1
|
Pan X, Duan Y, Liu S, Wang Y, Li Q, Jiang F, Li Y, Huang Z, Su L, Li X, Liu M, Zhou X, Tang H. All-in-one: Harnessing multifunctional natural polysaccharide spray hydrogel loaded with polyphenol-metal nanoparticles for fruit preservation. Food Chem 2025; 470:142638. [PMID: 39752739 DOI: 10.1016/j.foodchem.2024.142638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/21/2024] [Accepted: 12/22/2024] [Indexed: 01/29/2025]
Abstract
Fruit preservation materials play an instrumental role in preventing fruit deterioration and extending shelf life. However, existing fresh-keeping materials often prove inadequate in simultaneously achieving antibacterial properties, maintaining freshness, antioxidant effects, good biocompatibility, and prolonged fruit shelf life. Therefore, we present the first preparation of a natural polysaccharide spray hydrogel (Q/O/Zn hydrogel), loaded with chlorogenic acid‑zinc nanoparticles (CA@ZnNPs), utilizing quaternary ammonium insect chitosan (QECS) and oxidized pullulan (OPUL) for the preservation of perishable fruits. The findings demonstrated that the Q/O/Zn hydrogel was highly effective in inhibiting the proliferation of S. aureus and E. coli, while also exhibiting remarkable scavenging capabilities about ABTS and DPPH radicals. Furthermore, the fruit preservation trials demonstrated that the Q/O/Zn hydrogel markedly reduced fruit respiration rates, decay rates, and weight loss across various temperatures while decreasing the species diversity and abundance of harmful bacteria on fruit surfaces. The Q/O/Zn hydrogel is promising for fruit preservation.
Collapse
Affiliation(s)
- Xiaoli Pan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China.
| | - Yun Duan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Shuang Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Ying Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Qing Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Fuchen Jiang
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, China
| | - Yingxi Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Zhen Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Lijun Su
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Xuebo Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Meiyan Liu
- Beijing Anzhen Nanchong Hospital, Capital Medical University & Nanchong Central Hospital, Nanchong 637003, China
| | - Xiao Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Huacheng Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| |
Collapse
|
2
|
Cheng Z, Yuan X, Cao X, Jia Z, Hao F, Chen J, Yue L, Wang Z. Preharvest and Postharvest Applications of Fe-Based Nanomaterials: A Potent Strategy for Improving Pepper Storage. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:497. [PMID: 40214542 PMCID: PMC11990499 DOI: 10.3390/nano15070497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/19/2025] [Accepted: 03/24/2025] [Indexed: 04/14/2025]
Abstract
Nanomaterials (NMs) hold significant potential for enhancing agricultural production, extending the shelf life, and maintaining the quality of postharvest vegetables and fruits. In this study, after foliar spraying with 1, 10, and 50 mg of L-1 Fe-P NMs at different stages (seedling, flowering, and fruit stage), the pepper plant growth was significantly improved. In particular, the foliar application of 10 mg of L-1 Fe-P NMs during the flowering stage was found to be an optimal cultivation approach to promote the growth, yield, and freshness of peppers. Compared with the control group, Fe-P NMs increased net photosynthetic rate, plant height, and fruit number by 132.7%, 40.4%, and 265.7%, respectively. The applied Fe-P NMs, at the flowering stage, altered the capsaicin metabolic pathway, upregulating the genes for the synthesis of total phenols, flavonoids, lignans, and capsaicinoids. Consequently, these metabolites, which are beneficial for maintaining the freshness of pepper fruits, were increased. Furthermore, Fe-P NMs at the flowering stage downregulated the abundance of rot-causing microorganisms (Enterobacter and Chryseobacterium) and upregulated beneficial microorganisms (Pseudomonas, Arthrobacter, Sphingobacterium, and Paenibacillus) to change the microbial community structure. This ultimately created a micro-ecological environment conducive to the preservation of pepper fruits. For comparison, during pepper fruit storage, dipping and spraying with Fe-P NM suspensions effectively delayed weight loss and enhanced the growth of beneficial bacteria. Nevertheless, the effect was less pronounced than preharvest foliar application. This study provides insights into the pre- or postharvest application of NMs for improving the preservation performance of pepper fruits.
Collapse
Affiliation(s)
- Zhuang Cheng
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China
| | - Xianzheng Yuan
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Xuesong Cao
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China
| | - Zhemin Jia
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China
| | - Fang Hao
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China
| | - Jiayi Chen
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China
| | - Le Yue
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China
| |
Collapse
|
3
|
Li Z, Zhao W, Wang P, Zhao S, Wang D, Zhao X. Evolution of microbial community and the volatilome of fresh-cut chili pepper during storage under different temperature conditions: Correlation of microbiota and volatile organic compounds. Food Chem 2024; 451:139401. [PMID: 38685178 DOI: 10.1016/j.foodchem.2024.139401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/07/2024] [Accepted: 04/15/2024] [Indexed: 05/02/2024]
Abstract
The effect of temperature conditions on the evolution of microbial communities and volatile organic compounds (VOCs) in fresh-cut chili peppers during storage was investigated. Results showed that Proteobacteria and Actinobacteriota were the dominant phyla in fresh-cut chili peppers. During storage, bacterial communities changed more dramatically than fungi. Different temperature conditions significantly affected the shift of bacteria at the genus level. At the beginning of storage, Rhodococcus, Pantoea, and Pseudomonas dominated the bacteria. However, on day 8, Pantoea and Enterobacter became the predominant genera at 5 °C and high temperatures (10, 15 °C, dynamic temperature), respectively. No significant variability in bacterial species was observed between different batches. Additionally, 140 VOCs were determined in fresh-cut chili peppers. Twenty-two VOCs were screened and could be recommended as potential spoilage markers. Based on Spearman's correlation analysis results, Enterobacter and Enterococcus were the most positive microorganisms correlated with spoilage markers.
Collapse
Affiliation(s)
- Zudi Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China; Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing 100097, China
| | - Wenting Zhao
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing 100097, China.
| | - Pan Wang
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing 100097, China.
| | - Shuang Zhao
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing 100097, China.
| | - Dan Wang
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing 100097, China.
| | - Xiaoyan Zhao
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China; Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Agricultural Products of Fruits and Vegetables Preservation and Processing, Key Laboratory of Vegetable Postharvest Processing, Ministry of Agriculture and Rural Affairs, Beijing 100097, China.
| |
Collapse
|
4
|
Aayush K, Sharma K, Singh GP, Chiu I, Chavan P, Shandilya M, Roy S, Ye H, Sharma S, Yang T. Development and characterization of edible and active coating based on xanthan gum nanoemulsion incorporating betel leaf extract for fresh produce preservation. Int J Biol Macromol 2024; 270:132220. [PMID: 38754654 DOI: 10.1016/j.ijbiomac.2024.132220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 05/18/2024]
Abstract
Developing an edible and active coating, incorporating environmentally-friendly antimicrobial agents into edible polymers, provides an eco-friendly alternative to conventional packaging and exhibits significant potential in preserving the quality of postharvest food. Herein, we aim to develop a novel edible and active coating based on xanthan gum (XG) nanoemulsion (NE) incorporating betel leaf extract (BLE) for the preservation of fresh produce. The total phenolic content, total flavonoid content, and antioxidant capacity of the methanol extract of BLE at various concentrations were characterized. Further development of the active coating at different formulations of Tween 80 (1 % and 3 % w/v), XG (0.1 % to 0.5 % w/v), and BLE (1 % to 5 % w/v) was characterized by physical stability, viscosity, and antimicrobial properties. Results showed that the active coating at 1 % BLE showed significant antimicrobial properties against diverse bacterial and fungal foodborne pathogens (e.g., B. cereus, S. aureus) and fungal cultures (e.g., C. albicans). The study also examined the shelf-life of tomatoes coated with the BLE-XG NE solution, stored at 4 °C for 27 days. Analyses of weight retention, soluble solids, pH, texture, sensory attributes, and microbial populations showed that the coating effectively preserved tomato quality, highlighting its potential to preserve fresh produce and enhance food security.
Collapse
Affiliation(s)
- Krishna Aayush
- Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada; School of Bioengineering and Food Technology, Shoolini University, Bajhol, Distt Solan H.P 173229, India
| | - Kanika Sharma
- School of Bioengineering and Food Technology, Shoolini University, Bajhol, Distt Solan H.P 173229, India
| | - Gurvendra Pal Singh
- Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada; School of Bioengineering and Food Technology, Shoolini University, Bajhol, Distt Solan H.P 173229, India
| | - Ivy Chiu
- Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Prafull Chavan
- School of Bioengineering and Food Technology, Shoolini University, Bajhol, Distt Solan H.P 173229, India
| | - Mamta Shandilya
- School of Physics and Material Science, Shoolini University, Bajhol, Distt Solan H.P 173229, India
| | - Swarup Roy
- School of Bioengineering and Food Technology, Shoolini University, Bajhol, Distt Solan H.P 173229, India; Department of Food Technology and Nutrition, School of Agricultural, Lovely Professional University, Phagwara 144411, India
| | - Haoxin Ye
- Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Somesh Sharma
- School of Bioengineering and Food Technology, Shoolini University, Bajhol, Distt Solan H.P 173229, India.
| | - Tianxi Yang
- Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
5
|
Pang L, Jiang Y, Chen L, Shao C, Li L, Wang X, Li X, Pan Y. Combination of Sodium Nitroprusside and Controlled Atmosphere Maintains Postharvest Quality of Chestnuts through Enhancement of Antioxidant Capacity. Foods 2024; 13:706. [PMID: 38472819 DOI: 10.3390/foods13050706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/16/2024] [Accepted: 02/24/2024] [Indexed: 03/14/2024] Open
Abstract
The purpose of this study was to clarify the effect of CA (controlled atmosphere, 2-3% O2 + 3% CO2) and NO (nitric oxide, generated by 0.4 nM sodium nitroprusside), alone or combined (CA + NO), on the physio-chemical properties, enzyme activities and antioxidant capacities of chestnuts during storage at 0 °C for 180 d. Compared with control (CT), CA and CA+NO both improved the storage quality of the samples, but only CA resulted in more ethanol production. Moreover, these improvements were further enhanced and ethanol synthesis was inhibited by the addition of NO. A spectrometer was used to assess the production of phenolic content (TPC) and activities of phenylalanine ammonia-lyase (PAL), superoxide dismutas (SOD), peroxidase (POD), catalase (CAT) and polyphenol oxidase (PPO) as influenced by CA or CA+NO treatments. Higher TPC, PAL, SOD, POD, CAT, and lower PPO were observed in CA alone, and more so in the combination with NO group. The increased antioxidant production and enhanced antioxidant activities contributed to scavenging reactive oxygen species (ROS) and reducing malondialdehyde (MDA). This study unveiled the correlations and differences between the effects of CA and CA+NO on storage quality, providing valuable insights into postharvest preservation and suggesting that the combination (CA+NO) was more beneficial for quality maintenance in chestnuts.
Collapse
Affiliation(s)
- Linging Pang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
- Tianjin Gasin-DH Preservation Technologies Co., Ltd., Tianjin 300300, China
| | - Yuqian Jiang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Lan Chen
- Shanxi Fruit Industry Cold Chain New Material Co., Ltd., Tongchuan 727100, China
| | - Chongxiao Shao
- Tianjin Gasin-DH Preservation Technologies Co., Ltd., Tianjin 300300, China
| | - Li Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Xiaodong Wang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xihong Li
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yanfang Pan
- Tianjin Gasin-DH Preservation Technologies Co., Ltd., Tianjin 300300, China
- Institute of Food Science and Technology, Chinese Academic of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
6
|
The influences of acidic electrolyzed water on quality and bacteria community of fresh-cut jackfruit in storage. INTERNATIONAL JOURNAL OF FOOD ENGINEERING 2023. [DOI: 10.1515/ijfe-2022-0210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Abstract
This study evaluated the effects of acidic electrolyzed oxidizing water (AEW) on the quality and bacterial communities of fresh-cut jackfruit during storage. The result showed that AEW treatment, as compared to the CK group (without AEW treatment), could effectively inhibit the browning, maintain higher firmness and higher amounts of total titratable acidity (TTA) (0.21%), sugars (58.30 g/kg), ascorbic acids (28.72 mg/kg) and total phenolics (35.47 mg/kg) of fresh-cut jackfruits, and suppress the decrease of antioxidant ability during 4–8 days of storage. Additionally, the bacterial communities were significantly affected by AEW during storage. In particular, the AEW treated samples showed lower abundance of Pseudomonas and Lactobacillus than the CK group after storage of 8 day. And energy metabolism, nucleotide metabolism has the significantly lower (p < 0.05) relative abundance in the AEW group than in CK group. These results suggested that AEW (pH: 4.2–4.5, ACC: 35–38 mg/L) treatment could maintain the quality of fresh-cut jackfruit during storage. It could be attributed to that AEW treatment affect the growth and metabolism of bacterial communities, resulting in the decrease of nutrients consumption.
Collapse
|
7
|
El-Gendi H, Salama A, El-Fakharany EM, Saleh AK. Optimization of bacterial cellulose production from prickly pear peels and its ex situ impregnation with fruit byproducts for antimicrobial and strawberry packaging applications. Carbohydr Polym 2023; 302:120383. [PMID: 36604061 DOI: 10.1016/j.carbpol.2022.120383] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/13/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022]
Abstract
Bacterial cellulose (BC) is currently among the most promising natural polymers. However, the production costs and biological inactivity are still challenges. The current study exploited the enzymatically hydrolyzed prickly pear peels (PPP) for BC production, which supported about 2.94 g/L as the sole production medium. The BC production was further optimized through a central composite design, where the maximum BC production was 6.01 g/L at 68 % PPPE at pH 4 after 11 days of incubation at 20 °C. The produced BC was characterized by FT-IR spectroscopy, XRD, and SEM analysis, and the results showed that PPPE is a promising carbon source for pure BC production. The BC membrane was separately loaded with several fruit byproduct extracts to enhance its biological activity for multiple applications. BC loaded with pomegranate peel extract (BC/PPE) revealed significant broad-spectrum antimicrobial activity, followed by BC loaded with pomegranate molasses (BC/PM). The BC/PPE membrane enhanced the shelf-life storage of strawberry fruits by about 5 days, with a reduction in the fruits' weight loss of 15 % compared to the uncovered group. The current study revealed the successful application of PPE for sustainable BC production with its packaging potential for enhancing strawberry shelf-life when loaded with PPE or PM.
Collapse
Affiliation(s)
- Hamada El-Gendi
- Bioprocess Development Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria 21934, Egypt.
| | - Ahmed Salama
- Cellulose and Paper Department, National Research Centre, El-Tahrir St., Dokki 12622, Giza, Egypt
| | - Esmail M El-Fakharany
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria 21934, Egypt
| | - Ahmed K Saleh
- Cellulose and Paper Department, National Research Centre, El-Tahrir St., Dokki 12622, Giza, Egypt.
| |
Collapse
|
8
|
Preparation, characterization, and application of edible antibacterial three-layer films based on gelatin–chitosan–corn starch–incorporated nisin. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
9
|
Khalid MY, Arif ZU. Novel biopolymer-based sustainable composites for food packaging applications: A narrative review. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100892] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
10
|
Abdullah, Fang J, Liu X, Javed HU, Cai J, Zhou Q, Huang Q, Xiao J. Recent advances in self-assembly behaviors of prolamins and their applications as functional delivery vehicles. Crit Rev Food Sci Nutr 2022; 64:1015-1042. [PMID: 36004584 DOI: 10.1080/10408398.2022.2113031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Prolamins are a group of storage proteins (zeins, kafirins, hordeins, secalins, gliadins, glutenins, and avenins) found in the endosperm of cereal grains and characterized by high glutamine and proline content. With the high proportion of nonpolar amino acids (40-80%) and peculiar solubility (alcohol (60-90%), acetic acid, and alkaline solutions), prolamins exhibit tunable self-assembly behaviors. In recent years, research practices of utilizing prolamins as green building materials of functional delivery vehicles to improve the health benefits of bioactive compounds have surged due to their attractive advantages (e.g. sustainability, biocompatibility, fabrication potential, and cost-competitiveness). This article covers the recent advances in self-assembly behaviors leading to the fabrication of nanoparticles, fibers, and films in the bulk water phase, at the air-liquid interface, and under the electrostatic field. Different fabrication methods, including antisolvent precipitation, evaporation induced self-assembly, thermal treatment, pH-modulation, electrospinning, and solvent casting for assembling nanoarchitectures as functional delivery vehicles are highlighted. Emerging industrial applications by mapping patents, including encapsulation and delivery of bioactive compounds and probiotics, active packaging, Pickering emulsions, and as functional additives to develop safer, healthier, and sustainable food products are discussed. A future perspective concerning the fabrication of prolamins as advanced materials to promote their commercial food applications is proposed.
Collapse
Affiliation(s)
- Abdullah
- Guangdong Provincial Key Laboratory of Functional Food Active Substances, College of Food Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jieping Fang
- Guangdong Provincial Key Laboratory of Functional Food Active Substances, College of Food Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Xidong Liu
- National Intellectual Property Information Service Center of Universities, Library, South China Agricultural University, Guangdong, China
| | - Hafiz Umer Javed
- School of Chemistry and Chemical Engineering, Zhongkai University of Agricultural and Engineering, Guangzhou, Guangdong, China
| | - Jiyang Cai
- Guangdong Provincial Key Laboratory of Functional Food Active Substances, College of Food Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Qize Zhou
- Guangdong Provincial Key Laboratory of Functional Food Active Substances, College of Food Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Qingrong Huang
- Department of Food Science, Rutgers, the State University of New Jersey, New Brunswick, New Jersey, USA
| | - Jie Xiao
- Guangdong Provincial Key Laboratory of Functional Food Active Substances, College of Food Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| |
Collapse
|
11
|
Abdullah, Cai J, Hafeez MA, Wang Q, Farooq S, Huang Q, Tian W, Xiao J. Biopolymer-based functional films for packaging applications: A review. Front Nutr 2022; 9:1000116. [PMID: 36071940 PMCID: PMC9441959 DOI: 10.3389/fnut.2022.1000116] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/04/2022] [Indexed: 11/30/2022] Open
Abstract
Food packaging is a coordinated system comprising food processing, protection from contamination and adulteration, transportation and storage, and distribution and consumption at optimal cost with a minimum environmental impact to the packed food commodity. Active packaging involves deliberate addition of the functional ingredients either in the film or the package headspace to preserve the food quality, improve safety and nutrition aspects, and enhance the shelf-life. In this review, recent advances in the fabrication of biopolymer-based films, their classification (biodegradable-, active-, and intelligent packaging films), advanced fabrication strategies (composite-, multilayer-, and emulsified films), and special functions induced by the biopolymers to the film matrix (mechanical-, water resistance and gas barrier-, and optical properties, and bioactive compounds reservoir) were briefly discussed. A summary of conclusions and future perspectives of biopolymer-based packaging films as advanced biomaterial in preserving the food quality, improving safety and nutrition aspects, and enhancing shelf-life of the products was proposed.
Collapse
Affiliation(s)
- Abdullah
- Guangdong Provincial Key Laboratory of Functional Food Active Substances, College of Food Sciences, South China Agricultural University, Guangzhou, China
| | - Jiyang Cai
- Guangdong Provincial Key Laboratory of Functional Food Active Substances, College of Food Sciences, South China Agricultural University, Guangzhou, China
| | - Muhammad Adnan Hafeez
- Department of Allied Health Sciences, Faculty of Allied Health Sciences, Superior University, Lahore, Pakistan
| | - Qun Wang
- Guangdong Provincial Key Laboratory of Functional Food Active Substances, College of Food Sciences, South China Agricultural University, Guangzhou, China
| | - Shahzad Farooq
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Qingrong Huang
- Department of Food Science, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| | - Wenni Tian
- Guangdong Provincial Key Laboratory of Functional Food Active Substances, College of Food Sciences, South China Agricultural University, Guangzhou, China
| | - Jie Xiao
- Guangdong Provincial Key Laboratory of Functional Food Active Substances, College of Food Sciences, South China Agricultural University, Guangzhou, China
| |
Collapse
|
12
|
de Lima Silva ID, de Almeida Nascimento JA, de Moraes Filho LEPT, Caetano VF, de Andrade MF, de Almeida YMB, Hallwass F, Brito AMSS, Vinhas GM. Production of potential antioxidant and antimicrobial active films of poly (vinyl alcohol) incorporated with cashew tree extract. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | | | | | | | | | - Fernando Hallwass
- Department of Fundamental Chemistry Federal University of Pernambuco Recife Brazil
| | | | - Glória Maria Vinhas
- Department of Chemical Engineering Federal University of Pernambuco Recife Brazil
| |
Collapse
|
13
|
Fabrication, characterization, and performance of antimicrobial alginate-based films containing thymol-loaded lipid nanoparticles: Comparison of nanoemulsions and nanostructured lipid carriers. Int J Biol Macromol 2022; 207:801-812. [PMID: 35358573 DOI: 10.1016/j.ijbiomac.2022.03.149] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 03/17/2022] [Accepted: 03/23/2022] [Indexed: 02/07/2023]
Abstract
Antimicrobial biopolymer films were prepared by incorporating thymol-loaded nanostructured lipid carriers (NLC) or nanoemulsions (NE) into Ca-alginate solutions. Thymol-loaded-NLCs with thymol/lipid mass ratios of 0.1 and 0.2 were prepared and then used to fabricate NLC/alginate films containing either 20% (NLC20 film) or 10% (NLC10 film) of NLCs. Consequently, these two films had the same total thymol mass fraction: R thymol/alginate = 0.02. A nanoemulsion-loaded film (NE film) containing the same amount of thymol and a neat alginate film (control) were also prepared. Incorporation of the NLCs increased the porosity and surface roughness, thickness, water vapor permeability, and yellowness of the films, but decreased their water contact angle, mechanical strength, and swelling ratio. The release of thymol into the air and into water-ethanol solutions was slower for NLC-loaded than NE-loaded films, moreover being slower for the NLC20 than NLC10 films. The antimicrobial activity of the active films was tested on ground beef samples. Their antimicrobial activity was correlated to their release rates, with the NLC20 film giving the longest protection against the enumerated microorganisms. Our results show that encapsulating antimicrobial essential oils within NLCs was more effective at creating antimicrobial films with sustained release properties than encapsulating them within NEs.
Collapse
|