1
|
Li B, Ren X, Xiao Y, Sun W, Yang M, Pang TA, Zhu R, Guo Z, Wang Y, Liu S, Huang J. Self-protective DNAzyme-based dual-responsive three-way Y-probe for simultaneous determination of multiple pathogenic bacteria. Anal Bioanal Chem 2025; 417:1779-1790. [PMID: 39961826 DOI: 10.1007/s00216-025-05782-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/28/2025] [Accepted: 01/31/2025] [Indexed: 03/18/2025]
Abstract
Foodborne pathogens, a major cause of foodborne illness due to their high virulence, pose a serious threat to public health. Consequently, identification of foodborne pathogens is essential for the prevention and treatment of foodborne infections. Consequently, there is an immediate need to establish a highly specific and precise approach for the concurrent detection of several foodborne pathogens. Herein, we developed a DNAzyme-based self-protecting dual-response nanoprobe for the simultaneous detection of two foodborne pathogens. The technique utilizes nanostructures to achieve logical signal input and output. In the presence of the target pathogen, the pathogen binds to the arch probe and releases the activation chain, which in turn activates a strand-displacement reaction and DNAzyme for signal amplification, producing different output signals to complete the simultaneous detection of multiple pathogens. The limits of detection for E. coli O157:H7 and S. typhimurium were determined to be 3.7 cfu/mL and 3.2 cfu/mL, with a measurement response time of 2 h. This approach enables ultrasensitive, specific, and simultaneous detection of two foodborne pathogens and is applicable for identifying foodborne pathogens in actual biological samples. The fluorescence detection of foodborne pathogens with a three-way Y-probe and DNAzyme coupling represents a novel approach for the concurrent identification of several foodborne diseases.
Collapse
Affiliation(s)
- Bowen Li
- School of Biological Sciences and Technology, University of Jinan, Jinan, 250022, P. R. China
| | - Xinru Ren
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, P. R. of China
| | - Yijing Xiao
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, P. R. China
| | - Weiqing Sun
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, P. R. China
| | - Meili Yang
- School of Biological Sciences and Technology, University of Jinan, Jinan, 250022, P. R. China
| | - Tsing-Ao Pang
- School of Biological Sciences and Technology, University of Jinan, Jinan, 250022, P. R. China
| | - Rui Zhu
- School of Biological Sciences and Technology, University of Jinan, Jinan, 250022, P. R. China
| | - Zhiqiang Guo
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, P. R. of China
| | - Yu Wang
- School of Biological Sciences and Technology, University of Jinan, Jinan, 250022, P. R. China
- Jinan Engineering Research Center of Plant-Microbial Interaction, Jinan, 250022, P. R. China
| | - Su Liu
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, P. R. China
- Jinan Engineering Research Center of Plant-Microbial Interaction, Jinan, 250022, P. R. China
| | - Jiadong Huang
- School of Biological Sciences and Technology, University of Jinan, Jinan, 250022, P. R. China.
- Jinan Engineering Research Center of Plant-Microbial Interaction, Jinan, 250022, P. R. China.
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, P. R. of China.
| |
Collapse
|
2
|
Huang Z, Liu C, Li Z, Chen Q, Li D, Chen X, Chen Q, Wei J. Multiple DNA cycle amplification for highly efficient detection of mercury pollution in food. Food Chem 2024; 460:140714. [PMID: 39111041 DOI: 10.1016/j.foodchem.2024.140714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/16/2024] [Accepted: 07/28/2024] [Indexed: 09/06/2024]
Abstract
Mercury ion (Hg2+), a highly toxic metal pollutant, is widely found in the environment and can enter the human body through the food chain, causing various health issues. Sensitive and accurate methods for monitoring Hg2+ are highly desirable for ensuring food safety. Herein, we propose a self-sustainable multiple amplification system (MAS) for Hg2+ determination through the reciprocal activation between catalytic hairpin assembly (CHA) and rolling circle amplification (RCA). The thymine-encoded recognition element specifically recognizes Hg2+, triggering the exposure of the initiator. The initiator then motivates the mutual activation of CHA and RCA to accelerate the production of an exponentially amplified signal. The MAS method achieved a low detection limit of 11 pM. Due to its reliable target recognition and robust amplification efficiency, the MAS circuit facilitated the highly efficient and accurate analysis of low-abundance Hg2+ in milk and snakehead samples, thus providing a potentially new tool for food safety control.
Collapse
Affiliation(s)
- Ziling Huang
- College of Ocean Food and Biological Engineering, Jimei University, Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, 361021, China
| | - Chuanyi Liu
- College of Ocean Food and Biological Engineering, Jimei University, Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, 361021, China
| | - Zhigang Li
- College of Ocean Food and Biological Engineering, Jimei University, Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, 361021, China
| | - Qingmin Chen
- College of Ocean Food and Biological Engineering, Jimei University, Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, 361021, China
| | - Dong Li
- College of Ocean Food and Biological Engineering, Jimei University, Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, 361021, China
| | - Xiaomei Chen
- College of Ocean Food and Biological Engineering, Jimei University, Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, 361021, China
| | - Quansheng Chen
- College of Ocean Food and Biological Engineering, Jimei University, Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, 361021, China
| | - Jie Wei
- College of Ocean Food and Biological Engineering, Jimei University, Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, 361021, China.
| |
Collapse
|
3
|
Aryal P, Hefner C, Martinez B, Henry CS. Microfluidics in environmental analysis: advancements, challenges, and future prospects for rapid and efficient monitoring. LAB ON A CHIP 2024; 24:1175-1206. [PMID: 38165815 DOI: 10.1039/d3lc00871a] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Microfluidic devices have emerged as advantageous tools for detecting environmental contaminants due to their portability, ease of use, cost-effectiveness, and rapid response capabilities. These devices have wide-ranging applications in environmental monitoring of air, water, and soil matrices, and have also been applied to agricultural monitoring. Although several previous reviews have explored microfluidic devices' utility, this paper presents an up-to-date account of the latest advancements in this field for environmental monitoring, looking back at the past five years. In this review, we discuss devices for prominent contaminants such as heavy metals, pesticides, nutrients, microorganisms, per- and polyfluoroalkyl substances (PFAS), etc. We cover numerous detection methods (electrochemical, colorimetric, fluorescent, etc.) and critically assess the current state of microfluidic devices for environmental monitoring, highlighting both their successes and limitations. Moreover, we propose potential strategies to mitigate these limitations and offer valuable insights into future research and development directions.
Collapse
Affiliation(s)
- Prakash Aryal
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA.
| | - Claire Hefner
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA.
| | - Brandaise Martinez
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA.
| | - Charles S Henry
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA.
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, Colorado 80523, USA
- School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado 80523, USA
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
4
|
Qi H, Xiao L, Wu J, Lv L, Hu X, Zhuang Y, Liu X, Zhao W, You F, Zhang J, Zheng L. One-step and real-time detection of Hg 2+ in brown rice flour using a biosensor integrated with AC electrothermal enrichment. Food Chem 2023; 416:135823. [PMID: 36893644 DOI: 10.1016/j.foodchem.2023.135823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 02/15/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
Mercury (Hg2+) is one of the most toxic heavy metals in farm products, so rapid detection of trace Hg2+ has always been sought after with high interest. Herein, we report a biosensor to specifically recognize Hg2+ in leaching solutions of brown rice flour. This sensor is simple and of low cost, with a very short assay time of 30 s. Another merit is the ultra-low limit of detection (LOD) at fM level. In addition, the specific aptamer probe realizes a good selectivity above 105: 1 against the interferences. This sensor is developed based on an aptamer-modified gold electrode array (GEA) for capacitive sensing. Alternating current electrothermal (ACET) enrichment is induced during the AC capacitance acquirement. Thus, the enrichment and detection are coupled as a single step, and pre-concentration is needless. Owing to the sensing mechanism of solid-liquid interfacial capacitance and ACET enrichment, Hg2+ level can be sensitively and rapidly reflected. Also, the sensor has a wide linear range from 1 fM to 0.1 nM and a shelf life of 15 days. This biosensor shows advantages on overall performance, enabling easy-to-operate, real-time, and large-scale Hg2+ detection in farm products.
Collapse
Affiliation(s)
- Haochen Qi
- College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou 325035, China; State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Lei Xiao
- College of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou 325035, China
| | - Jayne Wu
- Department of Electrical Engineering and Computer Science, the University of Tennessee, Knoxville, TN 37996, USA.
| | - Li Lv
- College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou 325035, China
| | - Xinyu Hu
- College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou 325035, China
| | - Youyi Zhuang
- College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou 325035, China
| | - Xiaoru Liu
- School of Engineering, Trinity College Dublin, Dublin 999015, Ireland
| | - Wenci Zhao
- School of Microelectronics, Hefei University of Technology, Hefei 230009, China
| | - Fangshuo You
- School of Microelectronics, Hefei University of Technology, Hefei 230009, China
| | - Jian Zhang
- College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou 325035, China; State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Lei Zheng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
5
|
Xiao J, Jiang J, Zhao Z, Guo J, Wang J. Clarity improvement of the discoloration boundary and detection of Hg 2+ ions by using a polystyrene nanoparticle-modified paper-based microdevice. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:2366-2375. [PMID: 37129571 DOI: 10.1039/d3ay00174a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Distance-based microfluidic paper-based analytical devices (μPADs) can be used to calculate the analyte content by reading the length of the discolored area in the channel. A blurred discoloration boundary is difficult to distinguish, resulting in reading errors. In this study, we constructed a μPAD modified with carboxyl-containing polystyrene nanoparticles (PS-μPAD) to improve the discoloration-boundary clarity. The filling of the pores of the fibers with the deposited polystyrene nanoparticles (PS NPs) caused a decrease in the paper porosity, resulting in a flow delay. Meanwhile, the carboxyl groups carried by PS NPs were able to form hydrogen bonds with hydroxyl-containing compounds FLPI, a Hg2+ probe, and the two factors acted synergistically to fix the FLPI to react in situ, raising the discoloration-boundary clarity. Compared with the unmodified μPAD, the detection of Hg2+ ions using the PS-μPAD still had a good linear relationship. Importantly, the color-depth difference inside and outside the discoloration boundary improved by about four times and showed excellent reproducibility in different populations. The method was simple and easy to expand, thereby providing an idea for more widespread application of distance-based μPADs.
Collapse
Affiliation(s)
- Jingcheng Xiao
- College of Chemical & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China.
| | - Jingjing Jiang
- College of Chemical & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China.
| | - Zexu Zhao
- College of Chemical & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China.
| | - Jiahao Guo
- College of Chemical & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China.
| | - Jinyi Wang
- College of Chemical & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China.
| |
Collapse
|
6
|
Liu B, Wang F, Chao J. Programmable Nanostructures Based on Framework-DNA for Applications in Biosensing. SENSORS (BASEL, SWITZERLAND) 2023; 23:3313. [PMID: 36992023 PMCID: PMC10051322 DOI: 10.3390/s23063313] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 06/19/2023]
Abstract
DNA has been actively utilized as bricks to construct exquisite nanostructures due to their unparalleled programmability. Particularly, nanostructures based on framework DNA (F-DNA) with controllable size, tailorable functionality, and precise addressability hold excellent promise for molecular biology studies and versatile tools for biosensor applications. In this review, we provide an overview of the current development of F-DNA-enabled biosensors. Firstly, we summarize the design and working principle of F-DNA-based nanodevices. Then, recent advances in their use in different kinds of target sensing with effectiveness have been exhibited. Finally, we envision potential perspectives on the future opportunities and challenges of biosensing platforms.
Collapse
Affiliation(s)
- Bing Liu
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Fan Wang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China
| | - Jie Chao
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| |
Collapse
|
7
|
Wu Y, Feng J, Hu G, Zhang E, Yu HH. Colorimetric Sensors for Chemical and Biological Sensing Applications. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23052749. [PMID: 36904948 PMCID: PMC10007638 DOI: 10.3390/s23052749] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 06/12/2023]
Abstract
Colorimetric sensors have been widely used to detect numerous analytes due to their cost-effectiveness, high sensitivity and specificity, and clear visibility, even with the naked eye. In recent years, the emergence of advanced nanomaterials has greatly improved the development of colorimetric sensors. This review focuses on the recent (from the years 2015 to 2022) advances in the design, fabrication, and applications of colorimetric sensors. First, the classification and sensing mechanisms of colorimetric sensors are briefly described, and the design of colorimetric sensors based on several typical nanomaterials, including graphene and its derivatives, metal and metal oxide nanoparticles, DNA nanomaterials, quantum dots, and some other materials are discussed. Then the applications, especially for the detection of metallic and non-metallic ions, proteins, small molecules, gas, virus and bacteria, and DNA/RNA are summarized. Finally, the remaining challenges and future trends in the development of colorimetric sensors are also discussed.
Collapse
Affiliation(s)
- Yu Wu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Jing Feng
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Guang Hu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - En Zhang
- Chongqing Institute for Food and Drug Control, Chongqing 401121, China
| | - Huan-Huan Yu
- Chongqing Institute for Food and Drug Control, Chongqing 401121, China
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
8
|
Yuan W, Wang X, Sun Z, Liu F, Wang D. A Synergistic Dual-Channel Sensor for Ultrasensitive Detection of Pseudomonas aeruginosa by DNA Nanostructure and G-Quadruplex. BIOSENSORS 2022; 13:24. [PMID: 36671859 PMCID: PMC9856186 DOI: 10.3390/bios13010024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/11/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Pseudomonas aeruginosa is one of the foodborne pathogenic bacteria that greatly threatens human health. An ultrasensitive technology for P. aeruginosa detection is urgently demanded. Herein, based on the mechanism of aptamer-specific recognition, an electrochemical-colorimetric dual-mode ultrasensitive sensing strategy for P. aeruginosa is proposed. The vertices of DNA tetrahedral nanoprobes (DTNPs), that immobilized on the gold electrode were modified with P. aeruginosa aptamers. Furthermore, the G-quadruplex, which was conjugated with a P. aeruginosa aptamer, was synthesized via rolling circle amplification (RCA). Once P. aeruginosa is captured, a hemin/G-quadruplex, which possesses peroxidase-mimicking activity, will separate from the P. aeruginosa aptamer. Then, the exfoliated hemin/G-quadruplexes are collected for oxidation of the 3,3',5',5'-tetramethylbenzidine for colorimetric sensing. In the electrochemical mode, the hemin/G-quadruplex that is still bound to the aptamer catalyzes polyaniline (PANI) deposition and leads to a measurable electrochemical signal. The colorimetric and electrochemical channels demonstrated a good forward and reverse linear response for P. aeruginosa within the range of 1-108 CFU mL-1, respectively. Overall, compared with a traditional single-mode sensor for P. aeruginosa, the proposed dual-mode sensor featuring self-calibration not only avoids false positive results but also improves accuracy and sensitivity. Furthermore, the consistency of the electrochemical/colorimetric assay was verified in practical meat samples and showed great potential for applications in bioanalysis.
Collapse
Affiliation(s)
- Wei Yuan
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xinxia Wang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Zhilan Sun
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| | - Fang Liu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Daoying Wang
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| |
Collapse
|
9
|
Jin Y, Aziz AUR, Wu B, Lv Y, Zhang H, Li N, Liu B, Zhang Z. The Road to Unconventional Detections: Paper-Based Microfluidic Chips. MICROMACHINES 2022; 13:1835. [PMID: 36363856 PMCID: PMC9696303 DOI: 10.3390/mi13111835] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/22/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Conventional detectors are mostly made up of complicated structures that are hard to use. A paper-based microfluidic chip, however, combines the advantages of being small, efficient, easy to process, and environmentally friendly. The paper-based microfluidic chips for biomedical applications focus on efficiency, accuracy, integration, and innovation. Therefore, continuous progress is observed in the transition from single-channel detection to multi-channel detection and in the shift from qualitative detection to quantitative detection. These developments improved the efficiency and accuracy of single-cell substance detection. Paper-based microfluidic chips can provide insight into a variety of fields, including biomedicine and other related fields. This review looks at how paper-based microfluidic chips are prepared, analyzed, and used to help with both biomedical development and functional integration, ideally at the same time.
Collapse
Affiliation(s)
- Yuhang Jin
- Liaoning Key Laboratory of Integrated Circuit and Biomedical Electronic System, School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian 116024, China
- School of Life Science and Pharmacy, Dalian University of Technology, Dalian 116024, China
| | - Aziz ur Rehman Aziz
- Liaoning Key Laboratory of Integrated Circuit and Biomedical Electronic System, School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian 116024, China
| | - Bin Wu
- China Certification and Inspection Group Liaoning Co., Ltd., Dalian 116039, China
| | - Ying Lv
- China Certification and Inspection Group Liaoning Co., Ltd., Dalian 116039, China
| | - Hangyu Zhang
- Liaoning Key Laboratory of Integrated Circuit and Biomedical Electronic System, School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian 116024, China
| | - Na Li
- Liaoning Key Laboratory of Integrated Circuit and Biomedical Electronic System, School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian 116024, China
| | - Bo Liu
- Liaoning Key Laboratory of Integrated Circuit and Biomedical Electronic System, School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian 116024, China
| | - Zhengyao Zhang
- School of Life Science and Pharmacy, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
10
|
Hao H, Li L. Real-Time Visual Sensing of Heat or Mass Transfer Processes for Microfluids via Tamm Plasmon Polaritons. ACS OMEGA 2022; 7:20376-20382. [PMID: 35721982 PMCID: PMC9201882 DOI: 10.1021/acsomega.2c02481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Heat or mass transfer processes of microfluids are very important in bioscience, environmental engineering, and food science, which are still hard to detect in real time. To overcome this difficulty, we try to use Tamm plasmon polaritons to enhance the interaction of light with microfluids. The main structure of the proposed configuration is Ag-photonic crystal (PhC) cavity, which can generate strong photonic localization by exciting Tamm plasmon polaritons. The results show that the enhancement of light intensity reaches ∼90 times in the cavity and the reflectance spectrum of the proposed structure exists in a narrow valley near 632.8 nm. This illustrates the generation of Tamm plasmon polaritons in the proposed structure. By injecting the microfluids into the cavity, the heat and mass transfer processes of the microfluids will have considerable influence on the reflectance of the proposed structure. Simulation results show that the concentration or temperature distributions of the microfluids can be effectively detected by analyzing the brightness of the imaging pictures, which is real-time and visible. Meanwhile, the sensitivity of the proposed configuration can be tuned by setting proper base parameters. This proposed configuration will have great potential in the study of microfluids, especially for the dynamic processes.
Collapse
|
11
|
Cheng Z, Wei J, Gu L, Zou L, Wang T, Chen L, Li Y, Yang Y, Li P. DNAzyme-based biosensors for mercury (Ⅱ) detection: Rational construction, advances and perspectives. JOURNAL OF HAZARDOUS MATERIALS 2022; 431:128606. [PMID: 35278952 DOI: 10.1016/j.jhazmat.2022.128606] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/17/2022] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
Mercury contamination is one of the most severe issues in society due to its threats to public health and the ecological system. However, traditional methods for mercury ion detection are still limited by their time-consuming procedures, requirement of expensive instruments, and low selectivity. In recent decades, tremendous progress has been made in the development of functional nucleic acid-based, especially DNAzyme sensors for mercury (Ⅱ) (Hg2+) determination, including RNA-cleaving DNAzymes and G-quadruplex-based DNAzymes in particular. Researchers have heavily studied the construction of Hg2+ sensors, mainly originating from in vitro selection-derived DNAzymes, by incorporating T-Hg2+-T recognition moieties in existing DNAzyme scaffolds, and interfacing Hg2+-sensitive sequences with nanomaterials. In the last case, the employment of materials (as quenchers, signal transducers and DNA immobilizers) enriches the application scenarios of current Hg2+-DNAzymes, due to a combination of their functions. We summarize a broad range of sensing approaches, including optical, electrochemical, and other sensing methods, and compare their features. This review elaborates on the rational design strategies for engineering DNAzymes to selectively sense Hg2+, critically discusses their properties in different application scenarios, and summarizes recent advances in this field. Additionally, current progress, challenges and future perspectives are also discussed. This minireview provides deeper insights into the chemistry of these functional nucleic acids when working with Hg2+, explains the design ideas of DNAzyme-sensors in each platform, and reveals potential opportunities in developing more advanced DNAzyme sensors for the highly selective and sensitive recognition of Hg2+. ENVIRONMENTAL IMPLICATION: Mercury is one of the most toxic metallic contaminants due to its high toxicity, non-biodegradability, and serious human health risks when accumulated in the body. In the recent decade, intensive studies have focused on exploring mercury sensors by combining DNAzymes with various sensing methods, paving a promising avenue to gain ultra-high sensitivity and selectivity. However, so far, no review has introduced the recent advances on DNAzyme-based sensors for mercury detection in a critical way. In this review, we comprehensively summarized the studies on DNAzyme-based sensors for mercury detection using various sensing techniques including optical, electrochemical and other sensing methods.
Collapse
Affiliation(s)
- Zehua Cheng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Jinchao Wei
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Liqiang Gu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Liang Zou
- School of Medicine, Chengdu University, Chengdu 610106, China
| | - Ting Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Ling Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Yuqing Li
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China; Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yu Yang
- Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Peng Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.
| |
Collapse
|
12
|
Bankole OE, Verma DK, Chávez González ML, Ceferino JG, Sandoval-Cortés J, Aguilar CN. Recent trends and technical advancements in biosensors and their emerging applications in food and bioscience. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
13
|
Du R, Yang X, Jin P, Guo Y, Cheng Y, Yu H, Xie Y, Qian H, Yao W. G-quadruplex based biosensors for the detection of food contaminants. Crit Rev Food Sci Nutr 2022; 63:8808-8822. [PMID: 35389275 DOI: 10.1080/10408398.2022.2059753] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
G-quadruplex (G4) is a very interesting DNA structure, commonly associated with cancer and its treatment. With flexible binding ability, G4 has been extended as a significant component in biosensors. On account of its simple operation, high sensitivity and low cost, G4-based biosensors have attracted considerable interest for the detection of food contaminants. In this review, research published in recent 5 years is collated from a principle perspective, that is target recognition and signal transduction. Contaminants with G4 binding capacity are illustrated, emerging G4-based biosensors including colorimetric, electrochemical and fluorescent sensors are also elaborated. The current review indicates that G4 has provided an efficient and effective solution for the rapid detection of food contaminants. A distinctive feature of G4 as recognition unit is the simple composition, but the selectivity is still unsatisfactory. As signal reporter, G4/hemin DNAzyme has not only achieved amplified signals, but also enabled visualized detection, which offers great potential for on-site measurement. With improved selectivity and visualized signal, the combination of aptamer and G4 seems to be an ideal strategy. This promising combination should be developed for the real-time monitor of multiple contaminants in food matrix.
Collapse
Affiliation(s)
- Rong Du
- State Key Laboratory of Food Science and Technology, National Centre for Technology Innovation on Fast Biological Detection of Grain Quality and Safety, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xiebingqing Yang
- State Key Laboratory of Food Science and Technology, National Centre for Technology Innovation on Fast Biological Detection of Grain Quality and Safety, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Ping Jin
- Suzhou Product Quality Supervision and Inspection Institute, Suzhou, China
| | - Yahui Guo
- State Key Laboratory of Food Science and Technology, National Centre for Technology Innovation on Fast Biological Detection of Grain Quality and Safety, School of Food Science and Technology, Jiangnan University, Wuxi, China
- Engineering Research Center of Dairy Quality and Safety Control Technology (Ministry of Education), Inner Mongolia University, Inner Mongolia Autonomous Region, China
| | - Yuliang Cheng
- State Key Laboratory of Food Science and Technology, National Centre for Technology Innovation on Fast Biological Detection of Grain Quality and Safety, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hang Yu
- State Key Laboratory of Food Science and Technology, National Centre for Technology Innovation on Fast Biological Detection of Grain Quality and Safety, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yunfei Xie
- State Key Laboratory of Food Science and Technology, National Centre for Technology Innovation on Fast Biological Detection of Grain Quality and Safety, School of Food Science and Technology, Jiangnan University, Wuxi, China
- Engineering Research Center of Dairy Quality and Safety Control Technology (Ministry of Education), Inner Mongolia University, Inner Mongolia Autonomous Region, China
| | - He Qian
- State Key Laboratory of Food Science and Technology, National Centre for Technology Innovation on Fast Biological Detection of Grain Quality and Safety, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Weirong Yao
- State Key Laboratory of Food Science and Technology, National Centre for Technology Innovation on Fast Biological Detection of Grain Quality and Safety, School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
14
|
Microfluidic aptasensor POC device for determination of whole blood potassium. Anal Chim Acta 2022; 1203:339722. [DOI: 10.1016/j.aca.2022.339722] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 02/07/2022] [Accepted: 03/10/2022] [Indexed: 12/11/2022]
|
15
|
Zhao Y, Yavari K, Wang Y, Pi K, Van Cappellen P, Liu J. Deployment of functional DNA-based biosensors for environmental water analysis. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
16
|
Signal-enhanced visual strand exchange amplification detection of African swine fever virus by the introduction of multimeric G-quadruplex/hemin DNAzyme. ANAL SCI 2022; 38:675-682. [DOI: 10.1007/s44211-022-00087-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/11/2022] [Indexed: 01/11/2023]
|
17
|
Nuchtavorn N, Rypar T, Nedjl L, Vaculovicova M, Macka M. Distance-based detection in analytical flow devices: from gas detection tubes to microfluidic chips and microfluidic paper-based analytical devices. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
18
|
He K, Sun L, Wang L, Li W, Hu G, Ji X, Zhang Y, Xu X. Engineering DNA G-quadruplex assembly for label-free detection of Ochratoxin A in colorimetric and fluorescent dual modes. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:126962. [PMID: 34464866 DOI: 10.1016/j.jhazmat.2021.126962] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 08/10/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
Colorimetric and fluorescent methods for Ochratoxin A (OTA) detection are convenient and well received. However, the pigments and autofluorescence originated from food matrices often interfere with detection signals. We have developed a strategy with colorimetric and fluorescent dual modes to solve this challenge. In the colorimetric mode, OTA aptamer (AP9) was assembled into a DNA triple-helix switch with a specially designed signal-amplifying sequence. The OTA-induced G-quadruplex (G4) of AP9 would open the switch and release the signal-amplifying sequence for colorimetric signal amplification. The G4 structures of AP9 were further utilized to combine with the fluorogenic dye ThT for fluorescent mode. By skillfully engineering DNA G4 assembly for signal amplification, there was no need for any DNA amplification or nanomaterials labeling. Detections could be carried out in a wide temperature range (22-37 ℃) and finished rapidly (colorimetric mode, 60 min; fluorescent mode, 15 min). Broad linear ranges (colorimetric mode, 10-1.5 ×103 μg/kg; fluorescent mode, 0.05-1.0 ×103 μg/kg) were achieved. The limit of detection for colorimetric and fluorescent modes were 4 μg/kg and 0.01 μg/kg, respectively. The two modes have been successfully applied to detect OTA in samples with intrinsic pigments and autofluorescence, showing their applicability and reliability.
Collapse
Affiliation(s)
- Kaiyu He
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Liping Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Liu Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Wang Li
- College of Food Science & Engineering, Central South University of Forestry & Technology, Changsha 410004, China
| | - Guixian Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xiaofeng Ji
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yiming Zhang
- School of Agriculture and Food Science, Zhejiang A&F University, Hangzhou 311300, China.
| | - Xiahong Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
19
|
Hou Y, Lv CC, Guo YL, Ma XH, Liu W, Jin Y, Li BX, Yang M, Yao SY. Recent Advances and Applications in Paper-Based Devices for Point-of-Care Testing. JOURNAL OF ANALYSIS AND TESTING 2022; 6:247-273. [PMID: 35039787 PMCID: PMC8755517 DOI: 10.1007/s41664-021-00204-w] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 11/16/2021] [Indexed: 12/11/2022]
Abstract
Point-of-care testing (POCT), as a portable and user-friendly technology, can obtain accurate test results immediately at the sampling point. Nowadays, microfluidic paper-based analysis devices (μPads) have attracted the eye of the public and accelerated the development of POCT. A variety of detection methods are combined with μPads to realize precise, rapid and sensitive POCT. This article mainly introduced the development of electrochemistry and optical detection methods on μPads for POCT and their applications on disease analysis, environmental monitoring and food control in the past 5 years. Finally, the challenges and future development prospects of μPads for POCT were discussed.
Collapse
Affiliation(s)
- Yue Hou
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062 China
| | - Cong-Cong Lv
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062 China
| | - Yan-Li Guo
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062 China
| | - Xiao-Hu Ma
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062 China
| | - Wei Liu
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062 China
| | - Yan Jin
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062 China
| | - Bao-Xin Li
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062 China
| | - Min Yang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062 China
| | - Shi-Yin Yao
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062 China
| |
Collapse
|
20
|
Khan S, Burciu B, Filipe CDM, Li Y, Dellinger K, Didar TF. DNAzyme-Based Biosensors: Immobilization Strategies, Applications, and Future Prospective. ACS NANO 2021; 15:13943-13969. [PMID: 34524790 DOI: 10.1021/acsnano.1c04327] [Citation(s) in RCA: 137] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Since their discovery almost three decades ago, DNAzymes have been used extensively in biosensing. Depending on the type of DNAzyme being used, these functional oligonucleotides can act as molecular recognition elements within biosensors, offering high specificity to their target analyte, or as reporters capable of transducing a detectable signal. Several parameters need to be considered when designing a DNAzyme-based biosensor. In particular, given that many of these biosensors immobilize DNAzymes onto a sensing surface, selecting an appropriate immobilization strategy is vital. Suboptimal immobilization can result in both DNAzyme detachment and poor accessibility toward the target, leading to low sensing accuracy and sensitivity. Various approaches have been employed for DNAzyme immobilization within biosensors, ranging from amine and thiol-based covalent attachment to non-covalent strategies involving biotin-streptavidin interactions, DNA hybridization, electrostatic interactions, and physical entrapment. While the properties of each strategy inform its applicability within a proposed sensor, the selection of an appropriate strategy is largely dependent on the desired application. This is especially true given the diverse use of DNAzyme-based biosensors for the detection of pathogens, metal ions, and clinical biomarkers. In an effort to make the development of such sensors easier to navigate, this paper provides a comprehensive review of existing immobilization strategies, with a focus on their respective advantages, drawbacks, and optimal conditions for use. Next, common applications of existing DNAzyme-based biosensors are discussed. Last, emerging and future trends in the development of DNAzyme-based biosensors are discussed, and gaps in existing research worthy of exploration are identified.
Collapse
Affiliation(s)
- Shadman Khan
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada
| | - Brenda Burciu
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, 2907 East Gate City Boulevard, Greensboro, North Carolina 27401, United States
| | - Carlos D M Filipe
- Department of Chemical Engineering, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - Yingfu Li
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Kristen Dellinger
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, 2907 East Gate City Boulevard, Greensboro, North Carolina 27401, United States
| | - Tohid F Didar
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada
- Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7, Canada
| |
Collapse
|
21
|
Tang Y, Huang X, Wang X, Wang C, Tao H, Wu Y. G-quadruplex DNAzyme as peroxidase mimetic in a colorimetric biosensor for ultrasensitive and selective detection of trace tetracyclines in foods. Food Chem 2021; 366:130560. [PMID: 34284183 DOI: 10.1016/j.foodchem.2021.130560] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/27/2021] [Accepted: 06/28/2021] [Indexed: 01/03/2023]
Abstract
The colorimetric method can determine the initial results even by the naked eyes, but its main challenge for antibiotics detection in food at present is the relatively low sensitivity. Herein, an ultrasensitive colorimetric biosensor based on G-quadruplex DNAzyme was firstly proposed for the rapid detection of trace tetracycline antibiotics like tetracycline, oxytetracycline, chlortetracycline and doxycycline. DNAzyme composed of hemin and G-quadruplex has peroxidase-like activity, and tetracyclines can combine with hemin to form a stable complex and reduce catalytic activity, making the color of solution changes from yellow to green. The limits of detection (LOD) of the proposed colorimetric biosensor for tetracyclines is determined as low as 3.1 nM, which is lower than most of the other colorimetric methods for antibiotics detection. Moreover, the average recovery range of tetracyclines in actual samples is from 89% to 99%, indicating that such strategy may has bright application prospects for tetracyclines detection in foods.
Collapse
Affiliation(s)
- Yue Tang
- School of Liquor and Food Engineering, Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy; Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Huaxi District, Guiyang 550025, China
| | - Xiaohuan Huang
- Comprehensive Technology Center of Guiyang Customs District, Qianlingshan Road 268, Guanshanhu District, Guiyang 550081, China
| | - Xueli Wang
- School of Liquor and Food Engineering, Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy; Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Huaxi District, Guiyang 550025, China
| | - Chunxiao Wang
- School of Liquor and Food Engineering, Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy; Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Huaxi District, Guiyang 550025, China
| | - Han Tao
- School of Liquor and Food Engineering, Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy; Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Huaxi District, Guiyang 550025, China
| | - Yuangen Wu
- School of Liquor and Food Engineering, Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy; Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Huaxi District, Guiyang 550025, China..
| |
Collapse
|
22
|
Yang H, Peng Y, Xu M, Xu S, Zhou Y. Development of DNA Biosensors Based on DNAzymes and Nucleases. Crit Rev Anal Chem 2021; 53:161-176. [PMID: 34225516 DOI: 10.1080/10408347.2021.1944046] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
DNA biosensors play important roles in environmental, medical, industrial and agricultural analysis. Many DNA biosensors have been designed based on the enzyme catalytic reaction. Because of the importance of enzymes in biosensors, we present a review on this topic. In this review, the enzymes were divided into DNAzymes and nucleases according to their chemical nature. Firstly, we introduced the DNAzymes with different function inducing cleavage, metalation, peroxidase, ligation and allosterism. In this section, the G-quadruplex DNAzyme, as a hot topic in recent years, was described in detail. Then, the nucleases-assisted signal amplification method was also reviewed in three categories including exonucleases, endonucleases and other nucleases according to the digestion sites in DNA substrates. In exonucleases section, the Exo I and Exo III were selected as examples. Then, the DNase I, BamH I, nicking endonuclease, S1 nuclease, the duplex specific nuclease (DSN) and RNases were chosen to illustrate the application of endonucleases. In other nucleases section, DNA polymerases and DNA ligases were detailed. Last, the challenges and future perspectives in the field were discussed.
Collapse
Affiliation(s)
- Hualin Yang
- College of Life Science, Yangtze University, Jingzhou, Hubei, China.,State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil &Water Pollution, Chengdu University of Technology, Chengdu, Sichuan, China
| | - Yu Peng
- College of Life Science, Yangtze University, Jingzhou, Hubei, China
| | - Mingming Xu
- College of Life Science, Yangtze University, Jingzhou, Hubei, China
| | - Shuxia Xu
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil &Water Pollution, Chengdu University of Technology, Chengdu, Sichuan, China.,College of Ecology and Environment, Chengdu University of Technology, Chengdu, Sichuan, China
| | - Yu Zhou
- College of Life Science, Yangtze University, Jingzhou, Hubei, China.,College of Animal Science, Yangtze University, Jingzhou, Hubei, China
| |
Collapse
|
23
|
Xu J, Jiang R, He H, Ma C, Tang Z. Recent advances on G-quadruplex for biosensing, bioimaging and cancer therapy. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116257] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
24
|
Katelakha K, Nopponpunth V, Boonlue W, Laiwattanapaisal W. A Simple Distance Paper-Based Analytical Device for the Screening of Lead in Food Matrices. BIOSENSORS 2021; 11:90. [PMID: 33809868 PMCID: PMC8004165 DOI: 10.3390/bios11030090] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 11/17/2022]
Abstract
A simple and rapid distance paper-based analytical device (dPAD) for the detection of lead (Pb) in foods is proposed herein. The assay principle is based on competitive binding between carminic acid (CA) and polyethyleneimine (PEI) to Pb in a food sample. The paper channels were pre-immobilized with PEI, before reacting with a mixture of the sample and CA. Pb can strongly bind to the CA; hence, the length of the red color deposition on the flow channel decreased as a lower amount of free CA bound to PEI. The dPAD exhibited good linear correlation, with ranges of 5-100 µg·mL-1 (R2 = 0.974) of Pb. Although, the limit of detection (LOD) of this platform was rather high, at 12.3 µg·mL-1, a series of standard additions (8.0, 9.0, and 10.0 µg·mL-1) can be used to interpret the cutoff of Pb concentrations at higher or lower than 2 µg·mL-1. The presence of common metal ions such as calcium, magnesium, nickel, and zinc did not interfere with the color distance readout. The validity of the developed dPAD was demonstrated by its applicability to screen the contamination of Pb in century egg samples. The results obtained from the dPAD are in accordance with the concentration measured by atomic absorption spectroscopy (AAS) (n = 9). In conclusion, this proposed dPAD, combined with the standard addition method, could be applied for screening Pb contamination in food matrices. This platform is, therefore, potentially applicable for field measurements of Pb in developing countries, because it is cheap and rapid, and it requires no significant laborious instruments.
Collapse
Affiliation(s)
- Kasinee Katelakha
- Interdisciplinary Program of Biomedical Sciences, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Vanida Nopponpunth
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
- The Halal Science Center, Chulalongkorn University, Bangkok 10330, Thailand
| | - Watcharee Boonlue
- Department of Nutrition and Dietetics, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
- Biosensors and Bioanalytical Technology for Cells and Innovative Testing Device Research Unit, Chulalongkorn University, Bangkok 10330, Thailand
| | - Wanida Laiwattanapaisal
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
- Biosensors and Bioanalytical Technology for Cells and Innovative Testing Device Research Unit, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
25
|
Wang S. Construction of DNA Biosensors for Mercury (II) Ion Detection Based on Enzyme-Driven Signal Amplification Strategy. Biomolecules 2021; 11:biom11030399. [PMID: 33800447 PMCID: PMC8001444 DOI: 10.3390/biom11030399] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 02/03/2023] Open
Abstract
Mercury ion (Hg2+) is a well-known toxic heavy metal ion. It is harmful for human health even at low concentrations in the environment. Therefore, it is very important to measure the level of Hg2+. Many methods, reviewed in several papers, have been established on DNA biosensors for detecting Hg2+. However, few reviews on the strategy of enzyme-driven signal amplification have been reported. In this paper, we reviewed this topic by dividing the enzymes into nucleases and DNAzymes according to their chemical nature. Initially, we introduce the nucleases including Exo III, Exo I, Nickase, DSN, and DNase I. In this section, the Exo III-driven signal amplification strategy was described in detail. Because Hg2+ can help ssDNA fold into dsDNA by T-Hg-T, and the substrate of Exo III is dsDNA, Exo III can be used to design Hg2+ biosensor very flexibly. Then, the DNAzyme-assisted signal amplification strategies were reviewed in three categories, including UO22+-specific DNAzymes, Cu2+-specific DNAzymes and Mg2+-specific DNAzymes. In this section, the Mg2+-specific DNAzyme was introduced in detail, because this DNAzyme has highly catalytic activity, and Mg2+ is very common ion which is not harmful to the environment. Finally, the challenges and future perspectives were discussed.
Collapse
Affiliation(s)
- Shuchang Wang
- School of Life Sciences, East China Normal University, Shanghai 200241, China
| |
Collapse
|
26
|
Tong X, Ga L, Zhao R, Ai J. Research progress on the applications of paper chips. RSC Adv 2021; 11:8793-8820. [PMID: 35423393 PMCID: PMC8695313 DOI: 10.1039/d0ra10470a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 01/29/2021] [Indexed: 01/12/2023] Open
Abstract
Due to the modern pursuit of the quality of life, science and technology have rapidly developed, resulting in higher requirements for various detection methods based on analytical technology. Herein, the development, fabrication, detection and application of paper-based microfluidic chips (μPAD) are summarized. We aim to provide a comprehensive understanding of paper chips, and then discuss challenges and future prospects in this field.
Collapse
Affiliation(s)
- Xin Tong
- College of Chemistry and Enviromental Science, Inner Mongolia Key Laboratory of Green Catalysis, Inner Mongolia Normal University 81 zhaowudalu Hohhot 010022 China
| | - Lu Ga
- College of Pharmacy, Inner Mongolia Medical University, Jinchuankaifaqu Hohhot 010110 China
| | - Ruiguo Zhao
- College of Chemistry and Chemical Engineering of Inner Mongolia University Hohhot 010020 China
| | - Jun Ai
- College of Chemistry and Enviromental Science, Inner Mongolia Key Laboratory of Green Catalysis, Inner Mongolia Normal University 81 zhaowudalu Hohhot 010022 China
| |
Collapse
|
27
|
|
28
|
Li H, Lu W, Zhao G, Song B, Zhou J, Dong W, Han G. Silver ion-doped CdTe quantum dots as fluorescent probe for Hg 2+ detection. RSC Adv 2020; 10:38965-38973. [PMID: 35518388 PMCID: PMC9057423 DOI: 10.1039/d0ra07140d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/11/2020] [Indexed: 02/06/2023] Open
Abstract
Mercury(ii), which is a well-known toxic species, exists in the industrial waste water in many cases. In the present work, CdTe quantum dots (QDs) are studied as a fluorescence probe for Hg2+ detection. Ag ions are induced to QDs to enlarge their detection concentration range. l-cysteine is employed in the QD-based fluorescence probe to connect QDs with Hg2+. X-ray diffraction, transmission electron microscopy and X-ray photoelectron spectroscopy results indicate the formation of zinc blende CdTe QDs with sizes of ∼5 nm and the existence of Ag+ in crystalline CdTe. Photoluminescence (PL) spectra and PL decay spectra were acquired to investigate the emission mechanism of Ag-doped CdTe QDs, revealing multi-emission in QD samples with higher concentrations of Ag+ doping. The highest PL quantum yield of the QD samples was 59.4%. Furthermore, the relationship between the fluorescence intensity and the concentration of Hg2+ has been established. Two linear relationships were obtained for the plot of F/F0 against Hg2+ concentration, enlarging the detection concentration range of Hg2+. Ag-doped CdTe QDs emit multiple-fluorescence peaks, and the relationship between fluorescence intensity and the concentration of Hg2+ is established. Two linear relationships are obtained, which is benefit to the extension of detection range.![]()
Collapse
Affiliation(s)
- Huazheng Li
- State Key Laboratory of Silicon Materials & School of Materials Science and Engineering, Zhejiang University Hangzhou 310027 P. R. China
| | - Wangwei Lu
- State Key Laboratory of Silicon Materials & School of Materials Science and Engineering, Zhejiang University Hangzhou 310027 P. R. China
| | - Gaoling Zhao
- State Key Laboratory of Silicon Materials & School of Materials Science and Engineering, Zhejiang University Hangzhou 310027 P. R. China
| | - Bin Song
- State Key Laboratory of Silicon Materials & Department of Physics, Zhejiang University Hangzhou 310027 P. R. China
| | - Jing Zhou
- State Key Laboratory of Silicon Materials & School of Materials Science and Engineering, Zhejiang University Hangzhou 310027 P. R. China .,Department of Traffic Management Engineering, Zhejiang Police College Hangzhou 310053 P. R. China
| | - Weixia Dong
- State Key Laboratory of Silicon Materials & School of Materials Science and Engineering, Zhejiang University Hangzhou 310027 P. R. China .,School of Materials Science and Engineering, Jingdezhen Ceramic Institute Jingdezhen Jiangxi 333403 P. R. China
| | - Gaorong Han
- State Key Laboratory of Silicon Materials & School of Materials Science and Engineering, Zhejiang University Hangzhou 310027 P. R. China
| |
Collapse
|