1
|
Tong D, Han P, Li M, Wang Z, Zhao Z, Jia Y, Ning Y. Sucrose laurate and nisin synergistically inhibit Bacillus subtilis by multiple antibacterial targets and play promising application potential in bread preservation. Food Chem 2025; 470:142696. [PMID: 39752746 DOI: 10.1016/j.foodchem.2024.142696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 12/22/2024] [Accepted: 12/27/2024] [Indexed: 01/30/2025]
Abstract
Sucrose laurate, a commonly used emulsifier, was investigated to explore its preservative effect combined with nisin using Bacillus subtilis as indicator. The results suggested that sucrose laurate and nisin exhibited synergistic antibacterial effect with the fractional inhibitory concentration index of 0.5. Moreover, antibacterial mechanism assays revealed that sucrose laurate and nisin compromised the cell wall integrity by retarding peptidoglycan synthesis, dissipated membrane potential, damaged membrane permeability by inactivating the Na+K+-ATPase via hydrogen bonding interaction to trigger K+ leakage, and destroyed cell membrane integrity concurrently with the leakage of protein and nucleic acid; SEM observation revealed their remarkable ability to disrupt cell ultrastructure and induce morphological shrinkage; Gel retardation results demonstrated the alternation in protein expression patterns. Furthermore, the promising effect of sucrose laurate and nisin was evidenced in bread exhibiting extended shelf life. Conclusively, this research could provide scientific basis for expanding the application of sucrose laurate in food industry.
Collapse
Affiliation(s)
- Danya Tong
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Panpan Han
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Mingrui Li
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Zhixin Wang
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Zhen Zhao
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Yingmin Jia
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| | - Yawei Ning
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang 050018, China.
| |
Collapse
|
2
|
Singh S A, Singh S, Begum RF, Vijayan S, Vellapandian C. Unveiling the profound influence of sucralose on metabolism and its role in shaping obesity trends. Front Nutr 2024; 11:1387646. [PMID: 39015535 PMCID: PMC11250074 DOI: 10.3389/fnut.2024.1387646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 06/17/2024] [Indexed: 07/18/2024] Open
Abstract
Artificial sweeteners, prominently exemplified by sucralose, have become pervasive in contemporary diets, prompting intriguing questions about their impact on metabolism and their potential role in the unfolding trends of obesity. Covering topics from its discovery to analytical methods for detection and determination in food samples, the manuscript scrutinizes the metabolic effects of sucralose. Notably, the association between sucralose intake and obesity is examined, challenging the conventional belief of its role in weight management. The document comprehensively examines in vivo studies, revealing sucralose's implications on insulin resistance, gut microbiota, and metabolic syndrome, providing a nuanced comprehension of its impact on human health. Additionally, it explores sucralose's effects on glucose and lipid metabolism, blood pressure, and cardiovascular health, underscoring its possible involvement in malignancy development. The review concludes with a call for increased public awareness, education, and updated dietary guidelines to help individuals make informed choices about sweetener consumption. The future perspectives section highlights the need for longitudinal studies, exploring alternative sweeteners, and refining acceptable daily intake limits to ensure public health recommendations align with evolving regulatory guidelines. Overall, the manuscript provides a comprehensive overview of sucralose's multifaceted impact on health, urging further research and a balanced perspective on sweetener consumption.
Collapse
Affiliation(s)
- Ankul Singh S
- Department of Pharmacology, Faculty of Pharmacy, Dr.M.G.R. Educational and Research Institute, Chennai, Tamil Nadu, India
| | - Srishti Singh
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Chengalpattu, Tamil Nadu, India
| | - Rukaiah Fatma Begum
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Chengalpattu, Tamil Nadu, India
| | - Sukanya Vijayan
- Department of Pharmacognosy, SRM College of Pharmacy, SRM Institute of Science and Technology, Chengalpattu, Tamil Nadu, India
| | - Chitra Vellapandian
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Chengalpattu, Tamil Nadu, India
| |
Collapse
|
3
|
Bumroongsri P. Value-added product from sugarcane molasses: Conversion of sugarcane molasses to non-caloric sweetener for applications in food and pharmaceutical industries. BIORESOURCE TECHNOLOGY 2024; 395:130370. [PMID: 38266787 DOI: 10.1016/j.biortech.2024.130370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/20/2024] [Accepted: 01/21/2024] [Indexed: 01/26/2024]
Abstract
Molasses is a by-product from sugarcane processing industries that contains some useful natural compounds. This paper proposes a method to produce sucralose, a non-caloric sweetener, from sugarcane molasses. In the first step, sugarcane molasses was converted to dried molasses powder using the low-temperature spray drying process in order to preserve natural compounds. Response surface methodology and artificial neural network were used to determine the experimental condition for maximal bioactive compounds content and antioxidant activity. Dried molasses powder could be produced with maximal values of sucrose yield, total phenolic content, total flavonoid content and antioxidant activity. In the final step, sucralose was derived from dried molasses powder. The yield of molasses-derived sucralose obtained from the proposed method was 0.628±0.01 g/g dried molasses powder with the purity of 99.95±0.02 %. The proposed method paves the way to convert sugarcane molasses to a non-caloric sweetener for applications in food and pharmaceutical industries.
Collapse
Affiliation(s)
- Pornchai Bumroongsri
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Phuttamonthon 4 Road, Nakhon Pathom 73170, Thailand.
| |
Collapse
|
4
|
Verboni M, Perinelli DR, Buono A, Campana R, Sisti M, Duranti A, Lucarini S. Sugar-Based Monoester Surfactants: Synthetic Methodologies, Properties, and Biological Activities. Antibiotics (Basel) 2023; 12:1500. [PMID: 37887201 PMCID: PMC10604170 DOI: 10.3390/antibiotics12101500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023] Open
Abstract
Glycolipids are biocompatible and biodegradable amphiphilic compounds characterized by a great scientific interest for their potential applications in various technological areas, including pharmaceuticals, cosmetics, agriculture, and food production. This report summarizes the available synthetic methodologies, physicochemical properties, and biological activity of sugar fatty acid ester surfactants, with a particular focus on 6-O-glucose, 6-O-mannose, 6-O-sucrose, and 6'-O-lactose ones. In detail, the synthetic approaches to this class of compounds, such as enzymatic lipase-catalyzed and traditional chemical (e.g., acyl chloride, Steglich, Mitsunobu) esterifications, are reported. Moreover, aspects related to the surface activity of these amphiphiles, such as their ability to decrease surface tension, critical micelle concentration, and emulsifying and foaming ability, are described. Biological applications with a focus on the permeability-enhancing effect across the skin or mucosa, antimicrobial and antifungal activities, as well as antibiofilm properties, are also presented. The information reported here on sugar-based ester surfactants is helpful to broaden the interest and the possible innovative applications of this class of amphiphiles in different technological fields in the future.
Collapse
Affiliation(s)
- Michele Verboni
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (M.V.); (A.B.); (R.C.); (M.S.); (S.L.)
| | - Diego Romano Perinelli
- School of Pharmacy, University of Camerino, Via Gentile III da Varano, 62032 Camerino, Italy;
| | - Alessandro Buono
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (M.V.); (A.B.); (R.C.); (M.S.); (S.L.)
| | - Raffaella Campana
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (M.V.); (A.B.); (R.C.); (M.S.); (S.L.)
| | - Maurizio Sisti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (M.V.); (A.B.); (R.C.); (M.S.); (S.L.)
| | - Andrea Duranti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (M.V.); (A.B.); (R.C.); (M.S.); (S.L.)
| | - Simone Lucarini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (M.V.); (A.B.); (R.C.); (M.S.); (S.L.)
| |
Collapse
|
5
|
Samateh M, Marwaha S, James JK, Nanda V, John G. Sucralose hydrogels: Peering into the reactivity of sucralose versus sucrose under lipase catalyzed trans-esterification. Carbohydr Res 2022; 521:108647. [PMID: 36029635 DOI: 10.1016/j.carres.2022.108647] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 08/07/2022] [Accepted: 08/08/2022] [Indexed: 11/02/2022]
Abstract
Sucralose differs from sucrose only by virtue of having three Cl groups instead of OH groups. Its intriguing features include being noncaloric, noncariogenic, ∼600 times sweeter than sucrose, stable at high temperatures/acidic pH's, and void of disagreeable aftertastes. These properties are attractive as food additive, one of which is as hydrogel obtainable via the technique of molecular gelation using a sucralose-derived low-molecular weight gelator (LMWG). Such hydrogels are highly responsive to external stimuli like temperature, because the LMWGs self-assemble via non-covalent interactions and could thus be utilized in applications like control-release. We found that sucralose to be unreactive under lipase biocatalysis, unlike sucrose. Hence, the aim of this work was (i) to use computational simulations to further understand sucralose's lack of enzymatic reactivity and (ii) to synthesize the sucralose-based amphiphiles using conventional chemical synthesis and systematically study their tendency towards hydrogelation. Sucrose and sucralose were docked with a high-resolution atomic structure of lipase B from Candida antarctica, modeling the esterification transition state with an active site serine. In extended molecular dynamics simulations, sucrose remained in the active site due to multiple sugar-protein hydrogen bonds. The oxygen-to-chlorine substitutions in sucralose disrupted this hydrogen bonding network. Consistent with observed lack of enzymatic conversion, in multiple simulations, sucralose would rapidly dissociate from the active site. The sucralose-based LMWGs were subsequently synthesized using base-catalyzed conventional chemical synthesis. Three of the sucralose-based amphiphiles (SL-5, SL-6 and SL-7) proved to be successful hydrogelators. The gelators also showed the ability to gel selected beverages. The LMWGs gelled quantities of water and beverage up to 71 and 55 times their weight, respectively, and remain thermally stable up to 144 °C.
Collapse
Affiliation(s)
- Malick Samateh
- Department of Chemistry and Biochemistry, Center for Discovery and Innovation, The City College of New York, New York, NY, 10031, USA; Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY, 10016, USA
| | - Siddharth Marwaha
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, 08854, USA
| | - Jose K James
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, 08854, USA
| | - Vikas Nanda
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, 08854, USA.
| | - George John
- Department of Chemistry and Biochemistry, Center for Discovery and Innovation, The City College of New York, New York, NY, 10031, USA; Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY, 10016, USA.
| |
Collapse
|
6
|
Enzymatic Production of Lauroyl and Stearoyl Monoesters of d-Xylose, l-Arabinose, and d-Glucose as Potential Lignocellulosic-Derived Products, and Their Evaluation as Antimicrobial Agents. Catalysts 2022. [DOI: 10.3390/catal12060610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Forestry and agricultural industries constitute highly relevant economic activities globally. They generate large amounts of residues rich in lignocellulose that have the potential to be valorized and used in different industrial processes. Producing renewable fuels and high-value-added compounds from lignocellulosic biomass is a key aspect of sustainable strategies and is central to the biorefinery concept. In this study, the use of biomass-derived monosaccharides for the enzymatic synthesis of sugar fatty acid esters (SFAEs) with antimicrobial activity was investigated to valorize these agro-industrial residues. With the aim to evaluate if lignocellulosic monosaccharides could be substrates for the synthesis of SFAEs, d-xylose, l-arabinose, and d-glucose, lauroyl and stearoyl monoesters were synthetized by transesterification reactions catalyzed by Lipozyme RM IM as biocatalyst. The reactions were performed using commercial d-xylose, l-arabinose, and d-glucose separately as substrates, and a 74:13:13 mixture of these sugars. The proportion of monosaccharides in the latter mixture corresponds to the composition found in hemicellulose from sugarcane bagasse and switchgrass, as previously described in the literature. Products were characterized using nuclear magnetic resonance (NMR) spectroscopy and showed that only the primary hydroxyl group of these monosaccharides is involved in the esterification reaction. Antimicrobial activity assay using several microorganisms showed that 5-O-lauroyl-d-xylofuranose and 5-O-lauroyl-l-arabinofuranose have the ability to inhibit the growth of Gram-positive bacteria separately and in the products mix. Furthermore, 5-O-lauroyl-l-arabinofuranose was the only product that exhibited activity against Candida albicans yeast, and the four tested filamentous fungi. These results suggest that sugar fatty acid esters obtained from sustainable and renewable resources and produced by green methods are promising antimicrobial agents.
Collapse
|
7
|
Verboni M, Benedetti S, Campana R, Palma F, Potenza L, Sisti M, Duranti A, Lucarini S. Synthesis and Biological Characterization of the New Glycolipid Lactose Undecylenate (URB1418). Pharmaceuticals (Basel) 2022; 15:456. [PMID: 35455453 PMCID: PMC9030338 DOI: 10.3390/ph15040456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/01/2022] [Accepted: 04/03/2022] [Indexed: 11/16/2022] Open
Abstract
As a follow-up to our previous studies on glycolipid surfactants, a new molecule, that is lactose 6′-O-undecylenate (URB1418), was investigated. To this end, a practical synthesis and studies aimed at exploring its specific properties were carried out. URB1418 showed antifungal activities against Trichophyton rubrum F2 and Candida albicans ATCC 10231 (MIC 512 μg/mL) and no significant antibacterial activity against Staphylococcus aureus and Pseudomonas aeruginosa. At the same time, it presented anti-inflammatory properties, as documented by the dose-dependent reduction in LPS-induced NO release in RAW 264.7 cells, while a low antioxidant capacity in the range of concentrations tested (EC50 > 200 µM) was also observed. Moreover, URB1418 offers the advantage of being more stable than the reference polyunsaturated lactose esters and of being synthesized using a “green” procedure, involving an enzymatic method, high yield and low manufacturing cost. For all these reasons and the absence of toxicity (HaCaT cells), the new glycolipid presented herein could be considered an interesting compound for applications in various fields.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Andrea Duranti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, PU, Italy; (M.V.); (S.B.); (R.C.); (F.P.); (L.P.); (M.S.); (S.L.)
| | | |
Collapse
|
8
|
Two-in-One Surfactant Disinfectant Potential of Xylitol Dicaprylate and Dilaurate Esters Synthesized by Talaromyces thermophilus galactolipase for Cleaning Industries. Appl Biochem Biotechnol 2022; 194:2700-2719. [PMID: 35244858 DOI: 10.1007/s12010-022-03864-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/24/2022] [Indexed: 11/02/2022]
Abstract
Talaromyces thermophilus galactolipase (TTL) was found to produce alcohol sugar fatty acid diesters. The modulation of the solvent composition was used for the esterification reaction screening of diesters from xylitol and various fatty acids using the immobilized Talaromyces thermophilus galactolipase. The reactions were assessed by LC-MS analysis. The antimicrobial activity assay showed that both xylitol dicaprylate and xylitol dilaurate esters had more ability to inhibit the growth of several bacteria involved in surface contamination in the food industry. The xylitol dilaurate ester has the highest activity against Gram-positive strains with the lowest MIC values of 0.0016 and 0.005 mg mL-1 against Bacillus licheniformis and Staphylococcus aureus, respectively. Xylitol dicaprylate ester is more active against Gram-negative ones with significantly low MIC values of 0.25 and 0.4 mg mL-1 against Escherichia coli and Pseudomonas aeruginosa, respectively. The highest antifungal activity of the xylitol dicaprylate ester has been also proven, with a MIC value of 0.02 mg mL-1 against Penicillium occitanis and Fusarium solani. A better reduction in critical micelle concentrations and air-water surface tension were observed with these diesters compared to their corresponding monoesters in addition to their efficient emulsifying properties. The stability of these diesters in a liquid detergent formula after one year of storage was tested by a positive oil spreading assay and a retained antimicrobial activity. They exhibit a typical surfactant behavior with a two-in-one effect that can act as a detergent and a disinfectant with potential use in different cleaning processes.
Collapse
|
9
|
Ortiz MS, Alvarado JG, Zambrano F, Marquez R. Surfactants produced from carbohydrate derivatives: A review of the biobased building blocks used in their synthesis. J SURFACTANTS DETERG 2022. [DOI: 10.1002/jsde.12581] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
| | | | | | - Ronald Marquez
- TotalEnergies SE Pôle d'Etudes et de Recherche de Lacq Lacq France
- Laboratoire commun TotalEnergies/ESPCI Paris, Physico‐Chimie des Interfaces Complexes CHEMSTARTUP Lacq France
| |
Collapse
|
10
|
Silva CV, Santos JR, Melia Rodrigo M, Ribeiro AC, Valente AJ, Abreu PE, Marques JM, Esteso MA. On the transport and dynamics of disaccharides: H-bonding effect in sucrose and sucralose. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|