1
|
Lan J, Wu S. Occurrence, Concentration and Toxicity of 54 Polycyclic Aromatic Hydrocarbons in Butter during Storage. Foods 2023; 12:4393. [PMID: 38137197 PMCID: PMC10742937 DOI: 10.3390/foods12244393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are a class of highly carcinogenic compounds with a lipophilic nature. This study investigated the characterization of PAH24 contamination in twenty-one types of butter and five types of margarines using the QuEChERS pretreatment coupled with GC-QqQ-MS. Additionally, low-temperature storage experiments were conducted to explore the variations in oxidation index as well as the PAH levels. The results revealed that PAH24 concentrations in butter and margarine were 50.75-310.64 μg/kg and 47.66-118.62 μg/kg, respectively. The PAH4 level in one type of butter reached 11.24 μg/kg beyond the EU standards. Over 160 days of storage at 4 °C, acid value (AV), peroxide value (POV), and acidity significantly increased, while malondialdehyde (MDA) content and carbonyl value (CGV) fluctuated. Concentrations of PAH24 and oxidized PAHs (OPAHs) experienced a notable reduction of 29.09% and 63.85%, respectively. The slow reduction in naphthalene (NaP) indicated the dynamic nature of PAHs during storage. However, the toxic equivalency quotients (TEQs) decreased slightly from a range of 0.65-1.90 to 0.39-1.77, with no significant difference. This study contributes to the understanding of variations in PAHs during storage, which is of great significance for food safety.
Collapse
Affiliation(s)
| | - Shimin Wu
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China;
| |
Collapse
|
2
|
Lu J, Kong L, Fang H, Cai K, Zhou H, Xu B. Degradation of polycyclic aromatic hydrocarbons (PAHs) in smoked sausages by ultraviolet irradiation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:7539-7549. [PMID: 37411004 DOI: 10.1002/jsfa.12833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/03/2023] [Accepted: 07/07/2023] [Indexed: 07/08/2023]
Abstract
BACKGROUND Ultraviolet (UV) irradiation has been widely employed to disinfect food, however, the efficacy of UV irradiation in degrading polycyclic aromatic hydrocarbons (PAHs) in smoked sausages has not been explored. In this article, the UV degradation ability of PAHs in smoked sausages was investigated with different UV irradiation conditions, including different irradiation powers, durations and wavelengths. The effects of UV radiation on the quality of sausages were also evaluated, and potential degradation mechanisms were elucidated. RESULTS The results showed that the irradiation duration was the primary determinant of PAHs degradation, achieving 84.4% and 84.2% degradation rates at 16 W and 32 W power for 30 min, respectively. Among the three UV wavelengths assessed, 254 nm demonstrated a significantly higher degradation rate for benzo[a]pyrene (BaP), PAH4 and PAHs compared to 365 nm and 310 nm. To further explore the degradation mechanism, UV irradiation was combined with water, 0.1 mol/L hydrogen peroxide (H2 O2 ) and 0.1 mol/L ascorbic acid (vitamin C) coatings. The 0.1 mol/L H2 O2 coating exhibited the most pronounced degradation effect, suggesting that the highly reactive oxygen hydroxyl radicals (·OH) generated by UV irradiation played a critical role in initiating redox reactions. CONCLUSION This systematic investigation paves the way for developing novel strategies to eliminate PAHs or other organic contaminants from smoked sausages. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jingnan Lu
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, China
| | - Ling Kong
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, China
| | - Hongmei Fang
- Institute of Yeji Mutton Industry Development and Research, Hefei University of Technology, Hefei, China
| | - Kezhou Cai
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, China
| | - Hui Zhou
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, China
| | - Baocai Xu
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, China
| |
Collapse
|
3
|
Xu X, Liu X, Zhang J, Liang L, Wen C, Li Y, Shen M, Wu Y, He X, Liu G, Xu X. Formation, migration, derivation, and generation mechanism of polycyclic aromatic hydrocarbons during frying. Food Chem 2023; 425:136485. [PMID: 37276667 DOI: 10.1016/j.foodchem.2023.136485] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/16/2023] [Accepted: 05/26/2023] [Indexed: 06/07/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are carcinogenic and lipophilic, which can be found in frying system. This review summarized the formation, migration and derivation for PAHs, hypothesized the possible mechanism for PAHs generation during frying and presented the research prospects. Some factors like high oil consumption, high temperature, long time and oil rich in unsaturated fatty acids promoted the formation of PAHs and the presence of antioxidants inhibited the PAHs formation. The effect of proteins and carbohydrates in foods on the formation of PAHs is inconclusive. The formed PAHs were migrated into food and air. Moreover, some PAHs transformed into more toxic PAHs-derivatives during frying. The generation of PAHs may be related to low-barrier free radical-mediated reaction and the unsaturated hydrocarbons may be precursors of PAHs during frying. In future, the isotope tracer technology and on-line detection may be applied to discover intermediates and provide clues for studying PAHs generation mechanisms.
Collapse
Affiliation(s)
- Xiangxin Xu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Xiaofang Liu
- School of Tourism and Cuisine, Yangzhou University, Yangzhou 225127, China
| | - Jixian Zhang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Li Liang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Chaoting Wen
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Youdong Li
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Mengyu Shen
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Yinyin Wu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Xudong He
- Yangzhou Center for Food and Drug Control, Yangzhou 225009, China
| | - Guoyan Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China.
| | - Xin Xu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China.
| |
Collapse
|
4
|
Sakin AE, Mert C, Tasdemir Y. PAHs, PCBs and OCPs in olive oil during the fruit ripening period of olive fruits. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:1739-1755. [PMID: 35635681 DOI: 10.1007/s10653-022-01297-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
Because of their possible carcinogenic effects, it is crucial to determine levels of polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) in olive oils. However, there are a few studies about these pollutants' levels in olive oils and no other studies reported PAHs, PCBs and OCPs at the same time and during the ripening period of olives in olive oils. A modified clean-up technique was successfully applied for eliminating lipidic components. Additionally, this study does not just report the concentrations of these pollutants but also inspects the sources depending on the actual sampling site. Also, PCBs and OCPs carcinogenic risks in olive oil were reported for the first time in the literature. This study aims to present levels, carcinogenic risks, sources and concentration changes during the ripening period of these pollutants in olive oil. For this purpose, fruit samples for oil extraction were collected between the beginning of the fruit ripening and harvest period. Obtained olive oils from the fruits were extracted and cleaned up using the QuEChERS method. GC-MS and GC-ECD were used for the quantitative analysis of the targeted pollutants. The average concentrations for ∑16PAHs, ∑37PCBs and ∑10OCPs were 222.48 ± 133.76 μg/kg, 58.26 ± 21.64 μg/kg and 25.48 ± 19.55 μg/kg, respectively. During the harvest period, the concentrations were in a decreasing trend. Calculated carcinogenic risks were above acceptable limits for all groups and traffic, wood-coal burning, atmospheric transport and previous uses were the main sources. Results of the source determination indicated that some possible sources could be prevented with regulations and precautions.
Collapse
Affiliation(s)
- A Egemen Sakin
- Science and Technology Application and Research Centre BITUAM, Bursa Uludag University, 16059, Nilufer, Bursa, Turkey
| | - Cevriye Mert
- Department of Horticulture, Faculty of Agriculture, Bursa Uludag University, 16059, Nilufer, Bursa, Turkey
| | - Yücel Tasdemir
- Department of Environmental Engineering, Faculty of Engineering, Bursa Uludag University, 16059, Nilufer, Bursa, Turkey.
| |
Collapse
|
5
|
Zhang L, Li W, Wu S. Rapid Determination of Oxygenated and Parent Polycyclic Aromatic Hydrocarbons in Milk Using Supercritical Fluid Chromatography-Mass Spectrometry. Foods 2022; 11:foods11243980. [PMID: 36553722 PMCID: PMC9778578 DOI: 10.3390/foods11243980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/02/2022] [Accepted: 12/03/2022] [Indexed: 12/13/2022] Open
Abstract
Liquid milks are consumed worldwide in large amounts, especially by adolescents and infants. Thus, their health quality linked with polycyclic aromatic hydrocarbon (PAH) contamination has attracted great concern. This study developed a rapid and sensitive supercritical fluid chromatography (SFC)-MS method to determine two typical oxygenated PAHs (OPAHs) and EU 15+1PAHs except for benzo[k]fluoranthene (BkF) in three types of liquid milks: 10 ultra heat treated (UHT) milks, 8 pasteurized milks, and 4 extended-shelf-life pasteurized milks. The instrumental analysis was 15 min with a recovery of 67.66-118.46%, a precision of 1.45-14.68%, detection limits of 0.04-0.24 μg/kg, and quantification limits of 0.13-0.78 μg/kg. We found 9-fluorenone, anthraquinone, 15 EU priority PAHs, and benzo[a]pyrene toxic equivalent quantity (BaPeq) in the 22 milk samples, which were 0.32-1.56 μg/kg, 0.40-1.74 μg/kg, 0.57-8.48 μg/kg, and 0.01-17.42 μg/kg, respectively. The UHT milks and whole fat milks showed higher PAH concentrations than other investigated samples, where the maximum levels of BaP and PAH4 were 0.77 and 3.61 μg/kg, respectively. PAH4 dominantly contributed to the PAH8 concentration and was detected in 73% and 32% of samples at more than 1.0 and 2.0 μg/kg, respectively. The results suggest that raw milks should be strictly monitored and extensively investigated for PAH4 and BaP concentrations for future risk assessment, limitations, and dietary guidance.
Collapse
Affiliation(s)
| | | | - Shimin Wu
- Correspondence: ; Tel./Fax: +86-21-34205717
| |
Collapse
|
6
|
Ma X, Wu S. Oxygenated polycyclic aromatic hydrocarbons in food: toxicity, occurrence and potential sources. Crit Rev Food Sci Nutr 2022; 64:4882-4903. [PMID: 36384378 DOI: 10.1080/10408398.2022.2146652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Oxygenated polycyclic aromatic hydrocarbons (OPAHs) are polycyclic aromatic hydrocarbons (PAHs) functionalized with at least one carbonyl group and are generally thought to be more toxic than PAHs. In this review, the physical-chemical properties, toxicity, occurrence, and potential sources of OPAHs in food were comprehensively discussed. The toxicities of 1,2-naphthoquinone, 1,4-naphthoquinone, 6H-benzo[cd]pyren-6-one, benzo[a]anthracene-7,12-quinone and 9,10-phenanthrenequinone were prominent among the OPAHs. Both 1,4-naphthoquinone and 1,2-naphthoquinone exhibited strong genotoxicity, cytotoxicity, and developmental toxicity. 6H-benzo[cd]pyren-6-one and benzo[a]anthracene-7,12-quinone showed high genotoxicity and cardiovascular toxicity. Although 9,10-phenanthrenequinone showed no genotoxicity, it exhibited almost the strongest cytotoxicity. For the majority of foods, the concentrations of OPAHs and PAHs were on the same order of magnitude. OPAHs tend to be positively correlated with the corresponding PAH concentrations in oil and fried food, while for barbequed food and seafood, no obvious correlation was found. In addition, 9-fluorenone, 9,10-anthraquinone, benzanthrone and 1,2-acenaphthenequinone had high abundance in food. Environmental pollution, food composition, storage conditions, heating methods, and other treatments influence the accumulation of OPAHs in food. Furthermore, oxygen and water played an important role in the transformation from PAHs to OPAHs. In short, this review guides the evaluation and further reduction of OPAH-related health risks in food.
Collapse
Affiliation(s)
- Xin Ma
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Shimin Wu
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
7
|
Ji J, Jiang M, Zhang Y, Hou J, Sun S. Polycyclic Aromatic Hydrocarbons Contamination in Edible Oils: A Review. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2131816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Junmin Ji
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Miaomiao Jiang
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Yaxin Zhang
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Jie Hou
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Shangde Sun
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| |
Collapse
|
8
|
Characterization of a new sustainable supramolecular solvent and application to the determination of oxy-PAHs in meat, seafood and fish tissues. Food Chem 2022; 405:134731. [DOI: 10.1016/j.foodchem.2022.134731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 11/21/2022]
|
9
|
Sonego E, Bhattarai B, Duedahl-Olesen L. Detection of Nitrated, Oxygenated and Hydrogenated Polycyclic Aromatic Compounds in Smoked Fish and Meat Products. Foods 2022; 11:2446. [PMID: 36010446 PMCID: PMC9407348 DOI: 10.3390/foods11162446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/01/2022] [Accepted: 08/04/2022] [Indexed: 12/26/2022] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are present in smoked food products. More toxic nitrated (NPAH) and oxygenated (OPAH) PAHs derivatives are found concomitantly to PAHs and are therefore believed to be found in smoked food products. However, only a few PAH analyses on food include these derivatives. We adjusted and successfully validated a GC-QTOFMS method including 13 NPAHs and 2 OPAHs as well as the 4 regulated PAHs for analysis of 14 smoked (13 fish and one bacon) and one pan fried fish samples.OPAHs were detected in the highest concentrations in 13 of 15 samples. Non-target screening revealed the presence of an additional four OPAHs and two methylated PAHs. Future food analysis should, based on these results, focus on PAH and oxygenated derivatives.
Collapse
Affiliation(s)
- Elisa Sonego
- Department of Chemistry, University of Rome “La Sapienza”, Piazzale Aldo Moro, 5, 00185 Rome, Italy
| | - Bina Bhattarai
- National Food Institute, Technical University of Denmark, Kemitorvet, DK-2800 Lyngby, Denmark
| | - Lene Duedahl-Olesen
- National Food Institute, Technical University of Denmark, Kemitorvet, DK-2800 Lyngby, Denmark
| |
Collapse
|
10
|
Time-saving and accurate analysis of BaP, BaA, Chr and BbF in milks and oils by three-way fluorescence spectrometry. Food Chem 2022; 381:132309. [DOI: 10.1016/j.foodchem.2022.132309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 12/24/2021] [Accepted: 01/29/2022] [Indexed: 11/19/2022]
|
11
|
Zastrow L, Judas M, Speer K, Schwind KH, Jira W. Barbecue conditions affect contents of oxygenated and non-oxygenated polycyclic aromatic hydrocarbons in meat and non-meat patties. Food Chem X 2022; 14:100351. [PMID: 36118985 PMCID: PMC9475699 DOI: 10.1016/j.fochx.2022.100351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/11/2022] [Accepted: 05/24/2022] [Indexed: 11/30/2022] Open
Abstract
The contents of eight oxygenated polycyclic aromatic hydrocarbons (OPAHs; anthracene-9,10-dione, benzo[a]anthracene-7,12-dione, 11H-benzo[b]fluorene-11-one, 6H-benzo[cd]pyren-6-one, 7H-benzo[de]anthracene-7-one, 9,10-dihydro-8H-benzo[a]pyren-7-one, fluoren-9-one, and naphthacene-5,12-dione) and six PAHs (anthracene, fluorene, and PAH4) were investigated in barbecued meat and non-meat patties. The patties were prepared with ten setups (six replicates, each) of barbecue conditions defined by grill type, grate height, heating medium, and barbecue time. The highest median contents were observed with a disposable grill (OPAHs: 46.3 µg/kg; PAHs: 40.7 µg/kg) and a charcoal grill (OPAHs: 29.6 µg/kg; PAHs: 23.3 µg/kg). Fluoren-9-one and anthracene-9,10-dione were the dominant compounds within OPAHs, but also the four toxicologically most relevant OPAHs were detected with a total up to 11.8 µg/kg. Pairs of OPAHs and corresponding PAHs did not show strong correlations, as individual OPAHs and PAHs were affected differently by the barbecue conditions. No suitable markers for OPAH prediction could be found. We recommend to include OPAHs in future PAH investigations.
Collapse
|
12
|
Shen M, Liu X, Xu X, Wu Y, Zhang J, Liang L, Wen C, He X, Xu X, Liu G. Migration and Distribution of PAH4 in Oil to French Fries Traced Using a Stable Isotope during Frying. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:5879-5886. [PMID: 35507768 DOI: 10.1021/acs.jafc.2c00500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Isotope-labeled four polycyclic aromatic hydrocarbons (PAH4-d12) were applied to study the migration and distribution of PAH4 in oil to French fries during frying. The results showed that the mobilities of PAH4-d12 showed a downtrend within 0-6 h and then an uptrend, and PAH4-d12 were mainly distributed in the crust of the French fries, especially five-ring PAHs-d12. The correlation analysis showed that PAH4-d12 migration was mainly caused by oil absorption of French fries. The low fluidity of the oil slowed down the PAH4-d12 migration, which was accelerated as the total polar component increased (higher than 15-20%). Additionally, higher frying temperature enhanced the crust ratio and porous structure of French fries, which explained the abundant five-ring PAHs-d12 distributed in the crust. This study provided references for optimizing the frying parameters: the exposure of PAH4 in French fries to humans can be reduced by controlling the oil quality and weakening the crust of the French fries.
Collapse
Affiliation(s)
- Mengyu Shen
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Xiaofang Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Xiangxin Xu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Yinyin Wu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Jixian Zhang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Li Liang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Chaoting Wen
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Xudong He
- Yangzhou Center for Food and Drug Control, Yangzhou 225009, China
| | - Xin Xu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Guoyan Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| |
Collapse
|
13
|
Sumara A, Stachniuk A, Montowska M, Kotecka-Majchrzak K, Grywalska E, Mitura P, Saftić Martinović L, Kraljević Pavelić S, Fornal E. Comprehensive Review of Seven Plant Seed Oils: Chemical Composition, Nutritional Properties, and Biomedical Functions. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2067560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Agata Sumara
- Department of Bioanalytics, Medical University of Lublin, Lublin, Poland
| | - Anna Stachniuk
- Department of Bioanalytics, Medical University of Lublin, Lublin, Poland
| | - Magdalena Montowska
- Department of Meat Technology, Poznan University of Life Sciences, Poznan, Poland
| | | | - Ewelina Grywalska
- Department of Experimental Immunology, Medical University of Lublin, Lublin, Poland
| | - Przemysław Mitura
- Department of Urology and Urological Oncology, Medical University of Lublin, Lublin, Poland
| | | | | | - Emilia Fornal
- Department of Bioanalytics, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
14
|
Liu G, Shen M, Sun X, Xu X, Wu Y, Zhang J, Liang L, Liu X, Xu X. A new perspective on the benzo(a)pyrene generated in tea seeds during roasting. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2022; 39:440-450. [PMID: 35104194 DOI: 10.1080/19440049.2021.2022770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The detection of benzo(a)pyrene (BaP), a strong carcinogen, in edible oil has been widely reported. This work studied the concentration of BaP in different parts of tea seeds generated during roasting from a new perspective. A novel method was established and used to calculate the actual generated concentration of BaP, which is different from the previous direct determination of BaP concentration and also takes into account the concentration of the lost BaP. The results showed that the loss rate of BaP in husks was the highest (92.7%), while that in the peeled tea seeds was the lowest (66.9%). Conversely, the generated concentration of BaP in peeled seeds was the highest (6.7 μg·kg-1), while that in husks was the lowest (2.8 μg·kg-1). The change in concentration of BaP during roasting was mainly related to the components of different parts of tea seeds. Finally, the lost BaP-d12 in tea seeds was detected in other parts of the semi-closed simplified model, which confirmed that BaP will migrate during roasting. This work emphasised that it was necessary to modify the calculation method for the generated concentration of BaP in food during thermal processing, which will be helpful to explore the generation mechanism of BaP.
Collapse
Affiliation(s)
- Guoyan Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou, China
| | - Mengyu Shen
- College of Food Science and Engineering, Yangzhou University, Yangzhou, China
| | - Xinguo Sun
- College of Food Science and Engineering, Yangzhou University, Yangzhou, China
| | - Xiangxin Xu
- College of Food Science and Engineering, Yangzhou University, Yangzhou, China
| | - Yinyin Wu
- College of Food Science and Engineering, Yangzhou University, Yangzhou, China
| | - Jixian Zhang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, China
| | - Li Liang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, China
| | - Xiaofang Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou, China
| | - Xin Xu
- College of Food Science and Engineering, Yangzhou University, Yangzhou, China
| |
Collapse
|
15
|
López-Ruiz R, Marín-Sáez J, Prestes OD, Romero-González R, Garrido Frenich A. Critical Evaluation of Analytical Methods for the Determination of Anthropogenic Organic Contaminants in Edible Oils: An Overview of the Last Five Years. Crit Rev Anal Chem 2022; 53:1733-1747. [PMID: 35175888 DOI: 10.1080/10408347.2022.2040352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Anthropogenic contaminants, as pesticides, polycyclic aromatic hydrocarbons (PAHs) and monochloropropanediols (MCPDs), have become important to be controlled in edible oils, since their regular occurrence. In fact, alerts from the Rapid Alert System for Food and Feed (RASFF) in oils normally include these compounds. From a critical point of view, tools used to control these compounds in the last 5 years will be discussed, including sample preparation, analysis and current regulations. Extraction and analysis methods will be discussed next, being liquid-liquid extraction (LLE) and QuEChERS, with or without clean-up step, as well as chromatographic methods coupled to different analyzers (mainly mass spectrometry), the most commonly used for extraction and analysis respectively. Occurrence in samples will also be reviewed and compared with the legal maximum residue limits (MRLs), observing that 4%, 20% and 60% of the analyzed samples exceed the legal limits for pesticides, MCPDs and PAHs respectively.
Collapse
Affiliation(s)
- Rosalía López-Ruiz
- Research Group "Analytical Chemistry of Contaminants", Department of Chemistry and Physics, Research Centre for Mediterranean Intensive Agrosystems and Agri-Food Biotechnology (CIAIMBITAL), Agrifood Campus of International Excellence, University of Almeria, Almeria, Spain
- Laboratory of Pesticide Residue Analysis (LARP), Chemistry Department, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Jesús Marín-Sáez
- Research Group "Analytical Chemistry of Contaminants", Department of Chemistry and Physics, Research Centre for Mediterranean Intensive Agrosystems and Agri-Food Biotechnology (CIAIMBITAL), Agrifood Campus of International Excellence, University of Almeria, Almeria, Spain
| | - Osmar D Prestes
- Laboratory of Pesticide Residue Analysis (LARP), Chemistry Department, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Roberto Romero-González
- Research Group "Analytical Chemistry of Contaminants", Department of Chemistry and Physics, Research Centre for Mediterranean Intensive Agrosystems and Agri-Food Biotechnology (CIAIMBITAL), Agrifood Campus of International Excellence, University of Almeria, Almeria, Spain
| | - Antonia Garrido Frenich
- Research Group "Analytical Chemistry of Contaminants", Department of Chemistry and Physics, Research Centre for Mediterranean Intensive Agrosystems and Agri-Food Biotechnology (CIAIMBITAL), Agrifood Campus of International Excellence, University of Almeria, Almeria, Spain
| |
Collapse
|
16
|
Wang Z, Ng K, Warner RD, Stockmann R, Fang Z. Reduction strategies for polycyclic aromatic hydrocarbons in processed foods. Compr Rev Food Sci Food Saf 2022; 21:1598-1626. [DOI: 10.1111/1541-4337.12905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 12/02/2021] [Accepted: 12/13/2021] [Indexed: 12/25/2022]
Affiliation(s)
- Zun Wang
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences University of Melbourne Parkville Victoria Australia
| | - Ken Ng
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences University of Melbourne Parkville Victoria Australia
| | - Robyn Dorothy Warner
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences University of Melbourne Parkville Victoria Australia
| | | | - Zhongxiang Fang
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences University of Melbourne Parkville Victoria Australia
| |
Collapse
|
17
|
Polycyclic Aromatic Hydrocarbons (PAHs) Sample Preparation and Analysis in Beverages: A Review. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-021-02178-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
AbstractThe monitoring of food contaminants is of interests to both food regulatory bodies and the consumers. This literature review covers polycyclic aromatic hydrocarbons (PAHs) with regard to their background, sources of exposures, and occurrence in food and environment as well as health hazards. Furthermore, analytical methods focusing on the analysis of PAHs in tea, coffee, milk, and alcoholic samples for the last 16 years are presented. Numerous experimental methods have been developed aiming to obtain better limits of detections (LODs) and percent recoveries as well as to reduce solvent consumption and laborious work. These include information such as the selected PAHs analyzed, food matrix of PAHs, methods of extraction, cleanup procedure, LOD, limits of quantitation (LOQ), and percent recovery. For the analysis of tea, coffee, milk, and alcoholic samples, a majority of the research papers focused on the 16 US Environmental Protection Agency PAHs, while PAH4, PAH8, and methylated PAHs were also of interests. Extraction methods range from the classic Soxhlet extraction and liquid–liquid extraction to newer methods such as QuEChERS, dispersive solid-phase microextraction, and magnetic solid-phase extraction. The cleanup methods involved mainly the use of column chromatography and SPE filled with either silica or Florisil adsorbents. Gas chromatography and liquid chromatography coupled with mass spectrometry or fluorescence detectors are the main analytical instruments used. A majority of the selected combined methods used are able to achieve LODs and percent recoveries in the ranges of 0.01–5 ug/kg and 70–110%, respectively, for the analysis of tea, coffee, milk, and alcoholic samples.
Collapse
|
18
|
Ji J, Zhang Y, Sun S, Liu X. Concentrations of the 16 US EPA PAHs in 86 Vegetable Oil Samples. Polycycl Aromat Compd 2021. [DOI: 10.1080/10406638.2021.1998154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Junmin Ji
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, PR China
| | - Yaxin Zhang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, PR China
| | - Shangde Sun
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, PR China
| | - Xianjun Liu
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, PR China
| |
Collapse
|
19
|
Ma JK, Li K, Li X, Elbadry S, Raslan AA, Li Y, Mulla ZS, Tahoun ABMB, El-Ghareeb WR, Huang XC. Levels of polycyclic aromatic hydrocarbons in edible and fried vegetable oil: a health risk assessment study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:59784-59791. [PMID: 34145544 DOI: 10.1007/s11356-021-14755-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 06/02/2021] [Indexed: 06/12/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are environmental chemicals that are formed due to incomplete combustion of the organic matters, or during heat treatment of the food. The objectives of the present study were first to estimate levels of the 15-priority PAHs in the edible vegetable oil (corn oil, sunflower oil, olive oil, and canola oil) collected from Egypt. Furthermore, the effect of heat treatment on the formation of PAHs in the canola oil was further examined. In addition, dietary intakes and cancer risk among Egyptian consumers were additionally calculated. The achieved results indicated presence of 15-priority PAHs in all examined oil samples. Canola oil had the highest residual concentrations of PAHs compared with the other tested oil species. Heat treatment of canola oil led to a drastic increase in the formed B[a]P (316.55%), total 2-PAHs (322.47%), total 4-PAHs (297.42%), total 8-PAHs (285.26%), and total 15-PAHs (443.32%), respectively. The incremental lifetime cancer risk among the Egyptian population is considered safe when was calculated for all examined oil samples.
Collapse
Affiliation(s)
- Jin-Kui Ma
- School of Food & Pharmaceutical Engineering, Zhaoqing University, Zhaoqing, 526061, China
| | - Ke Li
- College of Food Science and Technology, Hunan Agricultural University, Changsha, 410128, China
| | - Xiang Li
- School of Environmental and Chemical Engineering, Zhaoqing University, Zhaoqing, 526061, China
| | - Seham Elbadry
- Educational Veterinary Hospital, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Amal A Raslan
- Educational Veterinary Hospital, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Yan Li
- School of Food & Pharmaceutical Engineering, Zhaoqing University, Zhaoqing, 526061, China
| | - Zohair S Mulla
- Department of Public Health, College of Veterinary Medicine, King Faisal University, Al Hofuf, Saudi Arabia
| | - Asmaa B M B Tahoun
- Department of Food Control, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt
| | - Waleed Rizk El-Ghareeb
- Department of Public Health, College of Veterinary Medicine, King Faisal University, Al Hofuf, Saudi Arabia
| | - Xiao-Chen Huang
- School of Food & Pharmaceutical Engineering, Zhaoqing University, Zhaoqing, 526061, China.
| |
Collapse
|
20
|
Yu D, Chen Y, Chen X, Huang Y, Wang L, Pan M, Elfalleh W. Electrolysis soy protein isolate-based oleogels prepared with an emulsion-templated approach. INTERNATIONAL JOURNAL OF FOOD ENGINEERING 2021. [DOI: 10.1515/ijfe-2021-0076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
This research focuses on the use of protein-polyphenol complex and protein-polyphenol: polysaccharide complexes to prepare oleogels through an emulsion-templated approach. Electrolysis soy protein isolate (ESPI) could be effectively adsorbed on the surface of a single-layer emulsion to increase the particle size. The order of the negative charges of the emulsion after adding polysaccharides was xanthan gum (XG)> pectin> carboxymethyl cellulose (CMC). Rheological behavior showed that the stability of the double-layer emulsions increased, and the viscoelasticity increased around one order of magnitude with the addition of polysaccharides. The oil binding capacity (OBC) of the oleogel prepared by adding polysaccharides increased to more than 97%. The peroxide value (PV) and anisidine value (AV) of XG oleogel were the minimum values in all samples. The AV and POV were within the regulatory limits of China after storage for 21 days. This provides a reference to design of ESPI-based oleogel for different applications.
Collapse
Affiliation(s)
- Dianyu Yu
- School of Food Science, Northeast Agricultural University , Harbin , Heilongjiang , 150030 , China
| | - Yan Chen
- School of Food Science, Northeast Agricultural University , Harbin , Heilongjiang , 150030 , China
| | - Xing Chen
- School of Food Science, Northeast Agricultural University , Harbin , Heilongjiang , 150030 , China
| | - Yunyan Huang
- School of Food Science, Northeast Agricultural University , Harbin , Heilongjiang , 150030 , China
| | - Liqi Wang
- School of Computer and Information Engineering, Harbin University of Commerce , Harbin , Heilongjiang , 150028 , China
| | - Mingzhe Pan
- School of Food Science, Northeast Agricultural University , Harbin , Heilongjiang , 150030 , China
| | - Walid Elfalleh
- Laboratoire Energie, Eau, Environnement et Procèdes, (LEEEP) LR18ES35, Ecole Nationale d'Ingénieurs de Gabès, Université de Gabès , Gabès , 6072 , Tunisia
| |
Collapse
|
21
|
Sharif R, Shahar S, Rajab NF, Fenech M. Dietary Pattern, Genomic Stability and Relative Cancer Risk in Asian Food Landscape. Nutr Cancer 2021; 74:1171-1187. [PMID: 34282666 DOI: 10.1080/01635581.2021.1952627] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The incidence of cancer globally is increasing, partly due to lifestyle factors. Despite a better understanding of cancer biology and advancement in cancer management and therapies, current strategies in cancer treatment remain costly and cause socioeconomic burden especially in Asian countries. Hence, instead of putting more efforts in searches for new cancer cures, attention has now shifted to understanding how to mitigate cancer risk by modulating lifestyle factors. It has been established that carcinogenesis is multifactorial, and the important detrimental role of oxidative stress, chronic inflammation, and genomic instability is evident. To date, there is no study linking dietary pattern and genomic stability in cancer risk in the Asian food landscape. Thus, this present review article discusses recent literature on dietary pattern and genomic stability and its relationship with cancer risk in Asia.
Collapse
Affiliation(s)
- Razinah Sharif
- Centre of Healthy Ageing and Wellness, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Suzana Shahar
- Centre of Healthy Ageing and Wellness, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nor Fadilah Rajab
- Centre of Healthy Ageing and Wellness, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Michael Fenech
- Centre of Healthy Ageing and Wellness, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.,Genome Health Foundation, Adelaide, Australia
| |
Collapse
|
22
|
Zastrow L, Speer K, Schwind KH, Jira W. A sensitive GC-HRMS method for the simultaneous determination of parent and oxygenated polycyclic aromatic hydrocarbons in barbecued meat and meat substitutes. Food Chem 2021; 365:130625. [PMID: 34329879 DOI: 10.1016/j.foodchem.2021.130625] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/15/2021] [Accepted: 07/15/2021] [Indexed: 11/29/2022]
Abstract
A sensitive GC-HRMS method was developed to analyze six polycyclic aromatic hydrocarbons (PAH; anthracene, benzo[a]anthracene, benzo[a]pyrene, benzo[b]fluoranthene, chrysene, and fluorene) and eight oxygenated PAHs (OPAH; anthracene-9,10-dione, benzo[a]anthracene-7,12-dione, 7H-benz[de]anthracene-7-one, 11H-benzo[b]fluorene-11-one, 6H-benzo[cd]pyren-6-one, 9,10-dihydro-8H-benzo[a]pyren-7-one, fluoren-9-one, and naphthacene-5,12-dione) in barbecued meat and meat substitutes. After optimization of the conditions of the sample preparation, consisting of accelerated solvent extraction (ASE) and solid-phase extraction (SPE), high recoveries (PAH 72-109%; OPAH 74-106%) were obtained. The linear regression of the matrix calibration resulted in high correlation coefficients (0.959-0.999). For the first time, reasonably low limits of detection (PAH 0.03-0.17 µg/kg; OPAH 0.04-0.43 µg/kg) were achieved, allowing the analysis of samples barbecued under practical relevant conditions. In charcoal grilled samples, the sum content of the seven detected OPAHs (5.7-62.4 µg/kg) was higher than the sum content of the six PAHs (1.4-36.7 µg/kg). However, 9,10-dihydro-8H-benzo[a]pyren-7-one was not detected in these samples.
Collapse
Affiliation(s)
- Lisa Zastrow
- Department of Safety and Quality of Meat, Max Rubner-Institut (MRI), E.-C.-Baumann Straße 20, 95326 Kulmbach, Germany
| | - Karl Speer
- Chair of Special Food Chemistry and Food Production, Technical University Dresden, Bergstraße 66, 01069 Dresden, Germany
| | - Karl-Heinz Schwind
- Department of Safety and Quality of Meat, Max Rubner-Institut (MRI), E.-C.-Baumann Straße 20, 95326 Kulmbach, Germany
| | - Wolfgang Jira
- Department of Safety and Quality of Meat, Max Rubner-Institut (MRI), E.-C.-Baumann Straße 20, 95326 Kulmbach, Germany.
| |
Collapse
|
23
|
Kim HJ, Cho J, Kim D, Park TS, Jin SK, Hur SJ, Lee SK, Jang A. Effects of Gochujang (Korean Red Pepper Paste) Marinade on Polycyclic Aromatic Hydrocarbon Formation in Charcoal-Grilled Pork Belly. Food Sci Anim Resour 2021; 41:481-496. [PMID: 34017956 PMCID: PMC8112319 DOI: 10.5851/kosfa.2021.e12] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/08/2021] [Accepted: 03/15/2021] [Indexed: 11/06/2022] Open
Abstract
Charcoal-grilling is a popular cooking method but causes the formation of polycyclic aromatic hydrocarbons (PAHs), which can be harmful to human health. Gochujang marinade is commonly used for flavoring meats during charcoal-grilling. However, the effects of this marinade on PAHs formation during charcoal-grilling are unclear. Here, we evaluated the effects of Gochujang marinade on the formation of 16 PAHs and inhibition rate of major PAHs (benzo[a]anthracene, benzo[b]fluoranthene, and benzo[a]pyrene) in charcoal-grilled pork belly. Pork belly without marinade (PBW) and marinated with Gochujang (PBG) were stored for 10 days at 9°C under vacuum conditions and then charcoal-grilled to different doneness (internal temperatures of 71°C and 81°C). Among 16 PAHs evaluated in this study, 14 PAHs were detected in charcoal-grilled pork belly, regardless of doneness. PAH formation in charcoal-grilled pork belly was higher at an internal temperature of 81°C than at 71°C (p<0.05). Initially, PBG showed reduced total PAH formation and lower percentages of three major PAHs compared with PBW. Storage increased the inhibitory effects of PBG on the 16 PAHs, and the maximum reduction in total 16 PAHs (63.06%) was observed with moderate cooking (71°C) on day 10 (p<0.05). Moreover, marinade and doneness showed a high interaction with regard to PAH contents in charcoal-grilled pork belly (p<0.05-p<0.0001). Therefore, our findings suggested that marinating pork belly with Gochujang and grilling at 71°C could reduce the formation of 16 PAHs in charcoal-grilled pork belly.
Collapse
Affiliation(s)
- Hye-Jin Kim
- Department of Applied Animal Science, Kangwon National University, Chuncheon 24341, Korea
| | - Jinwoo Cho
- Department of Applied Animal Science, Kangwon National University, Chuncheon 24341, Korea
| | - Dongwook Kim
- Department of Applied Animal Science, Kangwon National University, Chuncheon 24341, Korea
| | | | - Sang Keun Jin
- Department of Animal Science Resources Technology, Gyeongsang National University, Jinju 52725, Korea
| | - Sun Jin Hur
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Sung Ki Lee
- Department of Applied Animal Science, Kangwon National University, Chuncheon 24341, Korea
| | - Aera Jang
- Department of Applied Animal Science, Kangwon National University, Chuncheon 24341, Korea
| |
Collapse
|
24
|
Hu M, Zhu M, Xin L, Zhang G, Wu S, Hu X, Gong D. Change of benzo(a)pyrene during frying and its groove binding to calf thymus DNA. Food Chem 2021; 350:129276. [PMID: 33609937 DOI: 10.1016/j.foodchem.2021.129276] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 09/21/2020] [Accepted: 12/20/2020] [Indexed: 01/07/2023]
Abstract
Benzo[a]pyrene (BaP), a prototype of polycyclic aromatic hydrocarbons (PAHs) with potential mutagenicity, toxicity and carcinogenicity, is ubiquitous in deep-fried foods. Herein, the changes in eight specific PAHs (PAH8) concentration in sunflower oil during frying were investigated by gas chromatography-triple quadrupole-mass spectrometry (GC-QqQ-MS). PAH8 concentrations in sunflower oil were 23.92-27.82 μg kg-1 and increased with increasing frying time. The detected BaP levels were 3.64-4.00 μg kg-1, exceeding the upper limit (2 μg kg-1) set by European Union (EU), though below the limiting value (10 μg kg-1) in China. The interaction between BaP and calf thymus DNA (ctDNA) was explored through various spectroscopic methods and molecular docking. Melting studies, denaturation experiments, ionic strength effects and viscosity measurements indicated that BaP interacted with ctDNA primarily via groove binding as evidenced by circular dichroism analysis and molecular docking. Further gel electrophoresis assays suggested that DNA was damaged at high levels of BaP.
Collapse
Affiliation(s)
- Mingming Hu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Miao Zhu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Le Xin
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Bor S. Luh Food Safety Research Centre, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Guowen Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| | - Shimin Wu
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Bor S. Luh Food Safety Research Centre, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xing Hu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Deming Gong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| |
Collapse
|
25
|
Zhang Y, Chen X, Zhang Y. Analytical chemistry, formation, mitigation, and risk assessment of polycyclic aromatic hydrocarbons: From food processing to
in vivo
metabolic transformation. Compr Rev Food Sci Food Saf 2021; 20:1422-1456. [DOI: 10.1111/1541-4337.12705] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 12/11/2020] [Accepted: 01/01/2021] [Indexed: 01/09/2023]
Affiliation(s)
- Yiju Zhang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro‐Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science Zhejiang University Hangzhou China
| | - Xiaoqian Chen
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro‐Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science Zhejiang University Hangzhou China
| | - Yu Zhang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro‐Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science Zhejiang University Hangzhou China
| |
Collapse
|
26
|
Tiritan MG, Tonial IB, Dalmolin IAL, Machado‐Lunkes A. Improving quality of refined canola oil by
liquid–liquid
extraction on pilot scale apparatus. J FOOD PROCESS ENG 2020. [DOI: 10.1111/jfpe.13513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Maria Gabriela Tiritan
- Programa de Pós‐graduação em Tecnologia de Alimentos Universidade Tecnológica Federal do Paraná Londrina Puerto Rico Brazil
| | - Ivane Benedetti Tonial
- Programa de Pós‐graduação em Tecnologia de Alimentos Universidade Tecnológica Federal do Paraná Londrina Puerto Rico Brazil
| | - Irede Angela Lucini Dalmolin
- Departamento Acadêmico de Engenharias Universidade Tecnológica Federal do Paraná Francisco Beltrão Puerto Rico Brazil
| | - Alessandra Machado‐Lunkes
- Programa de Pós‐graduação em Tecnologia de Alimentos Universidade Tecnológica Federal do Paraná Londrina Puerto Rico Brazil
| |
Collapse
|
27
|
Sun Y, Yan K, Wu S, Gong G. Occurrence, spatial distribution and impact factors of 16 polycyclic aromatic hydrocarbons in milks from nine countries. Food Control 2020. [DOI: 10.1016/j.foodcont.2020.107197] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
28
|
|
29
|
Polycyclic aromatic hydrocarbons in edible oils and fatty foods: Occurrence, formation, analysis, change and control. ADVANCES IN FOOD AND NUTRITION RESEARCH 2020; 93:59-112. [PMID: 32711866 DOI: 10.1016/bs.afnr.2020.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Numerous studies have demonstrated that dozens of polycyclic aromatic hydrocarbons (PAHs) are mutagenic, genotoxic and strongly carcinogenic. PAHs are found to be widely present in foods contaminated through multiple paths. Due to their lipophilic nature, these compounds easily accumulate in edible oils and fatty foods where they can range from no detection to over 2000μg/kg. Compared to precursor PAHs, researchers have seldom studied the presence of PAH derivatives, especially in food matrices. This chapter includes the physical and chemical characteristics of PAHs and their types, occurrence, sample pretreatment and instrumental determination methods, and their formation, change and control in edible oils and fatty foods. The occurrence and formation of PAH derivatives in foods are much less investigated compared to those of their precursor PAHs. Although the removal of matrix effects and accuracy remain difficult for current rapid determination methods, a prospective research direction of PAH analysis for large-scale screening is in demand. To date, physical absorption, chemical oxidation and biodegradation have been widely used in PAH removal techniques. Specific types of bacteria, fungi, and algae have also been used to degrade PAHs into harmless compounds. However, most of them can only degrade a range of LPAHs, such as naphthalene, anthracene and phenanthrene. Their ability to degrade HPAHs requires further study. Moreover, it is still a great challenge to maintain food nutrition and flavor during the PAH removal process using these methods.
Collapse
|
30
|
Analysis of PAHs in oily systems using modified QuEChERS with EMR-Lipid clean-up followed by GC-QqQ-MS. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.106950] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
31
|
Pirsaheb M, Dragoi EN, Vasseghian Y. Polycyclic Aromatic Hydrocarbons (PAHs) Formation in Grilled Meat products—Analysis and Modeling with Artificial Neural Networks. Polycycl Aromat Compd 2020. [DOI: 10.1080/10406638.2020.1720750] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Meghdad Pirsaheb
- Research Center for Environmental Determinants of Health (RCEDH), Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Elena-Niculina Dragoi
- Faculty of Chemical Engineering and Environmental Protection “Cristofor Simionescu”, “Gheorghe Asachi” Technical University, Iasi, Romania
- Faculty of Automatic Control and Computer Engineering, “Gheorghe Asachi” Technical University of Iasi, Iasi, Romania
| | - Yasser Vasseghian
- Research Center for Environmental Determinants of Health (RCEDH), Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
32
|
Gong G, Wu S, Wu X. Effects of storage time and temperature on toxic aldehydes and polycyclic aromatic hydrocarbons in flavouring oil gravy during storage. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.108510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
33
|
Bio-removal of phenanthrene, 9-fluorenone and anthracene-9,10-dione by laccase from Aspergillus niger in waste cooking oils. Food Control 2019. [DOI: 10.1016/j.foodcont.2019.06.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
34
|
Trends of research on polycyclic aromatic hydrocarbons in food: A 20-year perspective from 1997 to 2017. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2018.11.015] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
35
|
Gong G, Wu S, Wu X. Influences of Light Intensity and β-Carotene on Polycyclic Aromatic Hydrocarbons and Aldehydes in Vegetable Oil: A Case Study Using Palm Oil. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:11124-11132. [PMID: 30280896 DOI: 10.1021/acs.jafc.8b04096] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
This study investigated the effects of three light intensities on four types of palm oils during consecutive storage for 12 months at 4 °C. The concentrations of 4-hydroxy-2- trans-hexenal (4-HHE), 4-hydroxy-2- trans-nonenal (4-HNE), polycyclic aromatic hydrocarbon (PAH)4, and PAH8 in the oils significantly increased with the increasing light intensity after storage. The red palm oil had the lowest rate of increase of 4-HNE, while 5° palm oil had the highest rate of increase of the PAH, OPAH, 4-HNE, and peroxide values during storage. For the same type of oil, OPAHs increased significantly under a light intensity of 6000 lx (lx) after storage. The increasing concentrations of 9FO, ATQ, and BaPO in the oils stored at 6000 lx showed a positive relation to their corresponding parent PAHs, indicating that PAH oxidation occurred at 6000 lx. The results suggest that light intensity and β-carotene may control PAHs, OPAHs, and 4-hydroxy-trans- alkenals for vegetable oil storage, transportation, and retail.
Collapse
Affiliation(s)
- Guangyi Gong
- Department of Food Science and Technology, School of Agriculture and Biology , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , China
- Key Laboratory of Urban Agriculture (South), Ministry of Agriculture , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , China
| | - Shimin Wu
- Department of Food Science and Technology, School of Agriculture and Biology , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , China
- Key Laboratory of Urban Agriculture (South), Ministry of Agriculture , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , China
| | - Xiaojing Wu
- Department of Food Science and Technology, School of Agriculture and Biology , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , China
- Key Laboratory of Urban Agriculture (South), Ministry of Agriculture , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , China
| |
Collapse
|
36
|
Effect of natural antioxidants on inhibition of parent and oxygenated polycyclic aromatic hydrocarbons in Chinese fried bread youtiao. Food Control 2018. [DOI: 10.1016/j.foodcont.2017.12.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
37
|
Zhu Y, Li X, Huang J, Zhao C, Qi J, Jin Q, Wang X. Correlations between polycyclic aromatic hydrocarbons and polar components in edible oils during deep frying of peanuts. Food Control 2018. [DOI: 10.1016/j.foodcont.2017.12.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|