1
|
Griffin A, Kirkbride KP, Painter B, Henry J, Linacre A. A systematic approach to the analysis of illicit drugs for DNA with an overview of the problems encountered. Forensic Sci Int 2024; 361:112132. [PMID: 38981416 DOI: 10.1016/j.forsciint.2024.112132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/21/2024] [Accepted: 06/30/2024] [Indexed: 07/11/2024]
Abstract
Due to the restricted nature of illicit drugs, it is difficult to conduct research surrounding the analysis of this drug material for any potential DNA in sufficient quantities acceptable for high numbers of replicates. Therefore, the current research available in peer reviewed journals thus far regarding analysing illicit drugs for DNA has been performed under varying experimental conditions, often using surrogate chemicals in place of illicit drugs. The data presented within this study originated from the analysis of genuine illicit drugs prepared both in controlled environments and those seized at the Australian border (and therefore from an uncontrolled environment) to determine if DNA can be obtained from this type of material. This study has been separated into three main parts (total n=114 samples): firstly, methamphetamine synthesised within a controlled environment was spiked with both saliva and trace DNA to determine the yield following DNA extraction; secondly, methamphetamine also synthesised in a controlled environment but on a larger scale was tested for the amount of DNA added incidentally throughout the synthesis, including the additional steps of recrystallising, homogenising and "cutting" the drug material to simulate preparation for distribution; and thirdly, the detection of human DNA within samples of cocaine and heroin seized at the Australian border. The DNA Fast Flow Microcon Device was utilised to concentrate all replicates from the same source into one combined extract to improve the DNA profiles for the samples where no DNA spiking occurred. Full STR profiles were successfully obtained from drug samples spiked with both saliva and trace DNA. Methamphetamine was present in the final DNA extracts and caused incompatibilities with the quantification of DNA using Qubit. The yields of DNA from drugs not spiked with DNA sources were much lower, resulting in 36 % of samples yielding alleles where all others did not. These results were not unexpected given these were realistic drug samples where the history of the drug material was unknown. This is the first study to obtain DNA profiles from genuine illicit drug material in both controlled and uncontrolled environments and indicates that the analysis of illicit drugs for DNA is an avenue worth pursuing to provide information which can in turn assist with disrupting the supply of these drugs. Given that DNA profiling is carried out worldwide using essentially the same systems as described within this study, the potential for impact is on a national and international scale.
Collapse
Affiliation(s)
- Amy Griffin
- College of Science & Engineering, Flinders University, Adelaide 5042, Australia.
| | - K Paul Kirkbride
- College of Science & Engineering, Flinders University, Adelaide 5042, Australia
| | - Ben Painter
- College of Science & Engineering, Flinders University, Adelaide 5042, Australia; Forensic Science SA, GPO Box 2790, Adelaide 5000, Australia
| | - Julianne Henry
- College of Science & Engineering, Flinders University, Adelaide 5042, Australia; Forensic Science SA, GPO Box 2790, Adelaide 5000, Australia
| | - Adrian Linacre
- College of Science & Engineering, Flinders University, Adelaide 5042, Australia
| |
Collapse
|
2
|
Fantinato C, Gill P, Fonneløp AE. Investigative use of human environmental DNA in forensic genetics. Forensic Sci Int Genet 2024; 70:103021. [PMID: 38335776 DOI: 10.1016/j.fsigen.2024.103021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/19/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024]
Abstract
Individuals leave behind traces of their DNA wherever they go. DNA can be transferred to surfaces and items upon touch, can be released into the air, and may be deposited in indoor dust. The mere presence of individuals in a location is sufficient to facilitate either direct or indirect DNA transfer into the surrounding environment. In this study, we analyzed samples recovered from commonly touched surfaces such as light switches and door handles in an office environment. We evaluated two different methods to isolate DNA and co-extract DNA and RNA from the samples. DNA profiles were compared to the references of the inhabitants of the different locations and were analyzed taking into consideration the type of sampled surface, sampling location and information about the activities in a room during the sampling day. Results from DNA samples collected from surfaces were also compared to those from air and dust samples collected in parallel from the same areas. We characterized the amount and composition of DNA found on various surfaces and showed that surface DNA sampling can be used to detect occupants of a location. The results also indicate that combining information from environmental samples collected from different DNA sources can improve our understanding of DNA transfer events in an indoor setting. This study further demonstrates the potential of human environmental DNA as an investigative tool in forensic genetics.
Collapse
Affiliation(s)
- Chiara Fantinato
- Forensic Genetics Research Group, Department of Forensic Sciences, Oslo University Hospital, Oslo, Norway; Department of Forensic Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Peter Gill
- Forensic Genetics Research Group, Department of Forensic Sciences, Oslo University Hospital, Oslo, Norway; Department of Forensic Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ane Elida Fonneløp
- Forensic Genetics Research Group, Department of Forensic Sciences, Oslo University Hospital, Oslo, Norway; Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
3
|
Goray M, Taylor D, Bibbo E, Fantinato C, Fonneløp AE, Gill P, van Oorschot RAH. Emerging use of air eDNA and its application to forensic investigations - A review. Electrophoresis 2024; 45:916-932. [PMID: 38419135 DOI: 10.1002/elps.202300228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/17/2023] [Accepted: 02/19/2024] [Indexed: 03/02/2024]
Abstract
Biological material is routinely collected at crime scenes and from exhibits and is a key type of evidence during criminal investigations. Improvements in DNA technologies allow collection and profiling of trace samples, comprised of few cells, significantly expanding the types of exhibits targeted for DNA analysis to include touched surfaces. However, success rates from trace and touch DNA samples tend to be poorer compared to other biological materials such as blood. Simultaneously, there have been recent advances in the utility of environmental DNA collection (eDNA) in identification and tracking of different biological organisms and species from bacteria to naked mole rats in different environments, including, soil, ice, snow, air and aquatic. This paper examines the emerging methods and research into eDNA collection, with a special emphasis on the potential forensic applications of human DNA collection from air including challenges and further studies required to progress implementation.
Collapse
Affiliation(s)
- Mariya Goray
- College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
| | - Duncan Taylor
- College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
- Forensic Science SA, Adelaide, South Australia, Australia
| | - Emily Bibbo
- College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
| | - Chiara Fantinato
- Forensic Genetics Research Group, Department of Forensic Sciences, Oslo University Hospital, Oslo, Norway
- Department of Forensic Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ane Elida Fonneløp
- Forensic Genetics Research Group, Department of Forensic Sciences, Oslo University Hospital, Oslo, Norway
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Peter Gill
- Forensic Genetics Research Group, Department of Forensic Sciences, Oslo University Hospital, Oslo, Norway
- Department of Forensic Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Roland A H van Oorschot
- Victoria Police Forensic Services Department, Office of Chief Forensic Scientist, Macleod, Victoria, Australia
- School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, Australia
| |
Collapse
|
4
|
Onofri M, Tommolini F, Severini S, Gambelunghe C, Lancia M, Carlini L, Carnevali E. Trace DNA Transfer in Co-Working Spaces: The Importance of Background DNA Analysis. Int J Mol Sci 2024; 25:2207. [PMID: 38396883 PMCID: PMC10888653 DOI: 10.3390/ijms25042207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
The presence of background DNA (bgDNA) can hinder the evaluation of DNA evidence at the activity level, especially when the suspect is expected to be retrieved due to their habitual occupation of the investigated environment. Based on real-life casework circumstances, this study investigates the prevalence, composition, origin, and probable transfer routes of bgDNA found on personal items in situations where their owner and person of interest (POI) share the same workspace. Baseline values of bgDNA were evaluated on the participants' personal items. Secondary and higher degree transfer scenarios of non-self DNA deposition were also investigated. The DNA from co-workers and co-inhabiting partners can be recovered from an individual's personal belongings. Non-self DNA present on the hands and deposited on a sterile surface can generate uninformative profiles. The accumulation of foreign DNA on surfaces over time appears to be crucial for the recovery of comparable profiles, resulting in detectable further transfer onto other surfaces. For a thorough evaluation of touch DNA traces at the activity level, it is necessary to collect information not only about DNA transfer probabilities but also about the presence of the POI as part of the 'baseline' bgDNA of the substrates involved.
Collapse
Affiliation(s)
- Martina Onofri
- Forensic Sciences Laboratory, Section of Legal Medicine, Department of Medicine and Surgery, Santa Maria Hospital, University of Perugia, 05100 Terni, Italy; (F.T.); (S.S.); (E.C.)
- Section of Legal Medicine, Department of Medicine and Surgery, University of Perugia, 06123 Perugia, Italy; (C.G.); (M.L.); (L.C.)
| | - Federica Tommolini
- Forensic Sciences Laboratory, Section of Legal Medicine, Department of Medicine and Surgery, Santa Maria Hospital, University of Perugia, 05100 Terni, Italy; (F.T.); (S.S.); (E.C.)
| | - Simona Severini
- Forensic Sciences Laboratory, Section of Legal Medicine, Department of Medicine and Surgery, Santa Maria Hospital, University of Perugia, 05100 Terni, Italy; (F.T.); (S.S.); (E.C.)
| | - Cristiana Gambelunghe
- Section of Legal Medicine, Department of Medicine and Surgery, University of Perugia, 06123 Perugia, Italy; (C.G.); (M.L.); (L.C.)
| | - Massimo Lancia
- Section of Legal Medicine, Department of Medicine and Surgery, University of Perugia, 06123 Perugia, Italy; (C.G.); (M.L.); (L.C.)
| | - Luigi Carlini
- Section of Legal Medicine, Department of Medicine and Surgery, University of Perugia, 06123 Perugia, Italy; (C.G.); (M.L.); (L.C.)
| | - Eugenia Carnevali
- Forensic Sciences Laboratory, Section of Legal Medicine, Department of Medicine and Surgery, Santa Maria Hospital, University of Perugia, 05100 Terni, Italy; (F.T.); (S.S.); (E.C.)
| |
Collapse
|
5
|
Fantinato C, Fonneløp AE, Bleka Ø, Vigeland MD, Gill P. The invisible witness: air and dust as DNA evidence of human occupancy in indoor premises. Sci Rep 2023; 13:19059. [PMID: 37925517 PMCID: PMC10625553 DOI: 10.1038/s41598-023-46151-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/28/2023] [Indexed: 11/06/2023] Open
Abstract
Humans constantly shed deoxyribonucleic acid (DNA) into the surrounding environment. This DNA may either remain suspended in the air or it settles onto surfaces as indoor dust. In this study, we explored the potential use of human DNA recovered from air and dust to investigate crimes where there are no visible traces available-for example, from a recently vacated drugs factory where multiple workers had been present. Samples were collected from three indoor locations (offices, meeting rooms and laboratories) characterized by different occupancy types and cleaning regimes. The resultant DNA profiles were compared with the reference profiles of 55 occupants of the premises. Our findings showed that indoor dust samples are rich sources of DNA and provide an historical record of occupants within the specific locality of collection. Detectable levels of DNA were also observed in air and dust samples from ultra-clean forensic laboratories which can potentially contaminate casework samples. We provide a Bayesian statistical model to estimate the minimum number of dust samples needed to detect all inhabitants of a location. The results of this study suggest that air and dust could become novel sources of DNA evidence to identify current and past occupants of a crime scene.
Collapse
Affiliation(s)
- Chiara Fantinato
- Department of Forensic Sciences, Oslo University Hospital, Oslo, Norway.
- Department of Forensic Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Ane Elida Fonneløp
- Department of Forensic Sciences, Oslo University Hospital, Oslo, Norway
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Øyvind Bleka
- Department of Forensic Sciences, Oslo University Hospital, Oslo, Norway
| | | | - Peter Gill
- Department of Forensic Sciences, Oslo University Hospital, Oslo, Norway
- Department of Forensic Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
6
|
Griffin A, Kirkbride KP, Henry J, Painter B, Linacre A. Comparison of three DNA extraction methods tested on illicit drug-related powders. Forensic Sci Int Genet 2023; 67:102927. [PMID: 37579544 DOI: 10.1016/j.fsigen.2023.102927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 08/16/2023]
Abstract
The detection of human DNA on and within illicit drug preparations is novel and a focus of current research. Previous studies have indicated that certain drug-related powders present in illicit drug preparations can interfere with downstream DNA analysis when directly added to the PCR. Therefore, it is important to determine if these drug-related powders are effectively removed during the DNA extraction or whether traces of powder remain to interfere with DNA processing. Three extraction methods were selected to assess their efficiency at removing drug-related powders for downstream processes using DNA from both saliva and touch depositions. This is the first study to compare efficiencies of DNA extraction methods from drug-related powders. The extraction methods compared were the DNA IQ™ System, the QIAamp® DNA Investigator Kit and the combination of a simple lysis step followed by use of the Microcon® DNA Fast Flow device. Saliva was added to dimethylsulfone (DMS), nitrostyrene and PROSOLV® tablet mixture to determine the effect of powder type (based on solubility). Saliva was also added to 0, 50, 200 and 400 mg of DMS to determine the effect of an increase in DMS quantity. Trace DNA was deposited onto DMS using a worn glove approach. These samples were re-tested six months post-DNA deposition and profiled for further comparisons. Ten replicates were conducted for each condition with five replicates of saliva positive controls per method (n = 255 samples). A subset of samples was chemically analysed to determine if DMS was present in the final DNA eluant. The readily soluble DMS did not interfere with any of the extraction methods at lower amounts, however increasing the DMS to 400 mg reduced the relative DNA yields using the Microcon® and Investigator methods. The tablet mixture reduced the relative DNA yield of all three methods, however the nitrostyrene (which was relatively insoluble) only reduced the relative DNA yield of the DNA IQ™. The Investigator method performed the best with the trace samples, followed by the Microcon® method and then the DNA IQ™. DMS was detected in all extracts chemically analysed from the DNA IQ™ and Microcon®, whereas only one sample tested from the Investigator kit contained DMS in the extract and was in a relatively low amount compared to the other samples. Not one kit outperformed the others in all comparisons, however the Investigator kit was the most efficient overall at optimising the DNA yield whilst also removing the powders more effectively.
Collapse
Affiliation(s)
- Amy Griffin
- College of Science & Engineering, Flinders University, Adelaide 5042, Australia.
| | - K Paul Kirkbride
- College of Science & Engineering, Flinders University, Adelaide 5042, Australia
| | - Julianne Henry
- College of Science & Engineering, Flinders University, Adelaide 5042, Australia; Forensic Science SA, GPO Box 2790, Adelaide 5000, Australia
| | - Ben Painter
- College of Science & Engineering, Flinders University, Adelaide 5042, Australia; Forensic Science SA, GPO Box 2790, Adelaide 5000, Australia
| | - Adrian Linacre
- College of Science & Engineering, Flinders University, Adelaide 5042, Australia
| |
Collapse
|
7
|
Reither JB, Taylor D, Szkuta B, van Oorschot RA. Exploring how the LR of a POI in a target sample is impacted by awareness of the profile of the background derived from an area adjacent to the target sample. Forensic Sci Int Genet 2023; 65:102868. [DOI: 10.1016/j.fsigen.2023.102868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023]
|
8
|
Fantinato C, Gill P, Fonneløp AE. Detection of human DNA in the air. FORENSIC SCIENCE INTERNATIONAL GENETICS SUPPLEMENT SERIES 2022. [DOI: 10.1016/j.fsigss.2022.10.063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
9
|
Griffin A, Kirkbride KP, Henry J, Painter B, Linacre A. Recovery of integrated and surface trace DNA from illicit drug tablets. Forensic Sci Int Genet 2022; 61:102772. [PMID: 36099863 DOI: 10.1016/j.fsigen.2022.102772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/11/2022] [Accepted: 09/06/2022] [Indexed: 11/04/2022]
Abstract
In many parts of the world, tablets are a commonly encountered form of illicit drug preparation. Whilst previous research has investigated the feasibility of detecting trace DNA on illicit drug capsules, this has not been performed for tablets. Tablets have a unique substrate surface and therefore the amount of DNA transferring to them and persisting on them may be different to capsules; there may also be differences in the collection efficiency and the outcome of downstream DNA processing and analysis steps. The ability to profile the DNA from individuals who handled tablets during their preparation and distribution would add another level of discrimination between various drug seizures or corroborate chemical profiling outcomes which may link various seizures to a common origin. DNA from two different individuals (male and female) was added to the tablets in two stages. Firstly, tablet powder was spiked with DNA from one individual to mimic the situation where DNA traces are incorporated during the drug synthesis or final drying stages. The powder was then pressed into tablets in a clean environment without intentional addition of DNA. Subsequently, a second individual counted out the tablets into bags of ten to mimic the preparation for distribution at a user level. The exterior of the tablet was swabbed and then the entire tablet and the swab were put through separate DNA extractions, yielding two DNA extracts for each tablet. Swabs of the exterior tablet surface yielded single source DNA profiles that identified the tablet handler in 100 % of samples. The tablet extract yielded the donor of the DNA intentionally added within the drug powder in 80% of samples with varying levels of support, however contributions of the exterior handler were detected in 60 % of samples. The identification of individuals potentially involved in the synthesis of the drugs compared to the distribution of the tablets will provide invaluable strategic intelligence related to illicit drug investigations and to law enforcement agencies.
Collapse
Affiliation(s)
- Amy Griffin
- College of Science & Engineering, Flinders University, Adelaide 5042, Australia.
| | - K Paul Kirkbride
- College of Science & Engineering, Flinders University, Adelaide 5042, Australia
| | - Julianne Henry
- College of Science & Engineering, Flinders University, Adelaide 5042, Australia; Forensic Science SA, GPO Box 2790, Adelaide 5000, Australia
| | - Ben Painter
- College of Science & Engineering, Flinders University, Adelaide 5042, Australia; Forensic Science SA, GPO Box 2790, Adelaide 5000, Australia
| | - Adrian Linacre
- College of Science & Engineering, Flinders University, Adelaide 5042, Australia
| |
Collapse
|
10
|
Muramoto S, Osborn W, Gillen G. Visualizing shed skin cells in fingerprint residue using dark-field microscopy. J Forensic Sci 2021; 66:1257-1266. [PMID: 33760258 DOI: 10.1111/1556-4029.14707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/01/2021] [Accepted: 03/05/2021] [Indexed: 12/01/2022]
Abstract
This proof-of-concept study shows that dark-field microscopy provides sufficient contrast for cell visualization in fingerprints with high sebum content. Although the application is limited to smooth surfaces that do not scatter light, such as polyethylene terephthalate (PET), it was able to measure the number of cells deposited within a fingerprint residue and the reduction in cell transfer with repeated skin contact. On a PET surface, at roughly 5 N of contact force, a typical finger transfers several hundred cells onto the surface. Over subsequent finger contacts onto a clean PET surface, this number decreased exponentially until a steady state was reached, which is characterized by the transfer of (78 ± 36) cells or (0.46 ± 0.21) cells/mm2 when normalized for fingerprint area. High uncertainty in cell transfer was due to: the highly variable nature of a human finger (where the number of loose cells varies from person to person and from day to day depending on what they touch) and difficulties in controlling the contact force and finger movement such as twisting during deposition (where twisting of the finger can expose a new patch of skin to the substrate, increasing the number of cell transfer). Plasma etching was also explored as an effective way to validate dark-field microscopy for cell counting. Although limited to inorganic substrates due to etching effects, exposing the fingerprint for less than 10 min can remove a majority of the sebum while keeping the cells intact for a before-and-after comparison using light microscopy.
Collapse
Affiliation(s)
- Shin Muramoto
- National Institute of Standards and Technology, Gaithersburg, MD, 20895, USA
| | - William Osborn
- National Institute of Standards and Technology, Gaithersburg, MD, 20895, USA
| | - Greg Gillen
- National Institute of Standards and Technology, Gaithersburg, MD, 20895, USA
| |
Collapse
|
11
|
A review of trace “Touch DNA” deposits: Variability factors and an exploration of cellular composition. Forensic Sci Int Genet 2019; 39:8-18. [DOI: 10.1016/j.fsigen.2018.11.019] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 11/14/2018] [Accepted: 11/26/2018] [Indexed: 02/07/2023]
|
12
|
Oldfield C, Morgan RM, Miles HF, French JC. The efficacy of luminol in detecting bloodstains that have been washed with sodium percarbonate and exposed to environmental conditions. AUST J FORENSIC SCI 2017. [DOI: 10.1080/00450618.2016.1264478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- C. Oldfield
- UCL Department of Security and Crime Science, London, UK
| | - R. M. Morgan
- UCL Department of Security and Crime Science, London, UK
- UCL Centre for the Forensic Sciences, London, UK
| | - H. F. Miles
- UCL Department of Security and Crime Science, London, UK
- UCL Centre for the Forensic Sciences, London, UK
| | - J. C. French
- UCL Department of Security and Crime Science, London, UK
- UCL Centre for the Forensic Sciences, London, UK
| |
Collapse
|
13
|
Ostojic L, Wurmbach E. Analysis of fingerprint samples, testing various conditions, for forensic DNA identification. Sci Justice 2017; 57:35-40. [DOI: 10.1016/j.scijus.2016.08.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 08/25/2016] [Accepted: 08/30/2016] [Indexed: 01/28/2023]
|
14
|
Prevalence of human cell material: DNA and RNA profiling of public and private objects and after activity scenarios. Forensic Sci Int Genet 2016; 21:81-9. [DOI: 10.1016/j.fsigen.2015.12.012] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 12/11/2015] [Accepted: 12/19/2015] [Indexed: 11/22/2022]
|
15
|
|
16
|
Ostojic L, Klempner SA, Patel RA, Mitchell AA, Axler-DiPerte GL, Wurmbach E. Qualitative and quantitative assessment of single fingerprints in forensic DNA analysis. Electrophoresis 2014; 35:3165-72. [DOI: 10.1002/elps.201400177] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 06/26/2014] [Accepted: 07/18/2014] [Indexed: 11/08/2022]
Affiliation(s)
- Lana Ostojic
- Department of Forensic Biology; Office of Chief Medical Examiner; New York NY USA
| | - Stacey A. Klempner
- Department of Forensic Biology; Office of Chief Medical Examiner; New York NY USA
| | - Rosni A. Patel
- Department of Forensic Biology; Office of Chief Medical Examiner; New York NY USA
| | | | | | - Elisa Wurmbach
- Department of Forensic Biology; Office of Chief Medical Examiner; New York NY USA
| |
Collapse
|
17
|
|
18
|
Kester KM, Toothman MH, Brown BL, Street WS, Cruz TD. Recovery of environmental human DNA by insects. J Forensic Sci 2011; 55:1543-51. [PMID: 20666923 DOI: 10.1111/j.1556-4029.2010.01500.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We tested the hypotheses that foraging insects can acquire human DNA from the environment and that insect-delivered human DNA is of sufficient quantity and quality to permit standard forensic analyses. Houseflies, German cockroaches, and camel crickets were exposed to dusty surfaces and then assayed for human mitochondrial and nuclear loci by conventional and qPCR, and multiplex STR amplification. Over two experiments, 100% of insect groups and 94% of dust controls tested positive for human DNA. Of 177 individuals, 33-67% tested positive and 13 yielded quantifiable human DNA (mean = 0.022 ± 0.006 ng; mean dust control = 2.448 ± 0.960 ng); four had at least one positive allele call for one or more locus; eight others showed multiple peaks at some loci. Results imply that application to routine forensic casework is limited given current detection methodology yet demonstrate the potential use of insects as environmental samplers for human DNA.
Collapse
Affiliation(s)
- Karen M Kester
- Department of Biology, Virginia Commonwealth University, 1000 W. Cary Street, Richmond, VA 23284-2012, USA.
| | | | | | | | | |
Collapse
|
19
|
van Oorschot RAH, Ballantyne KN, Mitchell RJ. Forensic trace DNA: a review. INVESTIGATIVE GENETICS 2010; 1:14. [PMID: 21122102 PMCID: PMC3012025 DOI: 10.1186/2041-2223-1-14] [Citation(s) in RCA: 191] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Accepted: 12/01/2010] [Indexed: 11/10/2022]
Abstract
DNA analysis is frequently used to acquire information from biological material to aid enquiries associated with criminal offences, disaster victim identification and missing persons investigations. As the relevance and value of DNA profiling to forensic investigations has increased, so too has the desire to generate this information from smaller amounts of DNA. Trace DNA samples may be defined as any sample which falls below recommended thresholds at any stage of the analysis, from sample detection through to profile interpretation, and can not be defined by a precise picogram amount. Here we review aspects associated with the collection, DNA extraction, amplification, profiling and interpretation of trace DNA samples. Contamination and transfer issues are also briefly discussed within the context of trace DNA analysis. Whilst several methodological changes have facilitated profiling from trace samples in recent years it is also clear that many opportunities exist for further improvements.
Collapse
Affiliation(s)
- Roland AH van Oorschot
- Forensic Services Department, Victoria Police, 31 Forensic Drive, Macleod 3085, Victoria, Australia
| | - Kaye N Ballantyne
- Department of Forensic Molecular Biology, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands
| | - R John Mitchell
- Department of Genetics, La Trobe University, Melbourne, Victoria 3086, Australia
| |
Collapse
|