1
|
Vaseghi Baba F, Esfandiari Z, Akbari-Adergani B, Rashidi Nodeh H, Khodadadi M. Vortex-assisted microextraction of melamine from milk samples using green short chain ionic liquid solvents coupled with high performance liquid chromatography determination. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1229:123902. [PMID: 37804570 DOI: 10.1016/j.jchromb.2023.123902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/19/2023] [Accepted: 10/02/2023] [Indexed: 10/09/2023]
Abstract
Melamine is added illegally to milk and dairy products to increase the amount of apparent protein. This organic nitrogen rich chemical compound has been of great challenge in food safety based on its adverse effect on health. Therefore, the extraction and determination of melamine from milk is necessary. Recently, ionic liquid (ILs) as solvent usage has been noticeable for low melting point, low toxicity, high thermal stability, and high extraction capabilities in a wide range of separation processes. ILs are introduced as organic-inorganic salts and green solvents in microextraction preparation. Therefore, in this study, three ionic liquids ([C6mim][NTF2], [C4mim][NTF2] and [C2mim][NTF2] ILs) were prepared and employed as an extraction solvent in dispersive liquid-liquid microextraction (DLLME) of melamine from milk samples followed by HPLC-UV. The selected ILs were designed using three types of alkyl-imidazolium (as the short organic cations) and bis (tri fluoro methyl sulfonyl) imide as anion and characterized by ATR-FTIR spectra, carbon, and hydrogen Nuclear Magnetic Resonance spectroscopy (H&C-NMR) and energy-dispersive X-ray spectroscopy (EDX). These techniques confirmed the formation of functional groups, the structure of hydrogen and carbon atoms, and various elements of ionic bond between imidazolium and bis (tri fluoro methyl sulfonyl) imide. In the next step, the effect of significant parameters, including type and volume of ILs, adsorption time, pH of the sample solution, and sample volume, were optimized. Under the optimal conditions, the limits of detection (LOD), limits of quantification (LOQ), and linearity range were obtained 63.64 µg kg-1, 210.03 µg kg-1, and 210.03-1000 µg kg-1, respectively, for as prepared [C6mim][NTF2] as the best ILs. Notably, the achieved LOQ was lower than the maximum residue level (MRL) for the melamine residue in dairy products. Eventually, the proposed method was applied to detect melamine in milk samples, and the relative recoveries were examined as 79.6-105.0 %.
Collapse
Affiliation(s)
- Farzaneh Vaseghi Baba
- Nutrition and Food Security Research Center, Department of Food Science and Technology, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zahra Esfandiari
- Nutrition and Food Security Research Center, Department of Food Science and Technology, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Behrouz Akbari-Adergani
- Food and Drug Laboratory Research Center, Food and Drug Administration, Ministry of Health and Medical Education Tehran Islamic Republic of Iran, Iran
| | - Hamid Rashidi Nodeh
- Food Science and Agricultural Research Center, Standard Research Institute, Karaj, Iran.
| | - Mohammad Khodadadi
- Core Research Facilities (CRF), Isfahan University of Medical Sciences, Isfahan 81746 73461, Iran
| |
Collapse
|
2
|
Sereshti H, Mohammadi Z, Soltani S, Taghizadeh M. Synthesis of a magnetic micro-eutectogel based on a deep eutectic solvent gel immobilized in calcium alginate: Application for green analysis of melamine in milk and dairy products. Talanta 2023; 265:124801. [PMID: 37385193 DOI: 10.1016/j.talanta.2023.124801] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/26/2023] [Accepted: 06/09/2023] [Indexed: 07/01/2023]
Abstract
A new three-component magnetic eutectogel composed of a crosslinked copolymeric deep eutectic solvent (DES) and polyvinylpyrrolidone-coated Fe3O4 nano-powder impregnated in calcium alginate gel was synthesized and applied as a sorbent material in a green alternative micro solid-phase extraction of melamine in milk and dairy products. The analyses were performed using the HPLC-UV technique. The copolymeric DES was prepared through thermally-induced free-radical polymerization of [2-hydroxyethyl methacrylate]:[thymol] DES (1:1 mol ratio) as functional monomer, azobisisobutyronitrile (as initiator), and ethylene glycol dimethacrylate (as crosslinker). The sorbent was characterized using ATR-FTIR, 1H & 13C FT-NMR, SEM, VSM, and BET techniques. The stability of the eutectogel in water and its effect on the pH of the aqueous solution was studied. A one-at-a-time approach was applied to optimize the impact of significant factors influencing sample preparation efficiency (sorbent mass, desorption conditions, adsorption time, pH, and ionic strength). The method validation was performed by evaluating matrix-matched calibration linearity (2-300 μg kg-1, r2 = 0.9902), precision, system suitability, specificity, enrichment factor, and matrix effect. The obtained limit of quantification (0.38 μg kg-1) was lower than the established maximum level for melamine by Food and Drug Administration (FDA) (0.25 mg kg-1), Food and Agriculture Organization (FAO) (0.5 & 2.5 mg kg-1), and The European Union (EU) (2.5 mg kg-1) in milk and dairy products. The optimized procedure was applied for the analysis of melamine in bovine milk, yogurt, cream, cheese, and ice cream. The obtained normalized recoveries of 77.4-105.3% (RSD% <7.0%) were acceptable regarding the practical default range set by the European Commission (70-120%, RSD≤20%). The sustainability and green aspects of the procedure were evaluated by the Analytical Greenness Metric Approach (0.6/1.0) and the Analytical Eco-Scale tool (73/100). This paper presents the first-time synthesis and application of this micro-eutectogel for the analysis of melamine in milk and milk-based dairy products.
Collapse
Affiliation(s)
- Hassan Sereshti
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran.
| | - Zahra Mohammadi
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Sara Soltani
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Massoud Taghizadeh
- Department of Biology, Faculty of Science, Shahed University, Tehran, Iran
| |
Collapse
|
3
|
Elik A, Fesliyan S, Gürsoy N, Haq HU, Castro-Muñoz R, Altunay N. An air-assisted dispersive liquid phase microextraction method based on a hydrophobic magnetic deep eutectic solvent for the extraction and preconcentration of melamine from milk and milk-based products. Food Chem 2023; 426:136573. [PMID: 37329792 DOI: 10.1016/j.foodchem.2023.136573] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 06/19/2023]
Abstract
In the current research, a fast and sustainable air-assisted hydrophobic magnetic deep eutectic solvent-based dispersive liquid phase microextraction followed by UV-Vis spectrophotometry measurements was optimized for the extraction and determination of melamine in milk and milk-based products. The central composite design was applied for the optimization of factors affecting the recovery of melamine. Quantitative extraction of melamine was achieved using hydrophobic magnetic deep eutectic solvents prepared from a mixture of octanoic acid, aliquat-336, and cobalt(II) chloride. The optimum conditions for extraction were found as follows: 6 extraction cycles, pH 8.2, extraction solvent volume 260 µL, and acetone volume 125 µL.Interestingly, a centrifugation step was not required to achieve phase separation. Under the optimum conditions, melamine was determined in the linear range of 3-600 ng mL-1, the limit of detection (3Sblank/m) of 0.9 ng mL-1, and the enrichment factor of 144. The validation of the method was investigated by the analysis of reference materials. Consequently, the method was successfully applied for the analysis of melamine residues in milk and milk-based products.
Collapse
Affiliation(s)
- Adil Elik
- Faculty of Science, Department of Chemistry, Sivas Cumhuriyet University, Sivas, Türkiye
| | - Seçkin Fesliyan
- Faculty of Science, Department of Chemistry, Sivas Cumhuriyet University, Sivas, Türkiye
| | - Nevcihan Gürsoy
- Nanotechnology Engineering, Sivas Cumhuriyet University, Sivas, Türkiye
| | - Hameed Ul Haq
- Gdansk University of Technology, Faculty of Civil and Environmental Engineering, Department of Sanitary Engineering, 80-233 Gdansk, G. Narutowicza St. 11/12, Poland
| | - Roberto Castro-Muñoz
- Gdansk University of Technology, Faculty of Civil and Environmental Engineering, Department of Sanitary Engineering, 80-233 Gdansk, G. Narutowicza St. 11/12, Poland
| | - Nail Altunay
- Faculty of Science, Department of Chemistry, Sivas Cumhuriyet University, Sivas, Türkiye.
| |
Collapse
|
4
|
Zhao D, Li Y, Zhang Z, Xu T, Ye C, Shi T, Wang Y. Extraordinary microcarriers derived from spores and pollens. MATERIALS HORIZONS 2023; 10:1121-1139. [PMID: 36637068 DOI: 10.1039/d2mh01236g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Spores and pollens refer to the reproductive cells of seed plants and asexually reproducing sporophytes, exhibiting a natural core-shell structure and exquisite surface morphology. They possess extraordinary dimensional homogeneity, porosity, amphiphilicity and adhesion. Their sporopollenin exine layer endows them with chemically stable, UV resistant, and biocompatible properties, which can also be facilely functionalized due to sufficient groups on the surface. The unique characteristics of spores and pollens have facilitated a wide range of applications in drug carriers, biological imaging, food science, microrobotics, environmental purification, flexible electronics, cell scaffolds, 3D printing materials and biological detection. This review showcases the common structural composition and physicochemical properties of spores and pollens, describes the extraction and processing methods, and summarizes the recent research on their applications in various fields. Following these sections, this review analyzes the existing challenges in spores and pollen research and provides a future outlook.
Collapse
Affiliation(s)
- Danshan Zhao
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210046, China.
| | - Yawen Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210046, China.
| | - Zhidong Zhang
- Institute of Applied Microbiology, Xinjiang Academy of Agricultural Sciences/Xinjiang Laboratory of Special Environmental Microbiology, Urumqi, Xinjiang 830091, China
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Tian Xu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Chao Ye
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210046, China.
| | - Tianqiong Shi
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210046, China.
| | - Yuetong Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210046, China.
| |
Collapse
|
5
|
Vállez-Gomis V, Carchano-Olcina S, Benedé JL, Chisvert A, Salvador A. Entrapment of magnetic nanoparticles into poly(divinylbenzene-co-N-vinylpyrrolidone) copolymer for the determination of prohibited and restricted fragrance ingredients in cosmetic products. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
6
|
Mosleh N, Najmi M, Parandi E, Rashidi Nodeh H, Vasseghian Y, Rezania S. Magnetic sporopollenin supported polyaniline developed for removal of lead ions from wastewater: Kinetic, isotherm and thermodynamic studies. CHEMOSPHERE 2022; 300:134461. [PMID: 35395264 DOI: 10.1016/j.chemosphere.2022.134461] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 03/16/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
This study evaluated the synthesis of novel binary functionaladsorbent based on sporopollenin, magnetic nanoparticles, and polyaniline to produce MSP-PANI. The MSP-PANI was applied to enhance uptake of lead ions (Pb2+) from wastewater samples. The functionalities, surface morphology, magnetic properties, and elemental composition of the newly synthesized nanocomposite were investigated using Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FE-SEM), vibration sample magnetometer (VSM), and energy-dispersive X-ray spectroscopy (EDX), respectively. The experimental condition for the adsorption process was MSP/PANI ratio 1:1, pH ∼6, adsorbent dosage 40 mg, and contact time 90 min at room temperature. Under the proposed condition, lead ions removal were obtained as 83%, 88% and 95% for MSPE, PANI, and MSP/PANI, respectively. Based on the experimental and predicted data, the adsorption was corresponded to the psudo-second-order (R2 = 0.999) kinetics model, and the adsorption equilibrium corresponded to the Langmuir model (R2 = 0.996). Langmuir isotherm showed the maximum adsorption capacity of MSP-PANI for lead ions was 163 mg/g and followed the monolayer pattern. Hence, thermodynamic model under Van't Hoff equation suggested that the adsorption mechanism was physio-sorption with endothermic nature. Therefore, this research can help the researchers to use magnetic nanoparticles for lead removal in highly polluted areas.
Collapse
Affiliation(s)
- Nazanin Mosleh
- Department of Food Science & Technology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Mohsen Najmi
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Hafez Ave, P.O. Box 15875-4413, Tehran, Iran.
| | - Ehsan Parandi
- Department of Food Science & Technology, Faculty of Agricultural Engineering and Technology, University of Tehran, Karaj, Iran; Food Technology and Agricultural Products Research Center, Standard Research Institute (SRI), Karaj, Iran.
| | - Hamid Rashidi Nodeh
- Food Technology and Agricultural Products Research Center, Standard Research Institute (SRI), Karaj, Iran.
| | - Yasser Vasseghian
- Department of Chemistry, Soongsil University, Seoul, 06978, South Korea; The University of Johannesburg, Department of Chemical Engineering, P.O.Box 17011, Doornfontein 2088, South Africa.
| | - Shahabaldin Rezania
- Department of Environment and Energy, Sejong University, Seoul, 05006, South Korea.
| |
Collapse
|
7
|
Yaacob SFFS, Jamil RZR, Suah FBM. Sporopollenin based materials as a versatile choice for the detoxification of environmental pollutants - A review. Int J Biol Macromol 2022; 207:990-1004. [PMID: 35381287 DOI: 10.1016/j.ijbiomac.2022.03.206] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/23/2022] [Accepted: 03/30/2022] [Indexed: 12/16/2022]
Abstract
Before making the transfer to land, plants survive in water for millions of years to avoid the severe circumstances that prevail on lands, such as drought and UV radiation. All land plant spores are coated in sporopollenin, a substance that has developed to endow pollen and spore shells with exceptional, one-of-a-kind qualities. In a nutshell, sporopollenin-coated spores are a unique invention only seen in land plants. Sporopollenin, discovered in the outer exine layer of pollen walls, is a lipid and phenolic-based polymer with high carbon, hydrogen, and oxygen cross-linking. Products based on sporopollenin can remediate toxic pollutant contamination in the aquatic environment. This research and development are now underway. In this review, we show how sporopollenin-based adsorbents act in environmental challenges and their immense promise for this application via remarkable physical and chemical characteristics. A comparison is made of the benefits of various sporopollenin-modified structures. This strategy will further our understanding of how a biopolymer's structure can be accommodated to address emerging environmental challenges, revealing more about sporopollenin's dynamical nature.
Collapse
Affiliation(s)
- Syed Fariq Fathullah Syed Yaacob
- Green Analytical Chemistry Laboratory, School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia.
| | - Raja Zalinda Raja Jamil
- Green Analytical Chemistry Laboratory, School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia
| | - Faiz Bukhari Mohd Suah
- Green Analytical Chemistry Laboratory, School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia.
| |
Collapse
|
8
|
Rezania S, Mojiri A, Park J, Nawrot N, Wojciechowska E, Marraiki N, Zaghloul NSS. Removal of lead ions from wastewater using lanthanum sulfide nanoparticle decorated over magnetic graphene oxide. ENVIRONMENTAL RESEARCH 2022; 204:111959. [PMID: 34474032 DOI: 10.1016/j.envres.2021.111959] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/18/2021] [Accepted: 08/22/2021] [Indexed: 06/13/2023]
Abstract
In this study, the new lanthanum sulfide nanoparticle (La2S3) was synthesized and incorporated onto magnetic graphene oxide (MGO) sheets surface to produce potential adsorbent (MGO@LaS) for efficient removal of lead ions (Pb2+) from wastewater. The synthesized MGO@LaS adsorbent was characterized using Fourier transform infrared spectroscopy, field emission scanning electron microscopy and energy-dispersive X-ray spectroscopy. The effective parameters on the adsorption process including solution pH (~5), adsorbent dosage (20 mg), contact time (40 min), initial Pb2+ concentration and temperature were studied. The removal efficiency was obtained >95% for lead ions at pH 5 with 20 mg adsorbent. To validate the adsorption rate and mechanism, the kinetic and thermodynamic models were studied based on experimental data. The Langmuir isotherm model was best fitted to initial equilibrium concentration with a maximum adsorption capacity of 123.46 mg/g. This indicated a monolayer adsorption pattern for Pb2+ ions over MGO@LaS. The pseudo-second-order as the kinetic model was best fitted to describe the adsorption rate due to high R2 > 0.999 as compared first-order. A thermodynamic model suggested a chemisorption and physisorption adsorption mechanism for Pb2+ ions uptake into MGO@LaS at different temperatures; ΔG° < -5.99 kJ mol-1 at 20 °C and ΔG° -18.2 kJ mol-1 at 45 °C. The obtained results showed that the novel nanocomposite (MGO@LaS) can be used as an alternative adsorbent in wastewater treatment.
Collapse
Affiliation(s)
- Shahabaldin Rezania
- Department of Environment and Energy, Sejong University, Seoul, 05006, South Korea.
| | - Amin Mojiri
- Department of Civil and Environmental Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima, 739-8527, Japan
| | - Junboum Park
- Department of Civil and Environmental Engineering, Seoul National University, Seoul, South Korea
| | - Nicole Nawrot
- Gdańsk University of Technology, Faculty of Civil and Environmental Engineering, Narutowicza 11/12, 80-233, Gdańsk, Poland
| | - Ewa Wojciechowska
- Gdańsk University of Technology, Faculty of Civil and Environmental Engineering, Narutowicza 11/12, 80-233, Gdańsk, Poland
| | - Najat Marraiki
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh, 11451, Saudi Arabia
| | - Nouf S S Zaghloul
- Bristol Centre for Functional Nanomaterials, HH Wills Physics Laboratory, Tyndall Avenue, University of Bristol, Bristol, BS8 1FD, UK
| |
Collapse
|
9
|
Bagheri AR, Aramesh N, Gong Z, Cerda V, Lee HK. Two-dimensional materials as a platform in extraction methods: A review. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
10
|
Bilgic A. Novel BODIPY-based fluorescent Lycopodium clavatum sporopollenin microcapsules for detection and removal of Cu(II) ions. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127658] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
11
|
Faraji M, Shirani M, Rashidi-Nodeh H. The recent advances in magnetic sorbents and their applications. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116302] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
12
|
Fundamentals and applications of stir bar sorptive dispersive microextraction: A tutorial review. Anal Chim Acta 2021; 1153:338271. [DOI: 10.1016/j.aca.2021.338271] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/03/2021] [Accepted: 01/29/2021] [Indexed: 01/04/2023]
|