuhayawi
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Mohammed H Alruhaili
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Special Infectious Agents Unit, King Fahad Medical Research Center, King AbdulAziz University, Jeddah, Saudi Arabia
| | - Mohanned T Alharbi
- Department of Basic Medical Sciences, College of Medicine, University of Jeddah, Jeddah, Saudi Arabia
| | - Faisal A Alraddadi
- Department of Biology, College of Science, Taibah University, Madinah, 42353, Saudi Arabia
| | - Moayad S Waznah
- Department of Biology, College of Science, Taibah University, Madinah, 42353, Saudi Arabia
| | - Duaa A Bukhari
- Department of Biology, College of Science, Taibah University, Madinah, 42353, Saudi Arabia
| | - Noura N Alzahofi
- Department of Biology, College of Science, Taibah University, Madinah, 42353, Saudi Arabia
| | - Wael A Obaid
- Department of Biology, College of Science, Taibah University, Madinah, 42353, Saudi Arabia
| | - Amna A Saddiq
- Department of Biological Sciences, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Afra M Baghdadi
- Department of Biological Sciences, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Ashwag Jaman Alzahrani
- Department of Biological Sciences, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Mohammed A Alfattah
- Department of Biology, College of Science, Jazan University, P.O. Box. 114, Jazan, 45142, Kingdom of Saudi Arabia
| | - Soad K Al Jaouni
- Department of Hematology/Oncology, Yousef Abdulatif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
7
|
Azara CRP, Didier Peixe CL, Cardoso CEDF, Azara MEP, Elias M, Freitas-Silva O, Teodoro AJ. Physicochemical, microbiology, and sensory characteristics of kombucha prepared with Tommy mango peel flour. FOOD SCI TECHNOL INT 2025:10820132251319930. [PMID: 39967259 DOI: 10.1177/10820132251319930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Fermented foods are a good option due to the beneficial compounds generated in the fermentation process and the low pH that allows conservation without additives. The objective of the study was to produce and include Tommy mango peel flour in the production of kombucha and evaluate its effects on the physicochemical and sensory properties, antioxidant capacity, and microbiological profile. The kombucha was developed with green tea and the addition of Tommy mango peel flour (10% and 20%). The kombuchas were evaluated in the first fermentation (aerobic) and at the end of the second fermentation (anaerobic), the granulometry and colorimetry of the flour and the antioxidant profile were evaluated. Microbiome analysis was performed by 16S DNA extraction. For sensory analysis, an affective test was performed for global evaluation, flavor, texture, and oral perception. The results showed that the total phenolic content was 4.86 mg EAG/mL in F1, 8.79 mg EAG/mL in F2 with 10% mango peel flour, and 8.83 ± 0.54 mg EAG/mL in F2 with 20% mango peel flour, evidencing a significant increase in the second fermentation with the addition of the flour. In addition, the antioxidant activity was also higher in the second fermentation. The values obtained were F1 = 15.27 µmol TE/mL; F2 with 10% FCMT = 18.80 µmol TE/mL; and F2 with 20% FCMT = 26.76 µmol TE/mL. These findings indicate that the antioxidant capacity increases significantly during the second fermentation, directly correlating with the amount of mango peel flour added. The most abundant bacterial genera were Liquorilactobacillus nagelii (72%), Acetobacter (13%), and Komagataeibacter (12%) and for fungi (90%) Brettanomyces/Dekkera bruxellensis. The beverage obtained different levels of acceptance among consumers and non-consumers only in terms of flavor, proving to be a good alternative for the food industry for applying a mango byproduct to drinks.
Collapse
Affiliation(s)
- Cíntia Ramos Pereira Azara
- Graduate Program in Food and Nutrition (PPGAN), Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil
- Arthur Sá Earp Neto University Center/Faculty of Medicine of Petrópolis (UNIFASE/FMP), Brazil
| | | | - Carlos Eduardo de Faria Cardoso
- Graduate Program in Food and Nutrition (PPGAN), Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil
| | | | - Monique Elias
- Faculty of Nutrition, Fluminense Federal University (UFF), Niteroi, Brazil
| | | | - Anderson Junger Teodoro
- Graduate Program in Food and Nutrition (PPGAN), Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Brazil
- Faculty of Nutrition, Fluminense Federal University (UFF), Niteroi, Brazil
| |
Collapse
|
8
|
Lamptey FP, Teye E, Kaburi SA, Odoi-Yorke F, Amuah CLY, Abano EE, Otoo GS. Feasibility study on fingerprinting organic and conventional mango fruits, chips, and juice using portable near-infrared spectroscopy. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:1518-1530. [PMID: 39851072 DOI: 10.1039/d4ay01813c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
This research examined the distinction between organic and conventional mango fruits, chips, and juice using portable near-infrared (NIR) spectroscopy. A comprehensive analysis was conducted on a sample of 100 mangoes (comprising 50 organic and 50 conventional) utilising a portable NIR spectrometer that spans a wavelength range from 900 to 1700 nm. The mangoes were assessed in their entirety and their juice and chip forms. The spectral data underwent pre-processing through methodologies such as multiplicative scatter correction (MSC), standard normal variate (SNV), and derivatives to enhance the precision of the models. Principal component analysis (PCA) and various multivariate classification algorithms, including linear discriminant analysis (LDA), random forest (RF), k-nearest neighbors (kNN), and partial least squares discriminant analysis (PLSDA), were utilised to categorise the samples effectively. The findings indicated that the random forest method and specific pre-processing techniques achieved the highest classification accuracy for distinguishing organic and conventional mango products. For mango fruit and chips, it achieved 88.76% and 77.98% accuracy, respectively, when pre-processed using the second derivative, while for juice, it achieved 87.53% accuracy without pre-processing. This investigation demonstrates the efficacy of portable NIR spectroscopy as a dependable and non-invasive method for verifying organic mango products, thereby enhancing the integrity of food labelling and fostering consumer confidence.
Collapse
Affiliation(s)
- Francis Padi Lamptey
- Department of Agricultural Engineering, College of Agriculture and Natural Sciences, School of Agriculture, University of Cape Coast, Cape Coast, Ghana.
- Department of Food Science and Postharvest Technology, School of Applied Sciences and Technology, Cape Coast Technical University, Cape Coast, Ghana
- Africa Centre of Excellence for Food Fraud and Safety, AfriFoodinTegrity Centre, University of Cape Coast, Cape Coast, Ghana
| | - Ernest Teye
- Department of Agricultural Engineering, College of Agriculture and Natural Sciences, School of Agriculture, University of Cape Coast, Cape Coast, Ghana.
- Africa Centre of Excellence for Food Fraud and Safety, AfriFoodinTegrity Centre, University of Cape Coast, Cape Coast, Ghana
| | - Sandra Ama Kaburi
- Department of Food Science and Postharvest Technology, School of Applied Sciences and Technology, Cape Coast Technical University, Cape Coast, Ghana
| | - Flavio Odoi-Yorke
- Department of Renewable Energy Technology, School of Engineering, Cape Coast Technical University, Cape Coast, Ghana
| | - Charles Lloyd Yeboah Amuah
- Department of Physics, Laser and Fibre Optics Centre, School of Physical Sciences, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
- Africa Centre of Excellence for Food Fraud and Safety, AfriFoodinTegrity Centre, University of Cape Coast, Cape Coast, Ghana
| | - Ernest Ekow Abano
- Department of Agricultural Engineering, College of Agriculture and Natural Sciences, School of Agriculture, University of Cape Coast, Cape Coast, Ghana.
| | - Gifty Serwaa Otoo
- Department of Food Science and Postharvest Technology, School of Applied Sciences and Technology, Cape Coast Technical University, Cape Coast, Ghana
| |
Collapse
|
9
|
Worku S, Alemu K, Tsedaley B. Combining plant extracts and hot water treatments for the management of postharvest mango anthracnose (Colletotrichum gloeosporioides). Sci Rep 2025; 15:5074. [PMID: 39934350 PMCID: PMC11814126 DOI: 10.1038/s41598-025-89587-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 02/06/2025] [Indexed: 02/13/2025] Open
Abstract
Mango anthracnose (Colletotrichum gloeosporioides), is a major postharvest disease that significantly impacts mango production and consumption globally. This study aimed to evaluate the combined effect of plant extracts and hot water treatments on the development of anthracnose and the preservation of postharvest quality in mangoes. In vitro tests using the food poisoning technique assessed the efficacy of acetone, ethyl acetate, hexane, and methanol extracts from nine different medicinal plant species against C. gloeosporioides. Among the tested extracts, Ruta chalepensis demonstrated the most pronounced effect, inhibiting mycelial growth by more than 85%. Extracts from Allium sativum also reduced mycelial growth by 80%. Furthermore, aqueous extracts from three effective plant species identified from the in vitro tests were combined with hot water treatments (HWT) to evaluate their impact on managing postharvest anthracnose. The combined treatments significantly (p < 0.05) affected anthracnose development on mangoes. The most substantial reduction in anthracnose severity was observed with treatments involving R. chalepensis and A. sativum at hot water temperatures of 55 °C and 50 °C. These treatments also significantly improved fruit marketability and maintained postharvest quality. In conclusion, the combined application of A. sativum with HWT at 55 °C and 50 °C, as well as R. chalepensis extract with HWT at the same temperatures, effectively reduced anthracnose intensity and improved mango fruit marketability by over 80% without affecting postharvest fruit quality indicators such as weight loss, TSS, pH, TA.
Collapse
Affiliation(s)
- Selenat Worku
- Department of Plant Science, College of Agriculture and Natural Resource, Assosa University, P.O.Box 18, Assosa, Ethiopia
- Benishangul Gumuz Regional State Bureau of Agriculture, Assosa, Ethiopia
| | - Kumlachew Alemu
- Department of Plant Science, College of Agriculture and Natural Resource, Assosa University, P.O.Box 18, Assosa, Ethiopia.
| | - Binyam Tsedaley
- Department of Plant Science, College of Agriculture and Natural Resource, Assosa University, P.O.Box 18, Assosa, Ethiopia
| |
Collapse
|
10
|
Duarte LG, Laurindo LF, Bishayee A, Casarcia N, Detregiachi CRP, Otoboni AMM, de Alvares Goulart R, Catharin VMCS, Baldi E, Catharin VCS, Guiguer EL, Sanches Silva A, Barbalho SM, Bishayee A. Mango (Mangifera indica L.) By-products in Food Processing and Health Promotion. Nutr Rev 2025:nuae214. [PMID: 39903188 DOI: 10.1093/nutrit/nuae214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025] Open
Abstract
The edible and nonedible parts of the mango (Mangifera indica L.) contain vitamins, phytocompounds, fiber, and fatty acids. This review highlights the uses of mango by-products in the food industry and their effects on human health. The literature offers many new possibilities for the usage of mango secondary products in the food industry, such as the production of functional foods and bakery products, in addition to the potential for extraction of antioxidants and enzymes. Furthermore, due to their antioxidant and anti-inflammatory properties, the consumption of various mango by-products, in the form of peel and leaf (powder or extract), can improve glycemia, plasma lipid levels, satiety, and endothelial function, suggesting that these compounds can prevent or improve various risk factors for cardiovascular complications and metabolic syndrome. Clinical trials show that the discarded parts of mango fruits and leaves can be used to treat diabetes mellitus, obesity, and cardiovascular disorders. Moreover, mango by-products can be utilized to improve the functional characteristics of foods, may be incorporated as fat replacers, and have the potential to leverage agribusiness and reduce environmental damage resulting from the disposal of discarded materials, in addition to reducing waste and the complex chain of environmental damage. Mango by-products also have the potential to produce nutraceutical food items. The use of new technologies can bring to light the production of numerous products made from by-products, contributing to the development of industrial functional foods. In addition, products for the pharmaceutical and cosmetics industries may also be developed. Nutraceutical and pharmaceutical products could have lower prices and could, therefore, be used by low-income populations. The utilization of mango by-products meets the current trend and growing market for better and healthier products. However, more clinical trials are necessary to evaluate the effectiveness of mango by-products on human health, and new technologies can improve industrial applications.
Collapse
Affiliation(s)
- Lidiane Gonsalves Duarte
- Department of Biochemistry and Nutrition, School of Food and Technology of Marilia (FATEC), Marilia, São Paulo 17500-000, Brazil
| | - Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília, São Paulo 17519-030, Brazil
| | | | - Nicolette Casarcia
- Department of Pharmacology, College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, United States
| | - Claudia Rucco P Detregiachi
- Department of Biochemistry and Pharmacology, Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marília, Sao Paulo 17012-150, Brazil
| | - Alda Maria M Otoboni
- Department of Biochemistry and Nutrition, School of Food and Technology of Marilia (FATEC), Marilia, São Paulo 17500-000, Brazil
| | - Ricardo de Alvares Goulart
- Department of Biochemistry and Pharmacology, Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marília, Sao Paulo 17012-150, Brazil
| | - Virgínia Maria Cavallari Strozze Catharin
- Department of Biochemistry and Pharmacology, Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marília, Sao Paulo 17012-150, Brazil
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília, São Paulo 17012-150, Brazil
| | - Edgar Baldi
- Department of Biochemistry and Pharmacology, Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marília, Sao Paulo 17012-150, Brazil
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília, São Paulo 17012-150, Brazil
| | - Vitor Cavallari Strozze Catharin
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília, São Paulo 17012-150, Brazil
| | - Elen Landgraf Guiguer
- Department of Biochemistry and Nutrition, School of Food and Technology of Marilia (FATEC), Marilia, São Paulo 17500-000, Brazil
- Department of Biochemistry and Pharmacology, Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marília, Sao Paulo 17012-150, Brazil
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília, São Paulo 17012-150, Brazil
| | - Ana Sanches Silva
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Study in Animal Science (CECA), University of Oporto, 4501-401 Oporto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Sandra Maria Barbalho
- Department of Biochemistry and Nutrition, School of Food and Technology of Marilia (FATEC), Marilia, São Paulo 17500-000, Brazil
- Department of Biochemistry and Pharmacology, Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marília, Sao Paulo 17012-150, Brazil
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília, São Paulo 17012-150, Brazil
- Medical School of Marília, Research Coordinator, Hospital Beneficente UNIMAR, Marilia, São Paulo, Brazil
| | - Anupam Bishayee
- Department of Pharmacology, College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, United States
| |
Collapse
|
11
|
Milanezzi GC, Silva EK. Pulsed electric field-induced starch modification for food industry applications: A review of native to modified starches. Carbohydr Polym 2025; 348:122793. [PMID: 39562069 DOI: 10.1016/j.carbpol.2024.122793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/08/2024] [Accepted: 09/21/2024] [Indexed: 11/21/2024]
Abstract
Starch, a polysaccharide primarily composed of amylose and amylopectin, serves as a critical energy source in plants. However, its native properties often limit its application in the food industry. To overcome these limitations, starch modification is essential for enhancing its technological characteristics. In this context, this review explored the impacts of pulsed electric field (PEF) technology on starch modification. PEF, along with other electrotechnologies, utilizes high-voltage electrical pulses to induce structural and chemical changes in starch granules, leading to improvements in properties such as gelatinization, solubility, viscosity, and swelling capacity. Although PEF is a non-thermal process, it enables significant structural and physicochemical modifications in starch. By avoiding high temperatures that can cause changes in color, flavor, and degradation of essential nutrients, PEF-modified starch results in better preservation of nutritional and sensory qualities, while also enhancing its performance in various industrial processes. Despite its advantages, challenges such as the need for standardized protocols and potential unwanted side reactions at high intensities remain. This review examined the effectiveness of PEF in modifying starch for enhanced technological applications in the food industry, addressing both its benefits and limitations. Additionally, the article provided a foundational overview of starch, including its chemical structure, functionalities, and sources, both conventional and non-conventional, ensuring a comprehensive understanding of how PEF can be applied to optimize starch properties for industrial use.
Collapse
Affiliation(s)
- Gabriela Carolina Milanezzi
- Universidade Estadual de Campinas (UNICAMP), Faculdade de Engenharia de Alimentos (FEA), Rua Monteiro Lobato, 80, Campinas, SP CEP: 13083-862, Brazil
| | - Eric Keven Silva
- Universidade Estadual de Campinas (UNICAMP), Faculdade de Engenharia de Alimentos (FEA), Rua Monteiro Lobato, 80, Campinas, SP CEP: 13083-862, Brazil.
| |
Collapse
|
12
|
Tahir H, Sajjad M, Qian M, Zeeshan Ul Haq M, Tahir A, Farooq MA, Wei L, Shi S, Zhou K, Yao Q. Glutathione and Ascorbic Acid Accumulation in Mango Pulp Under Enhanced UV-B Based on Transcriptome. Antioxidants (Basel) 2024; 13:1429. [PMID: 39594570 PMCID: PMC11591329 DOI: 10.3390/antiox13111429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/16/2024] [Accepted: 11/19/2024] [Indexed: 11/28/2024] Open
Abstract
Mango (Mangifera indica), a nutritionally rich tropical fruit, is significantly impacted by UV-B radiation, which induces oxidative stress and disrupts physiological processes. This study aimed to investigate mango pulp's molecular and biochemical responses to UV-B stress (96 kJ/mol) from the unripe to mature stages over three consecutive years, with samples collected at 10-day intervals. UV-B stress affected both non-enzymatic parameters, such as maturity index, reactive oxygen species (ROS) levels, membrane permeability, and key enzymatic components of the ascorbate-glutathione (AsA-GSH) cycle. These enzymes included glutathione reductase (GR), gamma-glutamyl transferase (GGT), glutathione S-transferases (GST), glutathione peroxidase (GPX), glucose-6-phosphate dehydrogenase (G6PDH), galactono-1,4-lactone dehydrogenase (GalLDH), ascorbate peroxidase (APX), ascorbate oxidase (AAO), and monodehydroascorbate reductase (MDHAR). Transcriptomic analysis revealed 18 differentially expressed genes (DEGs) related to the AsA-GSH cycle, including MiGR, MiGGT1, MiGGT2, MiGPX1, MiGPX2, MiGST1, MiGST2, MiGST3, MiG6PDH1, MiG6PDH2, MiGalLDH, MiAPX1, MiAPX2, MiAAO1, MiAAO2, MiAAO3, MiAAO4, and MiMDHAR, validated through qRT-PCR. The findings suggest that UV-B stress activates a complex regulatory network in mango pulp to optimize ROS detoxification and conserve antioxidants, offering insights for enhancing the resilience of tropical fruit trees to environmental stressors.
Collapse
Affiliation(s)
- Hassam Tahir
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Muhammad Sajjad
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Minjie Qian
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | | | - Ashar Tahir
- College of Ecology and Environment, Hainan University, Haikou 570228, China
| | - Muhammad Aamir Farooq
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Ling Wei
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Shaopu Shi
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Kaibing Zhou
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Quansheng Yao
- Key Laboratory for Postharvest Physiology and Technology of Tropical Horticultural Products of Hainan Province, Zhanjiang 524091, China
| |
Collapse
|
13
|
Vázquez-Meza MO, González-Ríos H, González-Aguilar GA, Viuda-Martos M, Dávila-Ramírez JL, Valenzuela-Melendres M. Effect of Fat Type and Mango Peel Powder on the Physicochemical Properties of Beef Patties During Cold Storage and In Vitro Digestion. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2024; 2024:2981134. [PMID: 39479468 PMCID: PMC11524697 DOI: 10.1155/2024/2981134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 08/23/2024] [Accepted: 09/20/2024] [Indexed: 11/02/2024]
Abstract
The aim of this research was to evaluate the effects of fat type and mango peel powder (MP) on the physicochemical properties of cooked beef patties during cold storage and after in vitro digestion. Beef patties were prepared with saturated beef fat (BF) and pre-emulsified avocado oil (AO) or pre-emulsified safflower oil (SO). MP was added at 0% or 1%. The treatments were as follows: T1 (BF, no added MP), T2 (AO, no added MP), T3 (SO, no added MP), T4 (BF + 1%MP), T5 (AO + 1%MP), and T6 (SO + 1%MP). Substituting saturated fat with AO and SO improved the fatty acid profile of beef patties. The addition of pre-emulsified oils increased (p < 0.05) the L ∗, a ∗, and b ∗ values. Moreover, the incorporation of MP in the meat formulation decreased (p < 0.05) lipid oxidation during cold storage. Adding MP to the meat formulation decreased (p < 0.05) lipid oxidation before and after in vitro digestion. Replacement of saturated fat with vegetable oils and incorporation of MP may be an alternative strategy to improve the quality of beef patties during cold storage and decrease lipid oxidation after in vitro digestion.
Collapse
Affiliation(s)
- Martha Olivia Vázquez-Meza
- Research Center for Food and Development, CIAD Carretera Gustavo Enrique Astiazarán Rosas, No. 46, Hermosillo, Sonora 83304, Mexico
| | - Humberto González-Ríos
- Research Center for Food and Development, CIAD Carretera Gustavo Enrique Astiazarán Rosas, No. 46, Hermosillo, Sonora 83304, Mexico
| | - Gustavo Adolfo González-Aguilar
- Research Center for Food and Development, CIAD Carretera Gustavo Enrique Astiazarán Rosas, No. 46, Hermosillo, Sonora 83304, Mexico
| | - Manuel Viuda-Martos
- IPOA Research Group, Agro-Food and Agro-Environmental Research and Innovation Center, Miguel Hernández University (CIAGRO-UMH), Ctra. Beniel km 3.2, 03312 Orihuela, Alicante, Spain
| | - José Luis Dávila-Ramírez
- Research Center for Food and Development, CIAD Carretera Gustavo Enrique Astiazarán Rosas, No. 46, Hermosillo, Sonora 83304, Mexico
| | - Martín Valenzuela-Melendres
- Research Center for Food and Development, CIAD Carretera Gustavo Enrique Astiazarán Rosas, No. 46, Hermosillo, Sonora 83304, Mexico
| |
Collapse
|
14
|
How YH, Nyam KL. Reutilization of Fruit Waste as Potential Prebiotic for Probiotic or Food-grade Microorganisms in Food Applications: A Review. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10375-4. [PMID: 39379781 DOI: 10.1007/s12602-024-10375-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2024] [Indexed: 10/10/2024]
Abstract
Food waste has been a global issue with 2.5 billion tons generated globally in 2021. Approximately 46% of the food waste is contributed by fruit and vegetable waste. Due to improper waste handling, these fruit by-products have a negative impact on the environment through soil and water pollution, the greenhouse effect, global warming, and eutrophication. However, research has shown the potential to reuse fruit waste in various applications for sustainability owing to their high source of valuable components and potential health benefits. In recent years, researchers have also explored the potential of reutilizing fruit waste as a prebiotic. Hence, literatures from the past 10 years has been critically analyzed and presented in this review. This review focused on the potential of fruit waste as a prebiotic for probiotic and gastrointestinal microorganisms and its food applications. The nutritional composition and bioactive compounds of the fruit wastes had been introduced to reflect their potential as prebiotics. Moreover, the increase in bioactive compounds and bioactivities in probiotics with the presence of fruit wastes has been reviewed. The impact of fruit by-products on the growth of the probiotic and its survivability in food matrices as compared to established prebiotic and the absence of prebiotics have also been extensively discussed in this review. This review also highlighted some of the factors that might contribute to the negative effect of fruit waste on probiotics. The safety concerns and future prospects of reutilizing fruit wastes for food applications have been emphasized. The review article is beneficial for researchers exploring fruit wastes as prebiotics and industrialists who are interested in incorporating fruit wastes as an added-value ingredient for food applications.
Collapse
Affiliation(s)
- Yu Hsuan How
- Department of Food Science With Nutrition, Faculty of Applied Sciences, UCSI University, 1, UCSI Heights, Jalan Puncak Menara Gading, Taman Connaught, 56000, Cheras, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Kar Lin Nyam
- Department of Food Science With Nutrition, Faculty of Applied Sciences, UCSI University, 1, UCSI Heights, Jalan Puncak Menara Gading, Taman Connaught, 56000, Cheras, Wilayah Persekutuan Kuala Lumpur, Malaysia.
| |
Collapse
|
15
|
Golowczyc M, Gomez-Zavaglia A. Food Additives Derived from Fruits and Vegetables for Sustainable Animal Production and Their Impact in Latin America: An Alternative to the Use of Antibiotics. Foods 2024; 13:2921. [PMID: 39335850 PMCID: PMC11431016 DOI: 10.3390/foods13182921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/12/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
The production of healthy animal-derived food entails the effective control of foodborne pathogens and strategies to mitigate microbial threats during rearing. Antibiotics have been traditionally employed in animal farming to manage bacterial infections. However, the prohibition of antibiotic growth promoters in livestock farming has brought significant changes in animal production practices. Although antibiotics are now restricted to treating and preventing bacterial infections, their overuse has caused serious public health issues, including antibiotic resistance and the presence of antibiotic residues in food and wastewater. Therefore, sustainable animal production is crucial in reducing the spread of antibiotic-resistant bacteria. Annually, 40-50% of fruit and vegetable production is discarded worldwide. These discards present significant potential for extracting value-added ingredients, which can reduce costs, decrease waste, and enhance the food economy. This review highlights the negative impacts of antibiotic use in livestock farming and stresses the importance of analyzing the challenges and safety concerns of extracting value-added ingredients from fruit and vegetable co-products at an industrial scale. It also explores the current trends in reducing antibiotic use in livestock, with a focus on Latin American contexts. Finally, the suitability of using value-added ingredients derived from fruit and vegetable co-products for animal feeds is also discussed.
Collapse
Affiliation(s)
| | - Andrea Gomez-Zavaglia
- Center for Research and Development in Food Cryotechnology (CIDCA), CCT-CONICET La Plata, La Plata RA1900, Argentina;
| |
Collapse
|
16
|
Pacheco-Jiménez AA, Lizardi-Mendoza J, Heredia JB, Gutiérrez-Grijalva EP, Quintana-Obregón EA, Muy-Rangel MD. Physicochemical characterization of pectin and mango peel ( Mangifera indica L.) from Mexican cultivars. Heliyon 2024; 10:e35184. [PMID: 39170338 PMCID: PMC11336421 DOI: 10.1016/j.heliyon.2024.e35184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 07/07/2024] [Accepted: 07/24/2024] [Indexed: 08/23/2024] Open
Abstract
In Mexico, about 40 % of the mango harvest is lost due to marketing problems. Moreover, the mango industry generates peel and seed waste that ranges from 35 to 60 % of the total weight of processed fruits. This unexploited mango biomass represents a potential resource for producing value-added by-products. A market alternative is exploiting the mango peel as a source of biofunctional compounds, such as pectin. This hydrocolloid has applications in the pharmaceutical, cosmetic, and food industries. This study quantified the peel components of the Ataulfo, Panameño, Manila, and Haden cultivars. The mango peel showed a considerable input of dietary fiber (37-45 % DM), minerals (1018-2156 mg/100 g DM), phenols (2123-4851 mg gallic acid equivalent/100 g DM), flavonoids (0.74-2.7 mg quercetin equivalent/g DM) and antioxidant capacity (375-937 μM Trolox equivalent/g DM). The four cultivars presented high methoxyl pectins (66-71 %). The molecular weight of the pectins analyzed was from 957 to 4859 kDa. The Panameño cultivar showed the highest amount of pectin and viscosity concerning the peel of the other cultivars and a higher content of glucomannans (≈28.21 %). The pectin of the Haden cultivar was the only one with arabinoxylans since xylose was not detected in the pectin of the other cultivars. The chemical characteristics of the studied mango peels are promising for their industrialization.
Collapse
Affiliation(s)
- Andrés A. Pacheco-Jiménez
- Centro de Investigación en Alimentación y Desarrollo, A. C., Coordinación Culiacán, Culiacán Rosales, 80110, Sinaloa, Mexico
| | - Jaime Lizardi-Mendoza
- Centro de Investigación en Alimentación y Desarrollo, A. C., Coordinación de Tecnología de Alimentos de Origen Animal, Laboratorio de Biopolímeros, Hermosillo, 83304, Sonora, Mexico
| | - J. Basilio Heredia
- Centro de Investigación en Alimentación y Desarrollo, A. C., Coordinación Culiacán, Culiacán Rosales, 80110, Sinaloa, Mexico
| | - Erick P. Gutiérrez-Grijalva
- CONAHCYT-Centro de Investigación en Alimentación y Desarrollo, A. C. Coordinación Culiacán, Culiacán Rosales, 80110, Sinaloa, Mexico
| | - Eber A. Quintana-Obregón
- CONAHCYT-Centro de Investigación en Alimentación y Desarrollo, A. C. Coordinación de Tecnología de Alimentos de Origen Vegetal. Hermosillo 83304, Sonora, México
| | - María D. Muy-Rangel
- Centro de Investigación en Alimentación y Desarrollo, A. C., Coordinación Culiacán, Culiacán Rosales, 80110, Sinaloa, Mexico
| |
Collapse
|
17
|
Thangsiri S, Suttisansanee U, Koirala P, Chathiran W, Srichamnong W, Li L, Nirmal N. Phenolic content of Thai Bao mango peel and its in-vitro antioxidant, anti-cholinesterase, and antidiabetic activities. Saudi J Biol Sci 2024; 31:104033. [PMID: 38946846 PMCID: PMC11214510 DOI: 10.1016/j.sjbs.2024.104033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/23/2024] [Accepted: 05/25/2024] [Indexed: 07/02/2024] Open
Abstract
Plant phenolics have been known for various biological activities. This study aims to extract and examine the presence of phenolics in Bao mango (Mangifera indica L. var.) peel ethanolic extract (MPE). Further, antioxidant, anti-diabetic (α-amylase, and α-glucosidase inhibitory activity), and anti- Alzheimer's disease (AD) (acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and β-secretase (BACE-1) inhibitory activity) efficacy of MPE were determined. The results indicated that mangiferin (8755.89 mg/ 100 g extract) was the major phenolic compound in MPE. An antioxidant mechanism revealed that MPE had a higher radical scavenging ability (4266.70 µmol TE/g extract) compared to reducing power (FRAP) or oxygen radical absorption capacity (ORAC). Further in-vitro enzyme inhibitory assay against diabetic and AD involved enzymes showed that MPE had stronger inhibitory action against an enzyme involved in diabetes compared to their standard drug (Acarbose) (P < 0.05). While a lower IC50 value was observed against AD-involved enzymes compared to their standard drug (donepezil) (P < 0.05). The results show that Thai Bao mango peel byproduct can be a potential source of nutraceuticals to lower diabetes and improve cognitive health.
Collapse
Affiliation(s)
- Sirinapa Thangsiri
- Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom, 73170, Thailand
| | - Uthaiwan Suttisansanee
- Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom, 73170, Thailand
| | - Pankaj Koirala
- Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom, 73170, Thailand
| | - Wimonphan Chathiran
- Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom, 73170, Thailand
| | - Warangkana Srichamnong
- Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom, 73170, Thailand
| | - Li Li
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Nilesh Nirmal
- Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom, 73170, Thailand
| |
Collapse
|
18
|
Saxena P, Sharma D, Gautam P, Niranjan A, Rastogi S. HPLC-DAD quantification of mangiferin, antioxidant potential and essential oil composition of the leaves of five varieties of Mangifera indica L. of North India. Nat Prod Res 2024:1-12. [PMID: 38832668 DOI: 10.1080/14786419.2024.2361476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 05/25/2024] [Indexed: 06/05/2024]
Abstract
Mangifera indica L. (Mango), native of tropical Asia, has enormous genetic diversity. Comparative phytochemical analysis of leaves of five varieties of Mangifera indica viz. Dashahri, Chausa, Langra, Lucknow Safeda and Gola grown in North India was carried out. Mangiferin content (using HPLC) was found to vary from 0.96 g to 3.00 g per 100 g of dry leaves. Essential oil composition (through GC-MS) showed the major components of all the five varieties to be caryophyllene (4.14-46.26%), humulene (3.19-30.45%), caryophyllene oxide (2.98-17.23%) and humulene epoxide 2 (1.56-4.73%). Results indicated that there was a direct relationship between total phenolic and flavonoid contents and DPPH radical scavenging activities. Our studies indicate that M. indica leaves, which are a form of biomass waste, could be used as an economical and renewable source of antidiabetic compound mangiferin as well as other biologically active phytoconstituents having nutraceutical as well as pharmaceutical applications.
Collapse
Affiliation(s)
- Prakhar Saxena
- Phytochemistry Division, CSIR-National Botanical Research Institute, Lucknow, India
| | - Deepak Sharma
- Central Instrumentation Facility, CSIR-National Botanical Research Institute, Lucknow, India
| | - Parul Gautam
- Central Instrumentation Facility, CSIR-National Botanical Research Institute, Lucknow, India
| | - Abhishek Niranjan
- Central Instrumentation Facility, CSIR-National Botanical Research Institute, Lucknow, India
| | - Subha Rastogi
- Phytochemistry Division, CSIR-National Botanical Research Institute, Lucknow, India
- CSIR-National Institute of Science Communication and Policy Research, New Delhi, India
| |
Collapse
|
19
|
Conceição MDND, Anaya-Mancipe JM, Coelho AWF, Cardoso PHM, Thiré RMDSM. Application of starch-rich mango by-product as filler for the development of an additive manufacturing filament compound. Int J Biol Macromol 2024; 260:129519. [PMID: 38246441 DOI: 10.1016/j.ijbiomac.2024.129519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 12/22/2023] [Accepted: 01/13/2024] [Indexed: 01/23/2024]
Abstract
The surge in global polymeric waste underscores the imperative for biodegradable materials to substitute traditional polymers. Crucially, advancements are needed for emerging technologies like Materials Extrusion (ME) in additive manufacturing, where current biodegradable materials exhibit limitations. This work was based on the development of a biodegradable composite filament. The inner of the mango seed (kernel) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) were used as raw materials. The properties of PHBV and mango by-product mixture were first evaluated by direct-extrusion printing. Then, the feasibility of manufacturing the filaments was studied. Initially, the kernel seed mango was characterized thermally, chemically, and morphologically by DSC, FTIR, and SEM, respectively. It was observed that the addition of mango by-product contributed to the decrease of PHBV crystallinity, resulting in the reduction of printed parts retraction and increases the Tg, as shown by the DMA. The structure of the native starch was preserved due to non-gelatinization, even after processing steps, as indicated by thermal, chemical, and morphological analyses. Finally, PHBV filaments containing mango by-products were fabricated, and prototypes were manufactured by ME to demonstrate the potential for market acceptance and commercialization of the studied filament.
Collapse
Affiliation(s)
- Marceli do Nascimento da Conceição
- Program of Metallurgical and Materials Engineering - PEMM/COPPE, Universidade Federal do Rio de Janeiro - UFRJ, Cidade Universitária, 21941-599 Rio de Janeiro, RJ, Brazil; Centro de Tecnologia Mineral - CETEM, Rio de Janeiro, RJ, Brazil.
| | - Javier Mauricio Anaya-Mancipe
- Program of Metallurgical and Materials Engineering - PEMM/COPPE, Universidade Federal do Rio de Janeiro - UFRJ, Cidade Universitária, 21941-599 Rio de Janeiro, RJ, Brazil.
| | - Arthur Wilson Fonseca Coelho
- Program of Metallurgical and Materials Engineering - PEMM/COPPE, Universidade Federal do Rio de Janeiro - UFRJ, Cidade Universitária, 21941-599 Rio de Janeiro, RJ, Brazil.
| | - Paulo Henrique Machado Cardoso
- Program of Metallurgical and Materials Engineering - PEMM/COPPE, Universidade Federal do Rio de Janeiro - UFRJ, Cidade Universitária, 21941-599 Rio de Janeiro, RJ, Brazil.
| | - Rossana Mara da Silva Moreira Thiré
- Program of Metallurgical and Materials Engineering - PEMM/COPPE, Universidade Federal do Rio de Janeiro - UFRJ, Cidade Universitária, 21941-599 Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
20
|
Malú Q, Caldeira GI, Catarino L, Indjai B, da Silva IM, Lima B, Silva O. Ethnomedicinal, Chemical, and Biological Aspects of Lannea Species-A Review. PLANTS (BASEL, SWITZERLAND) 2024; 13:690. [PMID: 38475536 DOI: 10.3390/plants13050690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024]
Abstract
Lannea L. genus belongs to the Anacardiaceae botanical family and has long been used in traditional medicinal systems of many countries to manage several health conditions, but no studies have been conducted regarding its usefulness as a source of herbal medicine for human use. A literature review was conducted on scientific papers indexed on B-On, Pubmed, and Web of Science databases. Our results showed that medicinal plants from this botanical genus, mostly constituted by bark and leaf, are often used to approach a wide variety of disease symptoms, like fever, inflammatory states, pain, and gastrointestinal disorders. Phytochemical profiles of Lannea species revealed that phenolic acid derivatives including hydroquinones, phenolic acids, flavonoids, condensed tannins, and triterpenoids are the main classes of secondary metabolites present. Among the total of 165 identified compounds, 57 (34.5%) are flavonoids, mostly quercetin- and myricetin-derived flavonols and catechin and epicatechin flavan-3-ol derivatives also containing a galloyl group. In vitro and in vivo studies allowed the identification of 12 different biological activities, amongst which antimicrobial, antioxidant, anti-inflammatory, and cytotoxic activities were the most frequently cited and observed in in vitro essays. Our review contributes useful information for the scientifical validation of the use of Lannea species in traditional medicinal systems and shows that more research needs to be conducted to better understand the concrete utility of these as herbal medicines.
Collapse
Affiliation(s)
- Quintino Malú
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Gonçalo I Caldeira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Luís Catarino
- Centro de Ecologia, Evolução e Alterações Ambientais, (cE3c) & CHANGE-Global Change and Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Bucar Indjai
- Instituto Nacional de Estudos e Pesquisa, Avenida dos Combatentes da Liberdade da Pátria, Bissau 112, Guinea-Bissau
| | - Isabel Moreira da Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Beatriz Lima
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Olga Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| |
Collapse
|
21
|
Wang H, Chen Z, Luo R, Lei C, Zhang M, Gao A, Pu J, Zhang H. Caffeic Acid O-Methyltransferase Gene Family in Mango ( Mangifera indica L.) with Transcriptional Analysis under Biotic and Abiotic Stresses and the Role of MiCOMT1 in Salt Tolerance. Int J Mol Sci 2024; 25:2639. [PMID: 38473886 DOI: 10.3390/ijms25052639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/13/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
Caffeic acid O-methyltransferase (COMT) participates in various physiological activities in plants, such as positive responses to abiotic stresses and the signal transduction of phytohormones. In this study, 18 COMT genes were identified in the chromosome-level reference genome of mango, named MiCOMTs. A phylogenetic tree containing nine groups (I-IX) was constructed based on the amino acid sequences of the 71 COMT proteins from seven species. The phylogenetic tree indicated that the members of the MiCOMTs could be divided into four groups. Quantitative real-time PCR showed that all MiCOMT genes have particularly high expression levels during flowering. The expression levels of MiCOMTs were different under abiotic and biotic stresses, including salt and stimulated drought stresses, ABA and SA treatment, as well as Xanthomonas campestris pv. mangiferaeindicae and Colletotrichum gloeosporioides infection, respectively. Among them, the expression level of MiCOMT1 was significantly up-regulated at 6-72 h after salt and stimulated drought stresses. The results of gene function analysis via the transient overexpression of the MiCOMT1 gene in Nicotiana benthamiana showed that the MiCOMT1 gene can promote the accumulation of ABA and MeJA, and improve the salt tolerance of mango. These results are beneficial to future researchers aiming to understand the biological functions and molecular mechanisms of MiCOMT genes.
Collapse
Affiliation(s)
- Huiliang Wang
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Hainan University, Haikou 570228, China
- National Key Laboratory for Tropica1 Crop Breeding, Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Chinese Academy of Tropical Agricultural Sciences Environment and Plant Protection Institute, Haikou 571101, China
| | - Zhuoli Chen
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Hainan University, Haikou 570228, China
- National Key Laboratory for Tropica1 Crop Breeding, Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Chinese Academy of Tropical Agricultural Sciences Environment and Plant Protection Institute, Haikou 571101, China
- Chinese Academy of Tropical Agricultural Sciences Tropical Crops Genetic Resources Institute, National Key Laboratory for Tropical Crop Breeding, Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture and Rural Affairs, Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Haikou 571101, China
| | - Ruixiong Luo
- Chinese Academy of Tropical Agricultural Sciences Tropical Crops Genetic Resources Institute, National Key Laboratory for Tropical Crop Breeding, Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture and Rural Affairs, Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Haikou 571101, China
| | - Chen Lei
- National Key Laboratory for Tropica1 Crop Breeding, Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Chinese Academy of Tropical Agricultural Sciences Environment and Plant Protection Institute, Haikou 571101, China
| | - Mengting Zhang
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Hainan University, Haikou 570228, China
- National Key Laboratory for Tropica1 Crop Breeding, Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Chinese Academy of Tropical Agricultural Sciences Environment and Plant Protection Institute, Haikou 571101, China
| | - Aiping Gao
- Chinese Academy of Tropical Agricultural Sciences Tropical Crops Genetic Resources Institute, National Key Laboratory for Tropical Crop Breeding, Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture and Rural Affairs, Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Haikou 571101, China
| | - Jinji Pu
- National Key Laboratory for Tropica1 Crop Breeding, Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Chinese Academy of Tropical Agricultural Sciences Environment and Plant Protection Institute, Haikou 571101, China
| | - He Zhang
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, Hainan University, Haikou 570228, China
- National Key Laboratory for Tropica1 Crop Breeding, Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Chinese Academy of Tropical Agricultural Sciences Environment and Plant Protection Institute, Haikou 571101, China
| |
Collapse
|
22
|
Teniente SL, Esparza-González SC, Ascacio-Valdés JA, Campos-Múzquiz LG, Nery-Flores SD, Onofre-Rentería K, Rodríguez-Herrera R. Antiproliferative and cytotoxic effects of polyphenols from pomegranate peel and coffee pulp on cancer cells. Nat Prod Res 2024:1-7. [PMID: 38315566 DOI: 10.1080/14786419.2024.2310669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 01/21/2024] [Indexed: 02/07/2024]
Abstract
Pomegranate peel (PP) and coffee pulp (CP) are by-products of the food industry that can cause environmental pollution if not handled adequately. These by-products contain a significant amount of polyphenolic compounds which have antioxidant and possibly anticancer properties. We investigated the antiproliferative and cytotoxic activities of polyphenols from PP, CP and a 50-50% mixture of both against HeLa, A549, MDA-MB and Hek-293 cells. The total phenolic content of the PP and CP extracts was determined by high performance liquid chromatography/electrospray ionisation/mass spectrometry, and the antiproliferative and cytotoxic potentials were evaluated by MTT (3- (4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide) and Lactate Dehydogenase assays, respectively. Results showed antiproliferative and cytotoxic effects of polyphenols from PP and CP when administered at different concentrations or mixtures on HeLa, A549 and MDA-MB cells. No significant antiproliferative effects were observed on Hek-293 cells treated under similar conditions. These results suggest the potential of PP and CP polyphenols, individually or in combination, to modulate biological mechanisms involved in cervical, breast and lung cancer.
Collapse
Affiliation(s)
- Sandra Lucía Teniente
- Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, Saltillo, México
| | | | | | | | | | - Karen Onofre-Rentería
- Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, Saltillo, México
| | - Raúl Rodríguez-Herrera
- Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, Saltillo, México
| |
Collapse
|
23
|
Nwozo OS, Effiong EM, Aja PM, Awuchi CG. Antioxidant, phytochemical, and therapeutic properties of medicinal plants: a review. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2023. [DOI: 10.1080/10942912.2022.2157425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Onyenibe Sarah Nwozo
- Department of Biochemistry, University of Ibadan, Ibadan, Nigeria
- Department of Biochemistry, Kampala International University, Western Campus, Uganda
| | | | - Patrick Maduabuchi Aja
- Department of Biochemistry, Kampala International University, Western Campus, Uganda
- Department of Biochemistry, Ebonyi State University, Abakaliki, Nigeria
| | - Chinaza Godswill Awuchi
- Department of Biochemistry, Kampala International University, Western Campus, Uganda
- School of Natural and Applied Sciences, Kampala International University, P.O. Box 20000 Kansanga, Kampala, Uganda
| |
Collapse
|
24
|
Saleem K, Hayat Z, Tariq Z, Riaz T, Azam M. Profiling of phenolic compounds, antimicrobial, antioxidant, and hemolytic activity of mango seed kernel using different optimized extraction systems. J Food Sci 2023; 88:5002-5011. [PMID: 37889081 DOI: 10.1111/1750-3841.16799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/25/2023] [Accepted: 09/29/2023] [Indexed: 10/28/2023]
Abstract
Mango seed kernels (MSKs) have been reported to show antioxidant, antibacterial, and anti-inflammatory properties. This study explores the influence of different optimized extraction systems on the extraction of MSK. The effects on gallic acid (GA) content, total phenolic content (TPC), total flavonoid content (TFC), antioxidant, antimicrobial, and hemolytic activity of MSK extracts from different extraction systems (65.45% ethanol-ultrasound assisted extraction [UAE], 62% ethanol-incubator shaker, 19.4% ethanol-UAE, and 100% water-UAE) were assessed. Based on the results, a nonsignificant difference in phenolic (p = 0.222), flavonoids (p = 0.058), antioxidant (p = 0.165), and antimicrobial activity (p = 0.193) against Staphylococcus aureus whereas a significant difference (p < 0.0001) in hemolytic, GA content, and antimicrobial activity against Clostridium perfringens was observed. Among different extraction systems, aqueous extraction showed significantly lower hemolytic (1.09%) and higher GA content (4.72 mg/g) and comparable results in all other experiments; yield (32.40%), TPC (58.79 mg/g), TFC (2.16 mg/g), and antioxidant (73.19%). Hence, it has been concluded that aqueous extraction system could be considered a sustainable extraction system for practical applications. PRACTICAL APPLICATION: Aqueous extraction system could be a sustainable option for extraction of mango seed kernel for practical applications as it is readily available, cheap, nonflammable, and nontoxic.
Collapse
Affiliation(s)
- Kinza Saleem
- IDRC Project Lab, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Zafar Hayat
- IDRC Project Lab, University of Veterinary and Animal Sciences, Lahore, Pakistan
- Department of Animal Sciences, College of Agriculture, University of Sargodha, Sargodha, Pakistan
| | - Zara Tariq
- IDRC Project Lab, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Tuba Riaz
- IDRC Project Lab, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Azam
- IDRC Project Lab, University of Veterinary and Animal Sciences, Lahore, Pakistan
| |
Collapse
|
25
|
Jabin T, Biswas S, Islam S, Sarker S, Afroze M, Paul GK, Razu MH, Monirruzzaman M, Huda M, Rahman M, Kundu NK, Kamal S, Karmakar P, Islam MA, Saleh MA, Khan M, Zaman S. Effects of gamma-radiation on microbial, nutritional, and functional properties of Katimon mango peels: A combined biochemical and in silico studies. Heliyon 2023; 9:e21556. [PMID: 38027912 PMCID: PMC10665690 DOI: 10.1016/j.heliyon.2023.e21556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 10/18/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Gamma radiation has notable impacts on the flesh of mangoes. In this research, Katimon mangoes were subjected to different levels of irradiation (0.5, 1.0, 1.5, and 2.0 kGy) using a60Co irradiator. The results showed that irradiation significantly reduced the microbial population in the mango peels, with the 1.5 kGy dose showing the most significant reduction. Irradiation also delayed ripening and extended the shelf life of the mango peels. The total fat, protein, ash, moisture, and sugar content of the mango peels were all affected by irradiation. The total protein content, ash content and moisture content increased after irradiation, while the fat content remained relatively unchanged. The sugar content increased in all samples after storage, but the non-irradiated samples had higher sugar levels than the irradiated ones. The dietary fiber content of the mango peels was not significantly affected by irradiation. The vitamin C content decreased in all samples after storage. The titratable acidity and total soluble solids content of the mango peels increased after storage, but there were no significant differences between the irradiated and non-irradiated samples. Antioxidant activity and cytotoxicity assessment highlighted the antioxidant potential and reduced toxicity of irradiated samples. Additionally, the antimicrobial effectiveness of irradiated mango peels was evaluated. The most substantial inhibitory zones (measuring 16.90 ± 0.35) against Pseudomonas sp. were observed at a radiation dose of 1.5 kGy with 150 μg/disc. To identify potential antimicrobial agents, the volatile components of mangoes irradiated with 1.5 kGy were analyzed through GC-MS. Subsequently, these compounds were subjected to in silico studies against a viable protein, TgpA, of Pseudomonas sp. (PDB ID: 6G49). Based on molecular dynamic simulations and ADMET properties, (-)-Carvone (-6.2), p-Cymene (-6.1), and Acetic acid phenylmethyl ester (-6.1) were identified as promising compounds for controlling Pseudomonas sp.
Collapse
Affiliation(s)
- Tabassum Jabin
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Bangladesh
- Bangladesh Reference Institute for Chemical Measurements (BRiCM), Dhaka, Bangladesh
| | - Suvro Biswas
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Bangladesh
| | - Shirmin Islam
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Bangladesh
| | - Swagotom Sarker
- Bangladesh Reference Institute for Chemical Measurements (BRiCM), Dhaka, Bangladesh
| | - Mirola Afroze
- Bangladesh Reference Institute for Chemical Measurements (BRiCM), Dhaka, Bangladesh
| | - Gobindo Kumar Paul
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Bangladesh
| | - Mamudul Hasan Razu
- Bangladesh Reference Institute for Chemical Measurements (BRiCM), Dhaka, Bangladesh
| | - Md Monirruzzaman
- Bangladesh Reference Institute for Chemical Measurements (BRiCM), Dhaka, Bangladesh
| | - Mainul Huda
- Bangladesh Reference Institute for Chemical Measurements (BRiCM), Dhaka, Bangladesh
| | - Mashiur Rahman
- Bangladesh Reference Institute for Chemical Measurements (BRiCM), Dhaka, Bangladesh
| | - Nayan Kumer Kundu
- Bangladesh Reference Institute for Chemical Measurements (BRiCM), Dhaka, Bangladesh
| | - Sabiha Kamal
- Bangladesh Reference Institute for Chemical Measurements (BRiCM), Dhaka, Bangladesh
| | - Pranab Karmakar
- Bangladesh Reference Institute for Chemical Measurements (BRiCM), Dhaka, Bangladesh
| | - Md Ariful Islam
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Bangladesh
| | - Md Abu Saleh
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Bangladesh
| | - Mala Khan
- Bangladesh Reference Institute for Chemical Measurements (BRiCM), Dhaka, Bangladesh
| | - Shahriar Zaman
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Bangladesh
| |
Collapse
|
26
|
Tandel J, Tandel Y, Kapadia C, Singh S, Gandhi K, Datta R, Singh S, Yirgu A. Nontargeted Metabolite Profiling of the Most Prominent Indian Mango ( Mangifera indica L.) Cultivars Using Different Extraction Methods. ACS OMEGA 2023; 8:40184-40205. [PMID: 37929128 PMCID: PMC10620928 DOI: 10.1021/acsomega.3c03670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/28/2023] [Indexed: 11/07/2023]
Abstract
Aroma has a crucial role in assessing the quality of fresh fruit and its processed versions, which serve as reliable indications for advancing local cultivars in the mango industry. The aroma of mango is attributed to a complex of hundreds of volatile, polar, and nonpolar metabolites belonging to different chemical classes like monoterpenes, sesquiterpenes, nonterpene hydrocarbons (alkanes), alcohols, esters, fatty acids, aldehydes, lactones, amides, amines, ethers, and many more. This study looked at the volatile, nonpolar, and polar metabolites from 16 mango cultivars to determine their relative quantities and intervarietal changes using hexane, ethanol, and solid-phase microextraction (SPME), followed by gas chromatography-mass spectrometry (GC-MS) analysis. In total, 58 volatile compounds through SPME, 50 nonpolar metabolites from hexane extract, and 52 polar metabolites from ethanol extract were detected from all of the cultivars, belonging to various chemical classes. Through the SPME method, all 16 mango cultivars except Dashehari and Neelum exhibited abundant monoterpenes with maximum concentration in Kesar (91.00%) and minimum in Amrapali (60.66%). However, the abundance of fatty acids and sesquiterpenes was detected in Dashehari (37.91%) and Neelum (74.80%), respectively. In the hexane extract, 23 nonterpene hydrocarbons exhibited abundance in all 16 mango cultivars except Baneshan, with a higher concentration in Dashehari (95.45%) and lower in Ratna (77.63%). The ethanol extraction of 16 mango cultivars showed a higher concentration of esters, aldehydes, alcohols, and amides in Jamadar (52.16%), Dadamio (74.30%), Langra (64.38%), and Kesar (37.10%), respectively. There have been a lot of metabolite variations observed and analyzed using hierarchical cluster analysis (HCA) and principal component analysis (PCA) based on the similarity of various chemical compounds. Cluster analysis revealed the true similarity and pedigree of different mango cultivars, viz., Neeleswari, Dashehari, Neelum, Alphonso, Baneshan, Sonpari, and Neeleshan. They occupied the same cluster during analysis.
Collapse
Affiliation(s)
- Jinal Tandel
- Department
of Fruit Science, Aspee College of Horticulture, Navsari Agricultural University, Navsari 396450, India
| | - Yatin Tandel
- Department
of Fruit Science, Aspee College of Horticulture, Navsari Agricultural University, Navsari 396450, India
| | - Chintan Kapadia
- Aspee
Shakilam Biotechnology Institute, Navsari
Agricultural University, God Dod Road, Athwa Farm, Surat, Gujarat 395007, India
| | - Susheel Singh
- Food
Quality Testing Laboratory, N. M. College Of Agriculture, Navsari Agricultural University, Navsari, Gujarat 396450, India
| | - Kelvin Gandhi
- Food
Quality Testing Laboratory, N. M. College Of Agriculture, Navsari Agricultural University, Navsari, Gujarat 396450, India
| | - Rahul Datta
- Department
of Geology and Pedology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemedelska 1, 61300 Brno, Czech Republic
| | - Sachidanand Singh
- Department
of Biotechnology, Smt. S. S. Patel Nootan Science and Commerce College, Sankalchand Patel University, Visnagar, Gujarat 384315, India
| | - Abraham Yirgu
- Researcher
II, Central Ethiopia Environment and Forestry Research Centre, P.O. Box 33042 Addis Ababa, Ethiopia
| |
Collapse
|
27
|
García-Villegas A, Fernández-Ochoa Á, Rojas-García A, Alañón ME, Arráez-Román D, Cádiz-Gurrea MDLL, Segura-Carretero A. The Potential of Mangifera indica L. Peel Extract to Be Revalued in Cosmetic Applications. Antioxidants (Basel) 2023; 12:1892. [PMID: 37891971 PMCID: PMC10603900 DOI: 10.3390/antiox12101892] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
The constant growth of the cosmetic industry, together with the scientific evidence of the beneficial properties of phytochemicals, has generated great interest in the incorporation of bioactive extracts in cosmetic formulations. This study aims to evaluate the bioactive potential of a mango peel extract for its incorporation into cosmetic formulations. For this purpose, several assays were conducted: phytochemical characterization; total phenolic content (TPC) and antioxidant potential; free-radical scavenging capacity; and skin aging-related enzyme inhibition. In addition, the extract was incorporated into a gel formulation, and a preliminary stability study was conducted where the accelerated (temperature ramp, centrifugation, and heating/cooling cycles) and long-term (storage in light and dark for three months) stability of the mango peel formulations were evaluated. The characterization results showed the annotation of 71 compounds, gallotannins being the most representative group. In addition, the mango peel extract was shown to be effective against the •NO radical with an IC50 of 7.5 mg/L and against the hyaluronidase and xanthine oxidase enzymes with IC50 of 27 mg/L and 2 mg/L, respectively. The formulations incorporating the extract were stable during the stability study. The results demonstrate that mango peel extract can be a by-product to be revalorized as a promising cosmetic ingredient.
Collapse
Affiliation(s)
- Abigail García-Villegas
- Department of Analytical Chemistry, University of Granada, Av. Fuentenueva s/n, 18071 Granada, Spain; (A.G.-V.); (Á.F.-O.); (A.R.-G.); (D.A.-R.); (A.S.-C.)
| | - Álvaro Fernández-Ochoa
- Department of Analytical Chemistry, University of Granada, Av. Fuentenueva s/n, 18071 Granada, Spain; (A.G.-V.); (Á.F.-O.); (A.R.-G.); (D.A.-R.); (A.S.-C.)
| | - Alejandro Rojas-García
- Department of Analytical Chemistry, University of Granada, Av. Fuentenueva s/n, 18071 Granada, Spain; (A.G.-V.); (Á.F.-O.); (A.R.-G.); (D.A.-R.); (A.S.-C.)
| | - María Elena Alañón
- Regional Institute for Applied Scientific Research (IRICA), University of Castilla-La Mancha, Avda. Camilo José Cela 10, 13071 Ciudad Real, Spain;
- Department of Analytical Chemistry and Food Science and Technology, University of Castilla-La Mancha, Ronda de Calatrava 7, 13071 Ciudad Real, Spain
| | - David Arráez-Román
- Department of Analytical Chemistry, University of Granada, Av. Fuentenueva s/n, 18071 Granada, Spain; (A.G.-V.); (Á.F.-O.); (A.R.-G.); (D.A.-R.); (A.S.-C.)
| | - María de la Luz Cádiz-Gurrea
- Department of Analytical Chemistry, University of Granada, Av. Fuentenueva s/n, 18071 Granada, Spain; (A.G.-V.); (Á.F.-O.); (A.R.-G.); (D.A.-R.); (A.S.-C.)
| | - Antonio Segura-Carretero
- Department of Analytical Chemistry, University of Granada, Av. Fuentenueva s/n, 18071 Granada, Spain; (A.G.-V.); (Á.F.-O.); (A.R.-G.); (D.A.-R.); (A.S.-C.)
| |
Collapse
|
28
|
Marsiglia-Fuentes R, Chiralt A, García-Zapateiro LA. Investigating the Water Relations in Aqueous Extract Powders of Mango ( Mangifera indica) Peel and Seed Waste for Their Use in Food Matrices as a Value-Added By-Product. Foods 2023; 12:3497. [PMID: 37761206 PMCID: PMC10529566 DOI: 10.3390/foods12183497] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/17/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
This study investigated the potential uses of discarded mango peel and seed parts by analyzing their water sorption behavior, hydration kinetics, and stability when converted into extract powders at pH 3 and 10. The results revealed that peel extracts had a higher water adsorption capacity compared with seed extracts due to differences in their composition. Peel extracts were primarily composed of carbohydrates (approximately 75%) with a low protein content, while seed extracts contained fewer carbohydrates (less than 30%) but higher levels of proteins (more than 30%) and lipids. The critical water content for maintaining the glassy state of peel extract powders during storage was found to be 0.025 and 0.032 g of water/g for extracts obtained at pH 3 and 10, respectively. In contrast, the Tg values of seed extracts remained relatively unchanged across different water content levels, suggesting that proteins and lipids inhibited the water's plasticizing effect in the solid matrix. These findings indicate that both mango waste fractions exhibit distinct hygroscopic behaviors, necessitating different approaches to processing and utilization. These extracts hold potential applications for various food products such as beverages, gels, sauces, or emulsions, contributing to the reduction in waste and the creation of value-added products from mango residues.
Collapse
Affiliation(s)
- Ronald Marsiglia-Fuentes
- Research Group on Complex Fluid Engineering and Food Rheology (IFCRA), Faculty of Engineering, Department of Food Engineering, University of Cartagena, Consulate Avenue, St. 30 No. 48-152, Cartagena 130015, Colombia;
| | - Amparo Chiralt
- Food Technology Department, Food Engineering Institute for Development, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain;
| | - Luis A. García-Zapateiro
- Research Group on Complex Fluid Engineering and Food Rheology (IFCRA), Faculty of Engineering, Department of Food Engineering, University of Cartagena, Consulate Avenue, St. 30 No. 48-152, Cartagena 130015, Colombia;
| |
Collapse
|
29
|
Palka A, Wilczyńska A. Storage Quality Changes in Craft and Industrial Blueberry, Strawberry, Raspberry and Passion Fruit-Mango Sorbets. Foods 2023; 12:2733. [PMID: 37509825 PMCID: PMC10378843 DOI: 10.3390/foods12142733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/26/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
Sorbets are a popular dessert, especially during hot summer days. They can also have health-promoting qualities, mainly due to the nutritional value of the fruit from which they are made. The production technology can also have an impact on the final nutritional quality of the sorbets. This paper presents a comparative assessment of the quality of industrial fruit sorbets and their craft analogs. Sorbets with the following flavors were selected for the research: blueberry, strawberry, raspberry, and passion fruit with mango. An organoleptic evaluation was performed, and the overrun, melting resistance, active acidity (pH), color in the CIE Lab system, antiradical activity (DDPH method), and content of vitamin C and total polyphenols were determined. The research revealed the differences between sorbets produced from different fruits as well as the differences depending on the production method between products made of the same type of fruit. Craft sorbets were found to be better than industrial sorbets, and storage time had a significant effect on the sorbets' quality. In terms of organoleptic characteristics, craft mango-passion fruit sorbet turned out to be the best; in terms of antioxidant properties, craft raspberry and strawberry sorbets were the best, and these two sorbets also showed good, stable overrun and melting resistance values during storage.
Collapse
Affiliation(s)
- Agnieszka Palka
- Department of Quality Management, Faculty of Management and Quality Science, Gdynia Maritime University, 81-225 Gdynia, Poland
| | - Aleksandra Wilczyńska
- Department of Quality Management, Faculty of Management and Quality Science, Gdynia Maritime University, 81-225 Gdynia, Poland
| |
Collapse
|
30
|
Tran NTY, Le TTT, Nghia NH, Nhu DB, Huynh LB, Nguyen TXT, Huynh PX, Dao TP. Developing mango powders by foam mat drying technology. Food Sci Nutr 2023; 11:4084-4092. [PMID: 37457168 PMCID: PMC10345728 DOI: 10.1002/fsn3.3397] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 07/18/2023] Open
Abstract
Using mango purée from overripe mangoes to produce powders helped to solve agricultural product stagnation. The research investigates the effect of thickening additives, convection drying, and heat pump drying on bioactive compounds such as total phenolic content (TPC), total flavonoid content (TFC), color, and solubility of the final product. The obtained results showed that the mixture (gum arabic and maltodextrin in the ratio 50:50 w/w) at a concentration of 15% gave a good quality powder texture when dried by hot air convection at 55°C with TPC (21.24 ± 1.58 mg GAE/g dry weight [DW]) and TFC (0.34 ± 0.02 mg QE/g DW), respectively. In addition, the product has a high solubility of 64.35%, with the highest pass-through point of 17.11.
Collapse
Affiliation(s)
- Nhi Thi Yen Tran
- Institute of Applied Technology and Sustainable DevelopmentNguyen Tat Thanh UniversityHo Chi Minh CityVietnam
- Faculty of Environmental and Food EngineeringNguyen Tat Thanh UniversityHo Chi Minh CityVietnam
| | - Thanh Thao Thi Le
- Faculty of Chemical Engineering and Food TechnologyNong Lam UniversityHo Chi Minh CityVietnam
| | - Nguyen Huu Nghia
- Faculty of Chemical Engineering and Food TechnologyNong Lam UniversityHo Chi Minh CityVietnam
| | - Dang Be Nhu
- Faculty of Environmental and Food EngineeringNguyen Tat Thanh UniversityHo Chi Minh CityVietnam
| | - Long Bao Huynh
- Faculty of Chemical EngineeringHo Chi Minh City University of Food IndustryHo Chi Minh CityVietnam
| | - Tan Xuan Tung Nguyen
- Center of Water Management and Climate Change, Institute for Environment and ResourcesVietnam National University, Ho Chi Minh City (VNU‐HCM)Ho Chi Minh CityVietnam
| | - Phong Xuan Huynh
- Department of Microbial Biotechnology, Institute of Food and BiotechnologyCan Tho UniversityCan Tho CityVietnam
| | - Tan Phat Dao
- Institute of Applied Technology and Sustainable DevelopmentNguyen Tat Thanh UniversityHo Chi Minh CityVietnam
- Faculty of Environmental and Food EngineeringNguyen Tat Thanh UniversityHo Chi Minh CityVietnam
| |
Collapse
|
31
|
Zahoor S, Anwar F, Qadir R, Soufan W, Sakran M. Physicochemical Attributes and Antioxidant Potential of Kernel Oils from Selected Mango Varieties. ACS OMEGA 2023; 8:22613-22622. [PMID: 37396275 PMCID: PMC10308537 DOI: 10.1021/acsomega.3c01155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/25/2023] [Indexed: 07/04/2023]
Abstract
The current study appraises the variations in the yield and physicochemical and antioxidant attributes among kernel oils from the seven most widely consumed varieties of Pakistani mangoes, namely, Anwar Ratul, Dasehri, Fajri, Laal Badshah, Langra, Safed Chaunsa, and Sindhri. The yield of mango kernel oil (MKO) among the tested varieties of mangoes varied significantly (p < 0.05), ranging from 6.33% (Sindhri) to 9.88% (Dasehri). Physicochemical properties, including the saponification value, refractive index, iodine no., P.V, % acid value, free fatty acids, and unsaponifiable matter, for MKOs were noted to be 143.00-207.10 mg KOH/g, 1.443-1.457, 28.00-36.00 g/100 g, 5.5-2.0 meq/kg, 1.00-7.7%, 0.5-3.9 mg/g, and 1.2-3.3%, respectively. The fatty acid composition determined by GC-TIC-MS revealed the presence of 15 different fatty acids with variable contributions of saturated (41.92-52.86%) and unsaturated (47.140-58.08%) fatty acids. Among unsaturated fatty acids, values of monounsaturated and polyunsaturated fatty acids ranged from 41.92 to 52.85 and 7.72 to 16.47%, respectively. Oleic acid (25.69-48.57%), stearic acid (24.71-38.53%), linoleic acid (7.72-16.47%), and palmitic acid (10.00-13.26%) were the prominent fatty acids. The total phenolic content (TPC) and DPPH radical scavenging (IC50) capacity of MKOs varied from 7.03 to 11.00 mg GAE/g and 4.33 to 8.32 mg/mL, respectively. The results of most of the tested attributes varied significantly (p < 0.05) among the varieties selected. It can be concluded from the findings of this research work that MKOs from the tested varieties are potential sources of valuable ingredients for the development of nutrapharmaceuticals due to their potent antioxidant properties and high oleic fatty acid profile.
Collapse
Affiliation(s)
- Sadaf Zahoor
- Institute
of Chemistry, University of Sargodha, Sargodha 40100, Pakistan
| | - Farooq Anwar
- Institute
of Chemistry, University of Sargodha, Sargodha 40100, Pakistan
- Department
of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Rahman Qadir
- Institute
of Chemistry, University of Sargodha, Sargodha 40100, Pakistan
| | - Walid Soufan
- Plant
Production Department, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohamed Sakran
- Biochemistry
Section, Chemistry Department, Faculty of Science, Tanta University, 6632110 Tanta, Egypt
| |
Collapse
|
32
|
Ojeda GA, Vallejos MM, Sgroppo SC, Sánchez-Moreno C, de Ancos B. Enhanced extraction of phenolic compounds from mango by-products using deep eutectic solvents. Heliyon 2023; 9:e16912. [PMID: 37484239 PMCID: PMC10360955 DOI: 10.1016/j.heliyon.2023.e16912] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/23/2023] [Accepted: 06/01/2023] [Indexed: 07/25/2023] Open
Abstract
Deep eutectic solvents (DESs) potential for the extraction of polyphenolic compounds (PC) from mango by-products (peel and seed) was evaluated. Ultrasound (US) and agitation were applied to evaluate the effects of solvent and extraction methodology. The extracts were characterized with antioxidant capacity and HPLC-DAD profile. A theoretical study was performed using density functional theory and the QTAIM approach. β-alanine and choline chloride based DESs were effective to extract PC from peel and seed. Some DES increased PC extraction up to three times for peel (23.05 ± 1.22 mg/g DW) and up to five time for seeds (60.01 ± 1.40 mg/g DW). The PC profile varied with the solvent (DES vs EtOH/MeOH), procedure (US vs agitation) and material (peel or seed). Mangiferin extraction from peels was significantly increased with β-alanine based DES (676.08 ± 20.34 μg/gDW). The strength of H-bonds had a determining effect on the viscosity of DESs. The solute-solvent solvation energy was suitable to estimate the strength of H-bond interactions between DES and target compounds. This study demonstrates the remarkable capacity of DESs to extract PC from mango by-products and provides insights into the factors controlling extraction properties.
Collapse
Affiliation(s)
- Gonzalo A. Ojeda
- Instituto de Química Básica y Aplicada del Nordeste Argentino (IQUIBA-NEA-CONICET), Universidad Nacional del Nordeste (UNNE), Av. Libertad 5400, Corrientes, Argentina
| | - Margarita M. Vallejos
- Instituto de Química Básica y Aplicada del Nordeste Argentino (IQUIBA-NEA-CONICET), Universidad Nacional del Nordeste (UNNE), Av. Libertad 5400, Corrientes, Argentina
| | - Sonia C. Sgroppo
- Instituto de Química Básica y Aplicada del Nordeste Argentino (IQUIBA-NEA-CONICET), Universidad Nacional del Nordeste (UNNE), Av. Libertad 5400, Corrientes, Argentina
| | - Concepción Sánchez-Moreno
- Institute of Food Science, Technology and Nutrition (ICTAN), Spanish National Research Council (CSIC), José Antonio Novais 6, Madrid, Spain
| | - Begoña de Ancos
- Institute of Food Science, Technology and Nutrition (ICTAN), Spanish National Research Council (CSIC), José Antonio Novais 6, Madrid, Spain
| |
Collapse
|
33
|
Effect of gamma irradiation on chemical composition, antioxidant activity, antibacterial activity, shelf life, and cytotoxicity in the peels of two mango varieties grown in Bangladesh. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023] Open
|
34
|
Saadi S, Ariffin AA, Ghazali HM, Saari N, Mohammed AS, Anwar F, Hamid AA, Nacer NE. Structure–energy relationship of food materials using differential scanning calorimetry. J FOOD PROCESS ENG 2023. [DOI: 10.1111/jfpe.14336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Affiliation(s)
- Sami Saadi
- Institute de la Nutrition, de l'Alimentation et des Technologies Agroalimetaires INATAA Université des Frères Mentouri Constantine 1 Route de Ain El Bey Constantine Algeria
- Laboratoire de Génie Agro‐Alimentaire (GeniAAl), INATAA Université Frères Mentouri Constantine 1 UFC1 Route de Ain El Bey Constantine Algeria
| | - Abdul Azis Ariffin
- Faculty of Food Science and Technology University Putra Malaysia 43400 Serdang Selangor Malaysia
| | - Hasanah Mohd Ghazali
- Faculty of Food Science and Technology University Putra Malaysia 43400 Serdang Selangor Malaysia
| | - Nazamid Saari
- Faculty of Food Science and Technology University Putra Malaysia 43400 Serdang Selangor Malaysia
| | | | - Farooq Anwar
- Department of Food Science, Faculty of Food Science and Technology Universiti Putra Malaysia 43400 Serdang Selangor Malaysia
- Institute of Chemistry University of Sargodha Sargodha 40100 Pakistan
| | - Azizah Abdul Hamid
- Faculty of Food Science and Technology University Putra Malaysia 43400 Serdang Selangor Malaysia
| | - Nor Elhouda Nacer
- Department of Biology of Organisms, Faculty of Natural and Life Sciences University of Batna 2 Batna 05000 Algeria
| |
Collapse
|
35
|
In vitro bioaccessibility and uptake of β-carotene from encapsulated carotenoids from mango by-products in a coupled gastrointestinal digestion/Caco-2 cell model. Food Res Int 2023; 164:112301. [PMID: 36737902 DOI: 10.1016/j.foodres.2022.112301] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 11/30/2022] [Accepted: 12/03/2022] [Indexed: 12/15/2022]
Abstract
β-carotene is a carotenoid with provitamin A activity and other health benefits, which needs to become bioavailable upon oral intake to exert its biological activity. A better understanding of its behaviour and stability in the gastrointestinal tract and means to increase its bioavailability are highly needed. Using an in vitro gastrointestinal digestion method coupled to an intestinal cell model, we explored the stability, gastrointestinal bioaccessibility and cellular uptake of β-carotene from microparticles containing carotenoid extracts derived from mango by-products. Three types of microparticles were tested: one with the carotenoid extract as such, one with added inulin and one with added fructooligosaccharides. Overall, β-carotene was relatively stable during the in vitro digestion, as total recoveries were above 68 %. Prebiotics in the encapsulating material, especially inulin, enhanced the bioaccessibility of β-carotene almost 2-fold compared to microparticles without prebiotics. Likewise, β-carotene bioaccessibility increased proportionally with bile salt concentrations during digestion. Yet, a bile salts level above 10 mM did not contribute markedly to β-carotene bioaccessibility of prebiotic containing microparticles. Cellular uptake experiments with non-filtered gastrointestinal digests yielded higher absolute levels of β-carotene taken up in the epithelial cells as compared to uptake assays with filtered digests. However, the proportional uptake of β-carotene was higher for filtered digests (24 - 31 %) than for non-filtered digests (2 - 8 %). Matrix-dependent carotenoid uptake was only visible in the unfiltered medium, thereby pointing to possible other cellular transport mechanisms of non-micellarized carotenoids, besides the concentration effect. Regardless of a filtration step, inulin-amended microparticles consistently resulted in a higher β-carotene uptake than regular microparticles or FOS-amended microparticles. In conclusion, encapsulation of carotenoid extracts from mango by-products displayed chemical stability and release of a bioaccessible β-carotene fraction upon gastrointestinal digestion. This indicates the potential of the microparticles to be incorporated into functional foods with provitamin A activity.
Collapse
|
36
|
Saleem U, Iman S, Ahmad B, Shah MA, Bibi S, Alqarni M, Khan MS, Shah GM, Khan H, Alhasani RH, Althobaiti NA, Albalawi AE. Antidepressant activity of phytochemicals of Mangifera indica seeds assisted by integrated computational analysis. Metab Brain Dis 2023; 38:483-505. [PMID: 35344129 DOI: 10.1007/s11011-022-00955-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 03/09/2022] [Indexed: 01/25/2023]
Abstract
Mangifera indica L., also known as mango, is a tropical fruit that belongs to the Anacardiaceae family and is prized for its juiciness, unique flavour, and worldwide popularity. The current study aimed to probe into antidepressant power (ADP) of MIS in animals and confirmation of ADP with in silico induced-fit molecular docking. The depression model was prepared by exposing mice to various stressors from 9:00 am to 2:00 pm during 42 days study period. MIS extract and fluoxetine were given daily for 30 min before exposing animals to stressors. ADP was evaluated by various behavioural tests and biochemical analysis. Results showed increased physical activity in mice under behavioural tests, plasma nitrite and malondialdehyde (MDA) levels and monoamine oxidase A (MAO-A) activity decreased dose-dependently in MIS treated mice and superoxide dismutases (SOD) levels increased in treated groups as compared to disease control. With the peculiar behaviour and significant interactions of the functional residues of target proteins with selected ligands along with the best absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties, it is concluded that catechin could be the best MAO-A inhibitor at a binding energy of -8.85 kcal/mol, and two hydrogen bonds were generated with Cys406 (A) and Gly443 (A) residues of the active binding site of MAO-A enzyme. While catechin at -6.86 kcal/mol generated three hydrogen bonds with Ala263 (A) and Gly434 (A) residues of the active site of monoamine oxidase B (MAO-B) enzyme and stabilized the best conformation. Therefore, it is highly recommended to test the selected lead-like compound catechin in the laboratory with biological system analysis to confirm its activity as MAO-A and MAO-B inhibitors so it can be declared as one of the novel therapeutic options with anti-depressant activity. Our findings concluded that M. indica seeds could be a significant and alternative anti-depressant therapy.
Collapse
Affiliation(s)
- Uzma Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, 38000, Pakistan.
| | - Shafa Iman
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Bashir Ahmad
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore, Pakistan
| | - Muhammad Ajmal Shah
- Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, 38000, Pakistan.
- Department of Pharmacy, Hazara University, Mansehra, Pakistan.
| | - Shabana Bibi
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming, 650091, Yunnan, China
- International Joint Research Center for Sustainable Utilization of Cordyceps Bioresources in China and South-East Asia, Yunnan University, Kunming, 650091, Yunnan, China
| | - Mohammed Alqarni
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, Taif, 21944, Saudi Arabia
| | - Muhammad Saad Khan
- Department of Biosciences, Faculty of Sciences, COMSATS University Islamabad, Sahiwal, Pakistan
| | - Ghulam Mujtaba Shah
- Department of Pharmacy, Hazara University, Mansehra, Pakistan
- Department of Botany, Hazara University, Mansehra, Pakistan
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Reem Hasaballah Alhasani
- Department of Biology, Faculty of Applied Science, Umm Al-Qura University, Makkah, 21961, Saudi Arabia
| | - Norah A Althobaiti
- Department of Biology, College of Science and Humanities, Shaqra University, Al-Quwaiiyah, Saudi Arabia
| | - Aishah E Albalawi
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| |
Collapse
|
37
|
Nirmal NP, Khanashyam AC, Mundanat AS, Shah K, Babu KS, Thorakkattu P, Al-Asmari F, Pandiselvam R. Valorization of Fruit Waste for Bioactive Compounds and Their Applications in the Food Industry. Foods 2023; 12:foods12030556. [PMID: 36766085 PMCID: PMC9914274 DOI: 10.3390/foods12030556] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 01/31/2023] Open
Abstract
The fruit production and processing sectors produce tremendous amounts of by-products and waste that cause significant economic losses and an undesirable impact on the environment. The effective utilization of these fruit wastes can help to reduce the carbon footprint and greenhouse gas emissions, thereby achieving sustainable development goals. These by-products contain a variety of bioactive compounds, such as dietary fiber, flavonoids, phenolic compounds, antioxidants, polysaccharides, and several other health-promoting nutrients and phytochemicals. These bioactive compounds can be extracted and used as value-added products in different industrial applications. The bioactive components extracted can be used in developing nutraceutical products, functional foods, or food additives. This review provides a comprehensive review of the recent developments in fruit waste valorization techniques and their application in food industries. The various extraction techniques, including conventional and emerging methods, have been discussed. The antioxidant and antimicrobial activities of the active compounds extracted and isolated from fruit waste have been described. The most important food industrial application of bioactive compounds extracted from fruit waste (FW) has been provided. Finally, challenges, future direction, and concluding remarks on the topic are summarized.
Collapse
Affiliation(s)
- Nilesh Prakash Nirmal
- Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand
- Correspondence: (N.P.N.); (R.P.); Tel.: +66-28002380-429 (N.P.N.)
| | | | - Anjaly Shanker Mundanat
- Department of Agriculture and Environmental Sciences, National Institute of Food Technology Entrepreneurship and Management (NIFTEM), Sonepat 131028, India
| | - Kartik Shah
- Sargento Foods, 305 Pine Street, Elkhart Lake, WI 53020, USA
| | | | - Priyamvada Thorakkattu
- Department of Animal Sciences and Industry/Food Science Institute, Kansas State University, Manhattan, KS 66506, USA
| | - Fahad Al-Asmari
- Department of Food Science and Nutrition, College of Agriculture and Food Sciences, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
| | - Ravi Pandiselvam
- Physiology, Biochemistry and Post-Harvest Technology Division, ICAR-Central Plantation Crops Research Institute (CPCRI), Kasaragod 671124, India
- Correspondence: (N.P.N.); (R.P.); Tel.: +66-28002380-429 (N.P.N.)
| |
Collapse
|
38
|
Sorrenti V, Burò I, Consoli V, Vanella L. Recent Advances in Health Benefits of Bioactive Compounds from Food Wastes and By-Products: Biochemical Aspects. Int J Mol Sci 2023; 24:2019. [PMID: 36768340 PMCID: PMC9916361 DOI: 10.3390/ijms24032019] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023] Open
Abstract
Bioactive compounds, including terpenoids, polyphenols, alkaloids and other nitrogen-containing constituents, exert various beneficial effects arising from their antioxidant and anti-inflammatory properties. These compounds can be found in vegetables, fruits, grains, spices and their derived foods and beverages such as tea, olive oil, fruit juices, wine, chocolate and beer. Agricultural production and the food supply chain are major sources of food wastes, which can become resources, as they are rich in bioactive compounds. The aim of this review is to highlight recent articles demonstrating the numerous potential uses of products and by-products of the agro-food supply chain, which can have various applications.
Collapse
Affiliation(s)
- Valeria Sorrenti
- Department of Drug and Health Science, University of Catania, 95125 Catania, Italy
- CERNUT-Research Centre on Nutraceuticals and Health Products, University of Catania, 95125 Catania, Italy
| | - Ilaria Burò
- Department of Drug and Health Science, University of Catania, 95125 Catania, Italy
| | - Valeria Consoli
- Department of Drug and Health Science, University of Catania, 95125 Catania, Italy
| | - Luca Vanella
- Department of Drug and Health Science, University of Catania, 95125 Catania, Italy
- CERNUT-Research Centre on Nutraceuticals and Health Products, University of Catania, 95125 Catania, Italy
| |
Collapse
|
39
|
Mangiferin: the miraculous xanthone with diverse pharmacological properties. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:851-863. [PMID: 36656353 DOI: 10.1007/s00210-022-02373-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/19/2022] [Indexed: 01/20/2023]
Abstract
Mangiferin (1,3,6,7-tetrahydroxy-2-[3,4,5-trihydroxy-6-(hydroxymethyl) oxan-2-yl] xanthen-9-one) is a bioactive component derived primarily from the mango tree. Belonging to the Xanthone family, its structure allows it to engage with a variety of pharmacological targets. The symmetric linked core of xanthones has a heterogeneous biogenetic background. The carbon atoms are designated in a biochemical order, which reveals the reason of ring A (C1-C4) being referred to as acetate originated, and ring B (C5-C8) is referred to as shikimate originated. The antibacterial, hypocholesterolemic, antiallergic, cardiotonic, antidiabetic, anti-neoplastic, neuroprotective, antioxidant and immunomodulatory properties have all been demonstrated for the secondary metabolite. This study assessed and explained the important medical properties of mangiferin available in published literature, as well as its natural source, biosynthesis, absorption and bioavailability; multiple administration routes; metabolism; nanotechnology for enhanced efficacy of mangiferin and its toxicity, to aid the anticipated on-going potential of mangiferin as a novel diagnostic treatment.
Collapse
|
40
|
Bioactive Compounds in Extracts from the Agro-Industrial Waste of Mango. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28010458. [PMID: 36615647 PMCID: PMC9823791 DOI: 10.3390/molecules28010458] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023]
Abstract
Mango by-products are important sources of bioactive compounds generated by agro-industrial process. During mango processing, 35-60% of the fruit is discarded, in many cases without treatment, generating environmental problems and economic losses. These wastes are constituted by peels and seeds (tegument and kernel). The aim of this review was to describe the extraction, identification, and quantification of bioactive compounds, as well as their potential applications, published in the last ten years. The main bioactive compounds in mango by-products are polyphenols and carotenoids, among others. Polyphenols are known for their high antioxidant and antimicrobial activities. Carotenoids show provitamin A and antioxidant activity. Among the mango by-products, the kernel has been studied more than tegument and peels because of the proportion and composition. The kernel represents 45-85% of the seed. The main bioactive components reported for the kernel are gallic, caffeic, cinnamic, tannic, and chlorogenic acids; methyl and ethyl gallates; mangiferin, rutin, hesperidin, and gallotannins; and penta-O-galloyl-glucoside and rhamnetin-3-[6-2-butenoil-hexoside]. Meanwhile, gallic acid, ferulic acid, and catechin are reported for mango peel. Although most of the reports are at the laboratory level, they include potential applications in the fields of food, active packaging, oil and fat, and pharmaceutics. At the market level, two trends will stimulate the industrial production of bioactive compounds from mango by-products: the increasing demand for industrialized fruit products (that will increase the by-products) and the increase in the consumption of bioactive ingredients.
Collapse
|
41
|
Alaiya MA, Odeniyi MA. Utilisation of Mangifera indica plant extracts and parts in antimicrobial formulations and as a pharmaceutical excipient: a review. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2023; 9:29. [PMID: 37035527 PMCID: PMC10074368 DOI: 10.1186/s43094-023-00479-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 03/27/2023] [Indexed: 04/11/2023] Open
Abstract
Background Antimicrobial resistance and the environmental threat posed by some synthetic antimicrobial agents necessitate more research into development of novel pharmaceutical products that are environmentally friendly. Also, the use of plant derived excipients is growing and opening up new avenue to solve current drug delivery issues in the pharmaceutical industry. Main body This review summarizes studies related to the antimicrobial property of Mangifera indica extracts, possible mechanisms of antimicrobial action and antimicrobial formulations from the plant and overview of researches relating to the use of M. indica as a pharmaceutical excipient. Electronic searches were conducted on databases such as Pub Med, Wiley Online Library (WOL) and Google Scholar with focus on published articles relating to M. indica. Inclusion and exclusion criteria include publications relating to antimicrobial properties of M. indica extracts, its antimicrobial formulations and its use as a pharmaceutical excipient. The electronic searches yielded about 190 articles. From the studies reviewed, the mechanisms of action of phytochemicals described corroborate the antimicrobial activity exhibited by M. indica extracts and its selected formulations. In addition, mango pectin was observed to possess potential as a pharmaceutical excipient. Very few previous review articles based their focus on incorporating mechanism of action of phytochemicals with antimicrobial activity.This review examined antimicrobial properties of M. indica extracts and formulations, major phytochemicals in the plant parts and their possible modes of action. In addition, the study assessed the use of natural polymer derived from mango plant as excipients in pharmaceutical and pharmacological preparations. Conclusion The study concluded that effective antimicrobial activity of mango plant extracts and formulations requires synergy of actions among various phytochemical constituents of the extract or formulation. It is recommended that more researches focused on discovery of new phytochemicals in M. indica, their mechanisms of action and effective utilization of the plant in the pharmaceutical industry should be further explored.
Collapse
Affiliation(s)
- Mojisola Atinuke Alaiya
- grid.448723.eDepartment of Environmental Management and Toxicology, Federal University of Agriculture, Abeokuta, Nigeria
| | - Michael A. Odeniyi
- grid.9582.60000 0004 1794 5983Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
42
|
Yang EF, Karunarathna SC, Dai DQ, Stephenson SL, Elgorban AM, Al-Rejaie S, Xiong YR, Promputtha I, Samarakoon MC, Tibpromma S. Taxonomy and Phylogeny of Fungi Associated with Mangifera indica from Yunnan, China. J Fungi (Basel) 2022; 8:1249. [PMID: 36547582 PMCID: PMC9780836 DOI: 10.3390/jof8121249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/24/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
During investigations of saprobic fungi associated with mango (Mangifera indica) in Baoshan and Honghe of Yunnan Province (China), fungal taxa belonging to the orders Botryosphaeriales, Calosphaeriales, Chaetothyriales, Diaporthales, and Xylariales were recorded. Morphological examinations coupled with phylogenetic analyses of multigene sequences (ITS, LSU, SSU, tef1-α, rpb1, rpb2, β-tubulin and CAL) were used to identify the fungal taxa. A new genus viz. Mangifericola, four new species viz. Cyphellophora hongheensis, Diaporthe hongheensis, Hypoxylon hongheensis, and Mangifericola hongheensis, four new host and geographical records viz. Aplosporella artocarpi, Hypomontagnella monticulosa, Paraeutypella citricola and Pleurostoma ootheca, and two new collections of Lasiodiplodia are reported.
Collapse
Affiliation(s)
- Er-Fu Yang
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Master of Science Program in Applied Microbiology (International Program), Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Samantha C. Karunarathna
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China
| | - Dong-Qin Dai
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China
| | - Steven L. Stephenson
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA
| | - Abdallah M. Elgorban
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 12211, Saudi Arabia
| | - Salim Al-Rejaie
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh 12211, Saudi Arabia
| | - Yin-Ru Xiong
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Itthayakorn Promputtha
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Environmental Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Milan C. Samarakoon
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Saowaluck Tibpromma
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China
| |
Collapse
|
43
|
Feitosa BF, de Oliveira ENA, de Freitas FBF, de Oliveira Neto JO, Feitosa RM, Santos Lima TL, da Silva Medeiros ML, Feitoza JVF, Coutinho HD. Beverage composed of fruits and soy: Microbiology, colorimetry and effects of refrigerated storage on physical-chemical parameters. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
44
|
Bamigbade GB, Subhash AJ, Kamal-Eldin A, Nyström L, Ayyash M. An Updated Review on Prebiotics: Insights on Potentials of Food Seeds Waste as Source of Potential Prebiotics. Molecules 2022; 27:molecules27185947. [PMID: 36144679 PMCID: PMC9505924 DOI: 10.3390/molecules27185947] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 01/19/2023] Open
Abstract
Prebiotics are a group of biological nutrients that are capable of being degraded by microflora in the gastrointestinal tract (GIT), primarily Lactobacilli and Bifidobacteria. When prebiotics are ingested, either as a food additive or as a supplement, the colonic microflora degrade them, producing short-chain fatty acids (SCFA), which are simultaneously released in the colon and absorbed into the blood circulatory system. The two major groups of prebiotics that have been extensively studied in relation to human health are fructo-oligosaccharides (FOS) and galactooligosaccharides (GOS). The candidature of a compound to be regarded as a prebiotic is a function of how much of dietary fiber it contains. The seeds of fruits such as date palms have been reported to contain dietary fiber. An increasing awareness of the consumption of fruits and seeds as part of the daily diet, as well as poor storage systems for seeds, have generated an enormous amount of seed waste, which is traditionally discarded in landfills or incinerated. This cultural practice is hazardous to the environment because seed waste is rich in organic compounds that can produce hazardous gases. Therefore, this review discusses the potential use of seed wastes in prebiotic production, consequently reducing the environmental hazards posed by these wastes.
Collapse
Affiliation(s)
- Gafar Babatunde Bamigbade
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University (UAEU), Al-Ain P.O. Box 15551, United Arab Emirates
| | - Athira Jayasree Subhash
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University (UAEU), Al-Ain P.O. Box 15551, United Arab Emirates
| | - Afaf Kamal-Eldin
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University (UAEU), Al-Ain P.O. Box 15551, United Arab Emirates
| | - Laura Nyström
- Department of Health Science and Technology, Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland
| | - Mutamed Ayyash
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University (UAEU), Al-Ain P.O. Box 15551, United Arab Emirates
- Correspondence:
| |
Collapse
|
45
|
Ojeda GA, Sgroppo SC, Sánchez Moreno C, de Ancos Siguero B. Mango 'criollo' by-products as a source of polyphenols with antioxidant capacity. Ultrasound assisted extraction evaluated by response surface methodology and HPLC-ESI-QTOF-MS/MS characterization. Food Chem 2022; 396:133738. [PMID: 35872495 DOI: 10.1016/j.foodchem.2022.133738] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 07/11/2022] [Accepted: 07/15/2022] [Indexed: 01/12/2023]
Abstract
Ultrasound assisted extraction (UAE) was evaluated as a green procedure for the recovery of phenolic compounds with antioxidant capacity from underutilized mango 'criollo' (peel, pulp and seed). Magnetic stirred was performed as conventional extraction. Response surface methodology using a three-factor (% ethanol, amplitude and time) central composite design was used to maximize the extraction for total phenolic compounds (TPC), total flavonoids and antioxidant capacity. The operational conditions to maximize extraction were: peel, 46% ethanol/amplitude 60% (36 µm)/6.5 min; pulp, 25% ethanol/amplitude 75% (45 µm)/30 min; seed 49% ethanol/100% (60 µm) amplitude/20 min. The phenolic composition of the optimized extracts was characterized by HPLC-QTOF-MS/MS and 45 compounds were tentatively identified as xanthones (mangiferin), flavonoids (quercetin), ellagic acid, benzophenones (maclurin), gallate derivatives and gallotannins. UAE increased TPC extraction (33%); interestingly mangiferin extraction increased 53% in peel, similarly, ellagic acid increased up to 2.5 and 4.4 times in peel and seed extracts.
Collapse
Affiliation(s)
- Gonzalo Adrián Ojeda
- Laboratorio de Tecnología Química y Bromatología, FaCENA, Universidad Nacional del Nordeste, Av. Libertad 5400, Corrientes, Argentina.
| | - Sonia Cecilia Sgroppo
- Laboratorio de Tecnología Química y Bromatología, FaCENA, Universidad Nacional del Nordeste, Av. Libertad 5400, Corrientes, Argentina
| | - Concepción Sánchez Moreno
- Institute of Food Science, Technology and Nutrition (ICTAN), Spanish National Research Council (CSIC), José Antonio Novais 10, Madrid, Spain
| | - Begoña de Ancos Siguero
- Institute of Food Science, Technology and Nutrition (ICTAN), Spanish National Research Council (CSIC), José Antonio Novais 10, Madrid, Spain
| |
Collapse
|
46
|
Maw WW, Sae‐Eaw A, Wongthahan P, Prinyawiwatkul W. Consumers’ emotional responses evoked by fermented rice noodles containing cricket and/or mango peel: Impact of product information and prior insect consumption. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Win Win Maw
- Department of Food Technology, Faculty of Technology Khon Kaen University Khon Kaen 40002 Thailand
| | - Amporn Sae‐Eaw
- Department of Food Technology, Faculty of Technology Khon Kaen University Khon Kaen 40002 Thailand
| | | | - Witoon Prinyawiwatkul
- School of Nutrition and Food Sciences, Louisiana State University, Agricultural Center Baton Rouge LA 70803 USA
| |
Collapse
|
47
|
Palka A, Skotnicka M. The Health-Promoting and Sensory Properties of Tropical Fruit Sorbets with Inulin. Molecules 2022; 27:molecules27134239. [PMID: 35807483 PMCID: PMC9268491 DOI: 10.3390/molecules27134239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/16/2022] [Accepted: 06/29/2022] [Indexed: 11/23/2022] Open
Abstract
Inulin is a popular prebiotic that is often used in the production of ice cream, mainly to improve its consistency. It also reduces the hardness of ice cream, as well as improving the ice cream’s organoleptic characteristics. Inulin can also improve the texture of sorbets, which are gaining popularity as an alternative to milk-based ice cream. Sorbets can be an excellent source of natural vitamins and antioxidants. The aim of this study was to evaluate the effect of the addition of inulin on the sensory characteristics and health-promoting value of avocado, kiwi, honey melon, yellow melon and mango sorbets. Three types of sorbets were made—two with inulin (2% and 5% wt.) and the other without—using fresh fruit with the addition of water, sucrose and lemon juice. Both the type of fruit and the addition of inulin influenced the sorbet mixture viscosity, the content of polyphenols, vitamin C, acidity, ability to scavenge free radicals using DPPH reagent, melting resistance, overrun and sensory evaluation of the tested sorbets (all p < 0.05). The addition of inulin had no impact on the color of the tested sorbets, only the type of fruit influenced this feature. In the sensory evaluation, the mango sorbets were rated the best and the avocado sorbets were rated the worst. Sorbets can be a good source of antioxidant compounds. The tested fruits sorbets had different levels of polyphenol content and the ability to scavenge free radicals. Kiwi sorbet had the highest antioxidant potential among the tested fruits. The obtained ability to catch free radicals and the content of polyphenols proved the beneficial effect of sorbets, particularly as a valuable source of antioxidants. The addition of inulin improved the meltability, which may indicate the effect of inulin on the consistency. Further research should focus on making sorbets only from natural ingredients and comparing their health-promoting quality with the ready-made sorbets that are available on the market, which are made from ready-made ice cream mixes.
Collapse
Affiliation(s)
- Agnieszka Palka
- Department of Quality Management, Faculty of Management and Quality Science, Gdynia Maritime University, 81-225 Gdynia, Poland
- Correspondence:
| | - Magdalena Skotnicka
- Department of Commodity Science, Faculty of Health Science, Medical University of Gdansk, 80-210 Gdansk, Poland;
| |
Collapse
|
48
|
Mokbul M, Cheow YL, Siow LF. Characterization of the physicochemical properties of mango (
Mangifera indica
L., Dragon variety) kernel fat extracted via supercritical carbon dioxide and Soxhlet techniques. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mansura Mokbul
- School of Science Monash University Malaysia Bandar Sunway Selangor Malaysia
- Department of Food Technology and Nutrition Science Noakhali Science and Technology University Noakhali Bangladesh
| | - Yuen Lin Cheow
- School of Science Monash University Malaysia Bandar Sunway Selangor Malaysia
| | - Lee Fong Siow
- School of Science Monash University Malaysia Bandar Sunway Selangor Malaysia
| |
Collapse
|
49
|
Kandemir K, Piskin E, Xiao J, Tomas M, Capanoglu E. Fruit Juice Industry Wastes as a Source of Bioactives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:6805-6832. [PMID: 35544590 PMCID: PMC9204825 DOI: 10.1021/acs.jafc.2c00756] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/06/2022] [Accepted: 04/06/2022] [Indexed: 05/15/2023]
Abstract
Food processing sustainability, as well as waste minimization, are key concerns for the modern food industry. A significant amount of waste is generated by the fruit juice industry each year. In addition to the economic losses caused by the removal of these wastes, its impact on the environment is undeniable. Therefore, researchers have focused on recovering the bioactive components from fruit juice processing, in which a great number of phytochemicals still exist in the agro-industrial wastes, to help minimize the waste burden as well as provide new sources of bioactive compounds, which are believed to be protective agents against certain diseases such as cardiovascular diseases, cancer, and diabetes. Although these wastes contain non-negligible amounts of bioactive compounds, information on the utilization of these byproducts in functional ingredient/food production and their impact on the sensory quality of food products is still scarce. In this regard, this review summarizes the most recent literature on bioactive compounds present in the wastes of apple, citrus fruits, berries, stoned fruits, melons, and tropical fruit juices, together with their extraction techniques and valorization approaches. Besides, on the one hand, examples of different current food applications with the use of these wastes are provided. On the other hand, the challenges with respect to economic, sensory, and safety issues are also discussed.
Collapse
Affiliation(s)
- Kevser Kandemir
- Faculty
of Engineering and Natural Sciences, Food Engineering Department, Istanbul Sabahattin Zaim University, Halkali, 34303 Istanbul, Turkey
| | - Elif Piskin
- Faculty
of Engineering and Natural Sciences, Food Engineering Department, Istanbul Sabahattin Zaim University, Halkali, 34303 Istanbul, Turkey
| | - Jianbo Xiao
- Department
of Analytical Chemistry and Food Science, Faculty of Food Science
and Technology, University of Vigo-Ourense
Campus, E-32004 Ourense, Spain
- International
Research Center for Food Nutrition and Safety, Jiangsu University, 212013 Zhenjiang, China
| | - Merve Tomas
- Faculty
of Engineering and Natural Sciences, Food Engineering Department, Istanbul Sabahattin Zaim University, Halkali, 34303 Istanbul, Turkey
| | - Esra Capanoglu
- Department
of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
| |
Collapse
|
50
|
Novel Hydrocolloids Obtained from Mango ( Mangifera indica) var. Hilaza: Chemical, Physicochemical, Techno-Functional, and Structural Characteristics. Gels 2022; 8:gels8060354. [PMID: 35735698 PMCID: PMC9222320 DOI: 10.3390/gels8060354] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/02/2022] [Accepted: 06/02/2022] [Indexed: 12/10/2022] Open
Abstract
Background: Hydrocolloids are ingredients used to improve the technological properties of products; currently, there is a growing demand from the food industry and consumers to use natural ingredients and reduce the environmental impact. Methods: This work evaluated the effect of pH on hydrocolloid extraction from the pulp, seed, and peel of mango (Mangifera indica) var. hilaza and their chemical, physicochemical, techno-functional, and structural properties. Results: The main component of the hydrocolloid was the carbohydrates for pulp (22.59%) and peel (24.05%), and the protein for seed (21.48%) was corroborated by NIR spectra and associated with the technological and functional properties. The solubility increases with the temperature presenting values higher than 75% at 80 °C; the swelling index was higher than 30%, while the water holding capacity was higher in samples with higher carbohydrate content (110−121%). Moreover, a higher content of total phenolic compounds (21.61 ± 0.39−51.77 ± 2.48 mg GAE/g) and antioxidant activity (≥193.82 μMol Trolox/g) was obtained. The pH of extraction changes the color parameters and microstructural properties. Conclusions: Novel ingredients from mango pulp, seed, and peel at different pH levels have technological and functional properties that are potential use in the food industry as an alternative to the development of microstructural products.
Collapse
|