1
|
Jiang Z, Wu L, van der Leeden B, van Rossum AC, Niessen HW, Krijnen PA. NOX2 and NOX5 are increased in cardiac microvascular endothelium of deceased COVID-19 patients. Int J Cardiol 2023; 370:454-462. [PMID: 36332749 PMCID: PMC9625847 DOI: 10.1016/j.ijcard.2022.10.172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 10/03/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Cardiac injury and inflammation are common findings in COVID-19 patients. Autopsy studies have revealed cardiac microvascular endothelial damage and thrombosis in COVID-19 patients, indicative of microvascular dysfunction in which reactive oxygen species (ROS) may play a role. We explored whether the ROS producing proteins NOX2, NOX4 and NOX5 are involved in COVID-19-induced cardio-microvascular endothelial dysfunction. METHODS Heart tissue were taken from the left (LV) and right (RV) ventricle of COVID-19 patients (n = 15) and the LV of controls (n = 14) at autopsy. The NOX2-, NOX4-, NOX5- and Nitrotyrosine (NT)-positive intramyocardial blood vessels fractions were quantitatively analyzed using immunohistochemistry. RESULTS The LV NOX2+, NOX5+ and NT+ blood vessels fractions in COVID-19 patients were significantly higher than in controls. The fraction of NOX4+ blood vessels in COVID-19 patients was comparable with controls. In COVID-19 patients, the fractions of NOX2+, NOX5+ and NT+ vessels did not differ significantly between the LV and RV, and correlated positively between LV and RV in case of NOX5 (r = 0.710; p = 0.006). A negative correlation between NOX5 and NOX2 (r = -0.591; p = 0.029) and between NOX5 and disease time (r = -0.576; p = 0.034) was noted in the LV of COVID-19 patients. CONCLUSION We show the induction of NOX2 and NOX5 in the cardiac microvascular endothelium in COVID-19 patients, which may contribute to the previously observed cardio-microvascular dysfunction in COVID-19 patients. The exact roles of these NOXes in pathogenesis of COVID-19 however remain to be elucidated.
Collapse
Affiliation(s)
- Zhu Jiang
- Department of Pathology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Pathology, De Boelelaan 1117, Amsterdam, the Netherlands,Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, the Netherlands,Corresponding author at: Department of Pathology, Amsterdam University Medical Centre, Room number L2-111, Meibergdreef 9, 1105, AZ, Amsterdam, the Netherlands
| | - Linghe Wu
- Department of Pathology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Pathology, De Boelelaan 1117, Amsterdam, the Netherlands,Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, the Netherlands
| | - Britt van der Leeden
- Department of Pathology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Pathology, De Boelelaan 1117, Amsterdam, the Netherlands,Amsterdam Institute for Infection and Immunity, AUMC, Location VUmc, Amsterdam, the Netherlands
| | - Albert C. van Rossum
- Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, the Netherlands,Department of Cardiology, AUMC, location VUmc, Amsterdam, the Netherlands
| | - Hans W.M. Niessen
- Department of Pathology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Pathology, De Boelelaan 1117, Amsterdam, the Netherlands,Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, the Netherlands,Department of Cardiac Surgery, AUMC, Location AMC and VUmc, Amsterdam, the Netherlands
| | - Paul A.J. Krijnen
- Department of Pathology, Amsterdam UMC Location Vrije Universiteit Amsterdam, Pathology, De Boelelaan 1117, Amsterdam, the Netherlands,Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, the Netherlands
| |
Collapse
|
2
|
Role of Phosphoinositide 3-Kinase in Regulation of NOX-Derived Reactive Oxygen Species in Cancer. Antioxidants (Basel) 2022; 12:antiox12010067. [PMID: 36670929 PMCID: PMC9854495 DOI: 10.3390/antiox12010067] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/22/2022] [Accepted: 12/24/2022] [Indexed: 12/30/2022] Open
Abstract
Activation of NADPH oxidases (NOX) and the ensuing formation of reactive oxygen species (ROS) is a vital aspect of antimicrobial defense but may also promote tumorigenesis. Enhanced NOX activity has been associated with aberrant activation of oncogenic cascades such as the phosphoinositide 3-kinase (PI3K) signaling pathway, which is upregulated in several malignancies. In this review, we examine the role of PI3K on the regulation of NOX-induced ROS formation in cancer.
Collapse
|
3
|
Park J, Jang J, Cha SR, Baek H, Lee J, Hong SH, Lee HA, Lee TJ, Yang SR. L-carnosine Attenuates Bleomycin-Induced Oxidative Stress via NFκB Pathway in the Pathogenesis of Pulmonary Fibrosis. Antioxidants (Basel) 2022; 11:antiox11122462. [PMID: 36552670 PMCID: PMC9774395 DOI: 10.3390/antiox11122462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/08/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Idiopathic Pulmonary fibrosis (IPF), a chronic interstitial lung disease, has pulmonary manifestations clinically characterized by collagen deposition, epithelial cell injury, and a decline in lung function. L-carnosine, a dipeptide consisting of β-alanine and L-histidine, has demonstrated a therapeutic effect on various diseases because of its pivotal function. Despite the effect of L-carnosine in experimental IPF mice, its anti-oxidative effect and associated intercellular pathway, particularly alveolar epithelial cells, remain unknown. Therefore, we demonstrated the anti-fibrotic and anti-inflammatory effects of L-carnosine via Reactive oxygen species (ROS) regulation in bleomycin (BLM)-induced IPF mice. The mice were intratracheally injected with BLM (3 mg/kg) and L-carnosine (150 mg/kg) was orally administrated for 2 weeks. BLM exposure increased the protein level of Nox2, Nox4, p53, and Caspase-3, whereas L-carnosine treatment suppressed the protein level of Nox2, Nox4, p53, and Caspase-3 cleavage in mice. In addition, the total SOD activity and mRNA level of Sod2, catalase, and Nqo1 increased in mice treated with L-carnosine. At the cellular level, a human fibroblast (MRC-5) and mouse alveolar epithelial cell (MLE-12) were exposed to TGFβ1 following L-carnosine treatment to induce fibrogenesis. Moreover, MLE-12 cells were exposed to cigarette smoke extract (CSE). Consequently, L-carnosine treatment ameliorated fibrogenesis in fibroblasts and alveolar epithelial cells, and inflammation induced by ROS and CSE exposure was ameliorated. These results were associated with the inhibition of the NFκB pathway. Collectively, our data indicate that L-carnosine induces anti-inflammatory and anti-fibrotic effects on alveolar epithelial cells against the pathogenesis of IPF.
Collapse
Affiliation(s)
- Jaehyun Park
- Department of Thoracic and Cardiovascular Surgery, School of Medicine, Kangwon National University, Gangwondaehakgil l, Chuncheon 24341, Gangwon, Republic of Korea
| | - Jimin Jang
- Department of Thoracic and Cardiovascular Surgery, School of Medicine, Kangwon National University, Gangwondaehakgil l, Chuncheon 24341, Gangwon, Republic of Korea
| | - Sang-Ryul Cha
- Department of Thoracic and Cardiovascular Surgery, School of Medicine, Kangwon National University, Gangwondaehakgil l, Chuncheon 24341, Gangwon, Republic of Korea
| | - Hyosin Baek
- Department of Thoracic and Cardiovascular Surgery, School of Medicine, Kangwon National University, Gangwondaehakgil l, Chuncheon 24341, Gangwon, Republic of Korea
| | - Jooyeon Lee
- Department of Thoracic and Cardiovascular Surgery, School of Medicine, Kangwon National University, Gangwondaehakgil l, Chuncheon 24341, Gangwon, Republic of Korea
| | - Seok-Ho Hong
- Department of Internal Medicine, School of Medicine, Kangwon National University, Gangwondaehakgil 1, Chuncheon 24341, Gangwon, Republic of Korea
| | - Hyang-Ah Lee
- Department of Obstetrics and Gynecology, School of Medicine, Kangwon National University, Gangwondaehakgil 1, Chuncheon 24341, Gangwon, Republic of Korea
| | - Tae-Jin Lee
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 24341, Gangwon, Republic of Korea
- Correspondence: (T.-J.L.); (S.-R.Y.); Tel.: +82-33-250-6481 (T.-J.L.); 82-33-250-7883 (S.-R.Y.)
| | - Se-Ran Yang
- Department of Thoracic and Cardiovascular Surgery, School of Medicine, Kangwon National University, Gangwondaehakgil l, Chuncheon 24341, Gangwon, Republic of Korea
- Correspondence: (T.-J.L.); (S.-R.Y.); Tel.: +82-33-250-6481 (T.-J.L.); 82-33-250-7883 (S.-R.Y.)
| |
Collapse
|
4
|
Yoshida Y, Shimizu I, Minamino T. Capillaries as a Therapeutic Target for Heart Failure. J Atheroscler Thromb 2022; 29:971-988. [PMID: 35370224 PMCID: PMC9252615 DOI: 10.5551/jat.rv17064] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 02/21/2022] [Indexed: 11/24/2022] Open
Abstract
Prognosis of heart failure remains poor, and it is urgent to find new therapies for this critical condition. Oxygen and metabolites are delivered through capillaries; therefore, they have critical roles in the maintenance of cardiac function. With aging or age-related disorders, capillary density is reduced in the heart, and the mechanisms involved in these processes were reported to suppress capillarization in this organ. Studies with rodents showed capillary rarefaction has causal roles for promoting pathologies in failing hearts. Drugs used as first-line therapies for heart failure were also shown to enhance the capillary network in the heart. Recently, the approach with senolysis is attracting enthusiasm in aging research. Genetic or pharmacological approaches concluded that the specific depletion of senescent cells, senolysis, led to reverse aging phenotype. Reagents mediating senolysis are described to be senolytics, and these compounds were shown to ameliorate cardiac dysfunction together with enhancement of capillarization in heart failure models. Studies indicate maintenance of the capillary network as critical for inhibition of pathologies in heart failure.
Collapse
Affiliation(s)
- Yohko Yoshida
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Advanced Senotherapeutics, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Ippei Shimizu
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Tohru Minamino
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Japan Agency for Medical Research and Development-Core Research for Evolutionary Medical Science and Technology (AMEDCREST), Japan Agency for Medical Research and Development, Tokyo, Japan
| |
Collapse
|
5
|
Deficiency of NARFL increases transcription of NADPH oxidases and ROS production impairing the function of endothelial cells. Life Sci 2022; 301:120567. [DOI: 10.1016/j.lfs.2022.120567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/27/2022] [Accepted: 04/18/2022] [Indexed: 11/20/2022]
|
6
|
Yang X, Sun Y, Liu X, Jiang Z. A risk model of 10 aging-related genes for predicting survival and immune response in triple-negative breast cancer. Cancer Med 2022; 11:3182-3193. [PMID: 35297220 PMCID: PMC9385588 DOI: 10.1002/cam4.4674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/05/2022] [Accepted: 02/08/2022] [Indexed: 11/23/2022] Open
Abstract
Accumulated studies showed that the clinical significance of aging on the development and malignancy of tumors, while the relationship between aging and the prognosis, immune response in triple‐negative breast cancer (TNBC) has not been well clarified. Here, we constructed a risk model of 10 prognostic aging‐related genes (ARGs) from METABRIC database. Then, TNBC patients were classified into high‐ and low‐risk groups, the survival diversity, immune response, genomic function, and tumor mutation burden (TMB) between different risk groups were explored in METABRIC, TCGA, and GSE58812 cohorts. Results showed that patients in the high‐risk group had poorer survival outcomes compared to their counterparts (all p < 0.05), and the nomogram we established showed reliable prediction ability for survival in TNBC patients. Besides, TNBC patients with high‐risk scores had a lower expression of immune checkpoint markers and a lower fraction of activated immune cells. Furthermore, GSEA showed that Notch signaling pathway was significantly enriched in the high‐risk group. Thus, a risk model based on the aging‐related genes was developed and validated in this study, which may serve as a potential biomarker for prognosis and personalized treatment in TNBCs.
Collapse
Affiliation(s)
- Xia Yang
- Department of pathology, Sir Run Run Shaw hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yanhua Sun
- Department of Pathology, first affiliated hospital of Shenzhen University, Shenzhen, China
| | - Xia Liu
- Department of Pathology, first affiliated hospital of Shenzhen University, Shenzhen, China
| | - Zhinong Jiang
- Department of pathology, Sir Run Run Shaw hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
7
|
Bakr MH, Radwan E, Shaltout AS, Farrag AA, Mahmoud AR, Abd-Elhamid TH, Ali M. Chronic exposure to tramadol induces cardiac inflammation and endothelial dysfunction in mice. Sci Rep 2021; 11:18772. [PMID: 34548593 PMCID: PMC8455605 DOI: 10.1038/s41598-021-98206-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 09/06/2021] [Indexed: 11/21/2022] Open
Abstract
Tramadol is an opioid extensively used to treat moderate to severe pain; however, prolonged therapy is associated with several tissues damage. Chronic use of tramadol was linked to increased hospitalizations due to cardiovascular complications. Limited literature has described the effects of tramadol on the cardiovascular system, so we sought to investigate these actions and elucidate the underlying mechanisms. Mice received tramadol hydrochloride (40 mg/kg body weight) orally for 4 successive weeks. Oxidative stress, inflammation, and cardiac toxicity were assessed. In addition, eNOS expression was evaluated. Our results demonstrated marked histopathological alteration in heart and aortic tissues after exposure to tramadol. Tramadol upregulated the expression of oxidative stress and inflammatory markers in mice heart and aorta, whereas downregulated eNOS expression. Tramadol caused cardiac damage shown by the increase in LDH, Troponin I, and CK-MB activities in serum samples. Overall, these results highlight the risks of tramadol on the cardiovascular system.
Collapse
Affiliation(s)
- Marwa H Bakr
- Department of Histology and Cell Biology, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt.
| | - Eman Radwan
- Department of Medical Biochemistry, Faculty of Medicine, Assiut University, Assiut, Egypt.,Department of Biochemistry, Sphinx University, Assiut, Egypt
| | - Asmaa S Shaltout
- Department of Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Alshaimaa A Farrag
- Department of Histology and Cell Biology, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt.,Department of Anatomy, College of Medicine, Bisha University, Bisha, Kingdom of Saudi Arabia
| | - Amany Refaat Mahmoud
- Department of Human Anatomy and Embryology, Faculty of Medicine, Assiut University, Assiut, Egypt.,Department of Basic Medical Sciences, Unaizah College of Medicine and Medical Sciences, Qassim University, Unaizah, Kingdom of Saudi Arabia
| | - Tarek Hamdy Abd-Elhamid
- Department of Histology and Cell Biology, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt
| | - Maha Ali
- Department of Medical Biochemistry, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
8
|
Huang H, Liu X, Chen D, Lu Y, Li J, Du F, Zhang C, Lu L. Melatonin prevents endothelial dysfunction in SLE by activating the nuclear receptor retinoic acid-related orphan receptor-α. Int Immunopharmacol 2020; 83:106365. [PMID: 32172204 DOI: 10.1016/j.intimp.2020.106365] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 01/30/2020] [Accepted: 02/28/2020] [Indexed: 12/22/2022]
Abstract
Atherosclerotic cardiovascular disease confers significant morbidity and mortality in patients with systemic lupus erythematosus (SLE). A substantial proportion of patients with SLE display accelerated endothelial dysfunction, which precedes cardiovascular disease. Melatonin and its nuclear receptor retinoid-related orphan receptor alpha (RORα) have been reported to have some protective effects on the development of atherosclerosis. However, the function of melatonin in SLE-induced endothelial dysfunction and the role that RORα plays are still unknown. In this study, we found that RORα protein expression was decreased in aortas of lupus-prone mice and in human umbilical vein endothelial cells (HUVECs) cultured with medium containing sera of patients with SLE. Melatonin-treated HUVECs showed a decrease of pro-inflammatory mRNAs [interleukin-1beta (IL-1β), interferon-gamma (IFN-γ), and tumor necrosis factor-alpha (TNF-α)] under the stimulation of SLE medium. Melatonin increased nitric oxide and antioxidant mRNAs (SOD1, GPX1, and CAT) and downregulated reactive oxygen species (ROS) level in HUVECs, which may subsequently delay endothelial senescence and promote HUVEC proliferation and repair after injury. Melatonin inhibited SLE medium-induced RAW264.7 macrophage migration. HUVECs pretreated with melatonin expressed less adhesion-related proteins (ICAM-1 and VCAM-1); as a result, these cells adhered to fewer peripheral blood monocytes. In addition, we also showed that the protective effects of melatonin on endothelial cells were largely diminished when RORα was knockdown in HUVECs. In conclusion, by targeting the nuclear receptor RORα, melatonin preserves normal functions of endothelium in SLE by its anti-inflammatory, antioxidant, and anti-senescence effects. RORα may have the potential to become a prophylactic or therapeutic target in preventing endothelial dysfunction and atherosclerotic cardiovascular disease in patients with SLE.
Collapse
Affiliation(s)
- Huijing Huang
- Department of Rheumatology, Ren Ji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xuesong Liu
- Department of Rheumatology, Ren Ji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Department of Ultrasound, Ren Ji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Dandan Chen
- Department of Rheumatology, Ren Ji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yikang Lu
- Department of Rheumatology, Ren Ji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jia Li
- Department of Rheumatology, Ren Ji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Fang Du
- Department of Rheumatology, Ren Ji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Chunyan Zhang
- Department of Rheumatology, Ren Ji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Liangjing Lu
- Department of Rheumatology, Ren Ji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| |
Collapse
|
9
|
Morgan RG, Walker AE, Trott DW, Machin DR, Henson GD, Reihl KD, Cawthon RM, Denchi EL, Liu Y, Bloom SI, Phuong TT, Richardson RS, Lesniewski LA, Donato AJ. Induced Trf2 deletion leads to aging vascular phenotype in mice associated with arterial telomere uncapping, senescence signaling, and oxidative stress. J Mol Cell Cardiol 2018; 127:74-82. [PMID: 30502348 DOI: 10.1016/j.yjmcc.2018.11.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 10/18/2018] [Accepted: 11/21/2018] [Indexed: 12/19/2022]
Abstract
Age-related vascular dysfunction in large elastic and resistance arteries is associated with reductions in microvascular perfusion and elevations in blood pressure. Recent evidence indicates that telomere uncapping-induced senescence in vascular cells may be an important source of oxidative stress and vascular dysfunction in aging, but the causal relationship between these processes has yet to be elucidated. To test this important unexplored hypothesis, we measured arterial senescence signaling and oxidative stress, carotid and mesenteric artery endothelium-dependent vasodilatory capacity, markers of mesenteric microvascular perfusion and endothelial glycocalyx deterioration, and blood pressure in a novel mouse model of Cre-inducible whole body Trf2 deletion and telomere uncapping. Trf2 deletion led to a 320% increase in arterial senescence signaling (P < .05). There was a concurrent 29% and 22% reduction in peak endothelium-dependent vasodilation in carotid and mesenteric arteries, respectively, as well as a 63% reduction in mesenteric microvascular endothelial glycocalyx thickness (all P ≤ .01). Mesenteric microvascular perfusion was reduced by 8% and systolic blood pressure was increased by 9% following Trf2 deletion (both P < .05). Trf2 deletion also led to a pro-oxidative arterial phenotype characterized by increased in NADPH oxidase gene expression; a 210% increase in superoxide levels that was partly dependent on NADPH oxidase activity; and an oxidative stress mediated reduction in carotid artery vasodilation (all P ≤ .05). Collectively, our findings demonstrate that induced Trf2 deletion leads to telomere uncapping, increased senescence signaling, and oxidative stress mediated functional impairments in the vasculature similar to those seen in human aging.
Collapse
Affiliation(s)
- R Garrett Morgan
- Division of Geriatrics, Department of Internal Medicine, University of Utah School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Ashley E Walker
- Division of Geriatrics, Department of Internal Medicine, University of Utah School of Medicine, University of Utah, Salt Lake City, UT, USA; Geriatric Research, Education, and Clinical Center, George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | - Daniel W Trott
- Division of Geriatrics, Department of Internal Medicine, University of Utah School of Medicine, University of Utah, Salt Lake City, UT, USA; Geriatric Research, Education, and Clinical Center, George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | - Daniel R Machin
- Division of Geriatrics, Department of Internal Medicine, University of Utah School of Medicine, University of Utah, Salt Lake City, UT, USA; Geriatric Research, Education, and Clinical Center, George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | - Grant D Henson
- Division of Geriatrics, Department of Internal Medicine, University of Utah School of Medicine, University of Utah, Salt Lake City, UT, USA; Geriatric Research, Education, and Clinical Center, George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, UT, USA; Department of Exercise and Sport Science, University of Utah, Salt Lake City, UT, USA
| | - Kelly D Reihl
- Division of Geriatrics, Department of Internal Medicine, University of Utah School of Medicine, University of Utah, Salt Lake City, UT, USA; Geriatric Research, Education, and Clinical Center, George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | - Richard M Cawthon
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
| | - Eros L Denchi
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Yu Liu
- Division of Geriatrics, Department of Internal Medicine, University of Utah School of Medicine, University of Utah, Salt Lake City, UT, USA; Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Samuel I Bloom
- Division of Geriatrics, Department of Internal Medicine, University of Utah School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Tam T Phuong
- Division of Geriatrics, Department of Internal Medicine, University of Utah School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Russell S Richardson
- Division of Geriatrics, Department of Internal Medicine, University of Utah School of Medicine, University of Utah, Salt Lake City, UT, USA; Geriatric Research, Education, and Clinical Center, George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, UT, USA; Department of Exercise and Sport Science, University of Utah, Salt Lake City, UT, USA
| | - Lisa A Lesniewski
- Division of Geriatrics, Department of Internal Medicine, University of Utah School of Medicine, University of Utah, Salt Lake City, UT, USA; Geriatric Research, Education, and Clinical Center, George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | - Anthony J Donato
- Division of Geriatrics, Department of Internal Medicine, University of Utah School of Medicine, University of Utah, Salt Lake City, UT, USA; Geriatric Research, Education, and Clinical Center, George E. Wahlen Department of Veterans Affairs Medical Center, Salt Lake City, UT, USA; Department of Biochemistry, University of Utah, Salt Lake City, UT, USA; Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
10
|
Carneiro MBH, Roma EH, Ranson AJ, Doria NA, Debrabant A, Sacks DL, Vieira LQ, Peters NC. NOX2-Derived Reactive Oxygen Species Control Inflammation during Leishmania amazonensis Infection by Mediating Infection-Induced Neutrophil Apoptosis. THE JOURNAL OF IMMUNOLOGY 2017; 200:196-208. [PMID: 29158417 DOI: 10.4049/jimmunol.1700899] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 10/23/2017] [Indexed: 12/25/2022]
Abstract
Reactive oxygen species (ROS) produced by NADPH phagocyte oxidase isoform (NOX2) are critical for the elimination of intracellular pathogens in many infections. Despite their importance, the role of ROS following infection with the eukaryotic pathogen Leishmania has not been fully elucidated. We addressed the role of ROS in C57BL/6 mice following intradermal infection with Leishmania amazonensis. Despite equivalent parasite loads compared with wild-type (WT) mice, mice deficient in ROS production by NOX2 due to the absence of the gp91 subunit (gp91phox-/-) had significantly more severe pathology in the later stages of infection. Pathology in gp91phox-/- mice was not associated with alterations in CD4+ T cell-mediated immunity but was preceded by enhanced neutrophil accumulation at the dermal infection site. Ex vivo analysis of infected versus uninfected neutrophils revealed a deficiency in infection-driven apoptosis in gp91phox-/- mice versus WT mice. gp91phox-/- mice presented with higher percentages of healthy or necrotic neutrophils but lower percentages of apoptotic neutrophils at early and chronic time points. In vitro infection of gp91phox-/- versus WT neutrophils also revealed reduced apoptosis and CD95 expression but increased necrosis in infected cells at 10 h postinfection. Provision of exogenous ROS in the form of H2O2 reversed the necrotic phenotype and restored CD95 expression on infected gp91phox-/- neutrophils. Although ROS production is typically viewed as a proinflammatory event, our observations identify the importance of ROS in mediating appropriate neutrophil apoptosis and the importance of apoptosis in inflammation and pathology during chronic infection.
Collapse
Affiliation(s)
- Matheus B H Carneiro
- Snyder Institute for Chronic Diseases, Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4Z6, Canada.,Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Eric H Roma
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil.,Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20852; and
| | - Adam J Ranson
- Snyder Institute for Chronic Diseases, Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4Z6, Canada
| | - Nicole A Doria
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20852; and
| | - Alain Debrabant
- Division of Emerging and Transfusion Transmitted Diseases, Office of Blood Research and Review, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Bethesda, MD 20993
| | - David L Sacks
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20852; and
| | - Leda Q Vieira
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Nathan C Peters
- Snyder Institute for Chronic Diseases, Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4Z6, Canada;
| |
Collapse
|
11
|
Violi F, Loffredo L, Carnevale R, Pignatelli P, Pastori D. Atherothrombosis and Oxidative Stress: Mechanisms and Management in Elderly. Antioxid Redox Signal 2017; 27:1083-1124. [PMID: 28816059 DOI: 10.1089/ars.2016.6963] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
SIGNIFICANCE The incidence of cardiovascular events (CVEs) increases with age, representing the main cause of death in an elderly population. Aging is associated with overproduction of reactive oxygen species (ROS), which may affect clotting and platelet activation, and impair endothelial function, thus predisposing elderly patients to thrombotic complications. Recent Advances: There is increasing evidence to suggest that aging is associated with an imbalance between oxidative stress and antioxidant status. Thus, upregulation of ROS-producing enzymes such as nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and myeloperoxidase, along with downregulation of antioxidant enzymes, such as superoxide dismutase and glutathione peroxidase, occurs during aging. This imbalance may predispose to thrombosis by enhancing platelet and clotting activation and eliciting endothelial dysfunction. Recently, gut-derived products, such as trimethylamine N-oxide (TMAO) and lipopolysaccharide, are emerging as novel atherosclerotic risk factors, and gut microbiota composition has been shown to change by aging, and may concur with the increased cardiovascular risk in the elderly. CRITICAL ISSUES Antioxidant treatment is ineffective in patients at risk or with cardiovascular disease. Further, anti-thrombotic treatment seems to work less in the elderly population. FUTURE DIRECTIONS Interventional trials with antioxidants targeting enzymes implicated in aging-related atherothrombosis are warranted to explore whether modulation of redox status is effective in lowering CVEs in the elderly. Antioxid. Redox Signal. 27, 1083-1124.
Collapse
Affiliation(s)
- Francesco Violi
- 1 I Clinica Medica, Department of Internal Medicine and Medical Specialties, Sapienza University of Rome , Roma, Italy
| | - Lorenzo Loffredo
- 1 I Clinica Medica, Department of Internal Medicine and Medical Specialties, Sapienza University of Rome , Roma, Italy
| | - Roberto Carnevale
- 1 I Clinica Medica, Department of Internal Medicine and Medical Specialties, Sapienza University of Rome , Roma, Italy .,2 Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome , Latina, Italy
| | - Pasquale Pignatelli
- 1 I Clinica Medica, Department of Internal Medicine and Medical Specialties, Sapienza University of Rome , Roma, Italy
| | - Daniele Pastori
- 1 I Clinica Medica, Department of Internal Medicine and Medical Specialties, Sapienza University of Rome , Roma, Italy
| |
Collapse
|
12
|
Meijles DN, Sahoo S, Al Ghouleh I, Amaral JH, Bienes-Martinez R, Knupp HE, Attaran S, Sembrat JC, Nouraie SM, Rojas MM, Novelli EM, Gladwin MT, Isenberg JS, Cifuentes-Pagano E, Pagano PJ. The matricellular protein TSP1 promotes human and mouse endothelial cell senescence through CD47 and Nox1. Sci Signal 2017; 10:eaaj1784. [PMID: 29042481 PMCID: PMC5679204 DOI: 10.1126/scisignal.aaj1784] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Senescent cells withdraw from the cell cycle and do not proliferate. The prevalence of senescent compared to normally functioning parenchymal cells increases with age, impairing tissue and organ homeostasis. A contentious principle governing this process has been the redox theory of aging. We linked matricellular protein thrombospondin 1 (TSP1) and its receptor CD47 to the activation of NADPH oxidase 1 (Nox1), but not of the other closely related Nox isoforms, and associated oxidative stress, and to senescence in human cells and aged tissue. In human endothelial cells, TSP1 promoted senescence and attenuated cell cycle progression and proliferation. At the molecular level, TSP1 increased Nox1-dependent generation of reactive oxygen species (ROS), leading to the increased abundance of the transcription factor p53. p53 mediated a DNA damage response that led to senescence through Rb and p21cip, both of which inhibit cell cycle progression. Nox1 inhibition blocked the ability of TSP1 to increase p53 nuclear localization and p21cip abundance and its ability to promote senescence. Mice lacking TSP1 showed decreases in ROS production, p21cip expression, p53 activity, and aging-induced senescence. Conversely, lung tissue from aging humans displayed increases in the abundance of vascular TSP1, Nox1, p53, and p21cip Finally, genetic ablation or pharmacological blockade of Nox1 in human endothelial cells attenuated TSP1-mediated ROS generation, restored cell cycle progression, and protected against senescence. Together, our results provide insights into the functional interplay between TSP1 and Nox1 in the regulation of endothelial senescence and suggest potential targets for controlling the aging process at the molecular level.
Collapse
Affiliation(s)
- Daniel N Meijles
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Sanghamitra Sahoo
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Imad Al Ghouleh
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Jefferson H Amaral
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Raquel Bienes-Martinez
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Heather E Knupp
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Shireen Attaran
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - John C Sembrat
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Seyed M Nouraie
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Mauricio M Rojas
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Enrico M Novelli
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Mark T Gladwin
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Jeffrey S Isenberg
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Eugenia Cifuentes-Pagano
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Patrick J Pagano
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA.
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
13
|
Fan LM, Cahill-Smith S, Geng L, Du J, Brooks G, Li JM. Aging-associated metabolic disorder induces Nox2 activation and oxidative damage of endothelial function. Free Radic Biol Med 2017; 108:940-951. [PMID: 28499911 PMCID: PMC5489050 DOI: 10.1016/j.freeradbiomed.2017.05.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 04/26/2017] [Accepted: 05/07/2017] [Indexed: 11/21/2022]
Abstract
Oxidative stress attributable to the activation of a Nox2-containing NADPH oxidase is involved in the development of vascular diseases and in aging. However, the mechanism of Nox2 activation in normal aging remains unclear. In this study, we used age-matched wild-type (WT) and Nox2 knockout (KO) mice at 3-4 months (young); 11-12 months (middle-aged) and 21-22 months (aging) to investigate age-related metabolic disorders, Nox2 activation and endothelial dysfunction. Compared to young mice, middle-aged and aging WT mice had significant hyperglycaemia, hyperinsulinaemia, increased systemic oxidative stress and higher blood pressure. Endothelium-dependent vessel relaxation to acetylcholine was significantly impaired in WT aging aortas, and this was accompanied by increased Nox2 and ICAM-1 expressions, MAPK activation and decreased insulin receptor expression and signaling. However, these aging-associated disorders were significantly reduced or absent in Nox2KO aging mice. The effect of metabolic disorder on Nox2 activation and endothelial dysfunction was further confirmed using high-fat diet-induced obesity and insulin resistance in middle-aged WT mice treated with apocynin (a Nox2 inhibitor). In vitro experiments showed that in response to high glucose plus high insulin challenge, WT coronary microvascular endothelial cells increased significantly the levels of Nox2 expression, activation of stress signaling pathways and the cells were senescent, e.g. increased p53 and β-galactosidase activity. However, these changes were absent in Nox2KO cells. In conclusion, Nox2 activation in response to aging-associated hyperglycaemia and hyperinsulinaemia plays a key role in the oxidative damage of vascular function. Inhibition or knockout of Nox2 preserves endothelial function and improves global metabolism in old age.
Collapse
Affiliation(s)
- Lampson M Fan
- Division of Cardiovascular Medicine, University of Oxford, UK
| | | | - Li Geng
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, UK
| | - Junjie Du
- Faculty of Health and Medical Sciences, University of Surrey, UK
| | - Gavin Brooks
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, UK
| | - Jian-Mei Li
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, UK.
| |
Collapse
|
14
|
NOX2, NOX4, and mitochondrial-derived reactive oxygen species contribute to angiopoietin-1 signaling and angiogenic responses in endothelial cells. Vascul Pharmacol 2017; 92:22-32. [DOI: 10.1016/j.vph.2017.03.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 03/13/2017] [Accepted: 03/18/2017] [Indexed: 11/17/2022]
|
15
|
Tamura RE, Hunger A, Fernandes DC, Laurindo FR, Costanzi-Strauss E, Strauss BE. Induction of Oxidants Distinguishes Susceptibility of Prostate Carcinoma Cell Lines to p53 Gene Transfer Mediated by an Improved Adenoviral Vector. Hum Gene Ther 2017; 28:639-653. [PMID: 28181816 DOI: 10.1089/hum.2016.139] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Previously, the authors developed an adenoviral vector, Ad-PG, where transgene expression is regulated by a p53-responsive promoter. When used to transfer the p53 cDNA, a positive feedback mechanism is established. In the present study, a critical comparison is performed between Ad-PGp53 and AdRGD-PGp53, where the RGD motif was incorporated in the adenoviral fiber protein. AdRGD-PGp53 provided superior transgene expression levels and resulted in the killing of prostate carcinoma cell lines DU145 and PC3. In vitro, this effect was associated with increased production of cytoplasmic and mitochondrial oxidants, DNA damage as revealed by detection of phosphorylated H2AX, as well as cell death consistent with apoptosis. Differential gene expression of key mediators of reactive oxygen species pathways was also observed. Specifically, it was noted that induction of known p53-target genes Sestrin2 and PIG3, as well as a novel target, NOX1, occurred in PC3 cells only when transduced with the improved vector, AdRGD-PGp53. The participation of NOX1 was confirmed upon its inhibition using a specific peptide, resulting in reduced cell death. In situ gene therapy also resulted in significantly improved inhibition of tumor progression consistent with oxidant-induced DNA damage only when treated with the novel AdRGD-PGp53 vector. The study shows that the improved adenovirus overcomes limitations associated with other p53-expressing vectors and induces oxidant-mediating killing, thus supporting its further development for cancer gene therapy.
Collapse
Affiliation(s)
- Rodrigo Esaki Tamura
- 1 Viral Vector Laboratory, Center for Translational Investigation in Oncology/LIM24, Cancer Institute of São Paulo, School of Medicine, University of São Paulo , São Paulo, Brazil
| | - Aline Hunger
- 1 Viral Vector Laboratory, Center for Translational Investigation in Oncology/LIM24, Cancer Institute of São Paulo, School of Medicine, University of São Paulo , São Paulo, Brazil
| | - Denise C Fernandes
- 2 Vascular Biology Laboratory, Heart Institute, School of Medicine, University of São Paulo , São Paulo, Brazil
| | - Francisco R Laurindo
- 2 Vascular Biology Laboratory, Heart Institute, School of Medicine, University of São Paulo , São Paulo, Brazil
| | - Eugenia Costanzi-Strauss
- 3 Gene Therapy Laboratory, Department of Cell and Developmental Biology, Biomedical Sciences Institute, University of São Paulo , São Paulo, Brazil
| | - Bryan E Strauss
- 1 Viral Vector Laboratory, Center for Translational Investigation in Oncology/LIM24, Cancer Institute of São Paulo, School of Medicine, University of São Paulo , São Paulo, Brazil
| |
Collapse
|
16
|
Ma MW, Wang J, Zhang Q, Wang R, Dhandapani KM, Vadlamudi RK, Brann DW. NADPH oxidase in brain injury and neurodegenerative disorders. Mol Neurodegener 2017; 12:7. [PMID: 28095923 PMCID: PMC5240251 DOI: 10.1186/s13024-017-0150-7] [Citation(s) in RCA: 309] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 01/05/2017] [Indexed: 12/11/2022] Open
Abstract
Oxidative stress is a common denominator in the pathology of neurodegenerative disorders such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, amyotrophic lateral sclerosis, and multiple sclerosis, as well as in ischemic and traumatic brain injury. The brain is highly vulnerable to oxidative damage due to its high metabolic demand. However, therapies attempting to scavenge free radicals have shown little success. By shifting the focus to inhibit the generation of damaging free radicals, recent studies have identified NADPH oxidase as a major contributor to disease pathology. NADPH oxidase has the primary function to generate free radicals. In particular, there is growing evidence that the isoforms NOX1, NOX2, and NOX4 can be upregulated by a variety of neurodegenerative factors. The majority of recent studies have shown that genetic and pharmacological inhibition of NADPH oxidase enzymes are neuroprotective and able to reduce detrimental aspects of pathology following ischemic and traumatic brain injury, as well as in chronic neurodegenerative disorders. This review aims to summarize evidence supporting the role of NADPH oxidase in the pathology of these neurological disorders, explores pharmacological strategies of targeting this major oxidative stress pathway, and outlines obstacles that need to be overcome for successful translation of these therapies to the clinic.
Collapse
Affiliation(s)
- Merry W Ma
- Charlie Norwood VA Medical Center, One Freedom Way, Augusta, GA, 30904, USA.,Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, 1120 Fifteenth Street, Augusta, GA, 30912, USA
| | - Jing Wang
- Charlie Norwood VA Medical Center, One Freedom Way, Augusta, GA, 30904, USA.,Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, 1120 Fifteenth Street, Augusta, GA, 30912, USA
| | - Quanguang Zhang
- Charlie Norwood VA Medical Center, One Freedom Way, Augusta, GA, 30904, USA.,Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, 1120 Fifteenth Street, Augusta, GA, 30912, USA
| | - Ruimin Wang
- Charlie Norwood VA Medical Center, One Freedom Way, Augusta, GA, 30904, USA.,Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, 1120 Fifteenth Street, Augusta, GA, 30912, USA
| | - Krishnan M Dhandapani
- Charlie Norwood VA Medical Center, One Freedom Way, Augusta, GA, 30904, USA.,Department of Neurosurgery, Medical College of Georgia, Augusta University, 1120 Fifteenth Street, Augusta, GA, 30912, USA
| | - Ratna K Vadlamudi
- Department of Obstetrics and Gynecology, University of Texas Health Science Center, 7703 Medical Drive, San Antonio, TX, 78229, USA
| | - Darrell W Brann
- Charlie Norwood VA Medical Center, One Freedom Way, Augusta, GA, 30904, USA. .,Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, 1120 Fifteenth Street, Augusta, GA, 30912, USA.
| |
Collapse
|
17
|
Abstract
Reactive oxygen species (ROS) and oxidative stress have long been linked to aging and diseases prominent in the elderly such as hypertension, atherosclerosis, diabetes and atrial fibrillation (AF). NADPH oxidases (Nox) are a major source of ROS in the vasculature and are key players in mediating redox signalling under physiological and pathophysiological conditions. In this review, we focus on the Nox-mediated ROS signalling pathways involved in the regulation of 'longevity genes' and recapitulate their role in age-associated vascular changes and in the development of age-related cardiovascular diseases (CVDs). This review is predicated on burgeoning knowledge that Nox-derived ROS propagate tightly regulated yet varied signalling pathways, which, at the cellular level, may lead to diminished repair, the aging process and predisposition to CVDs. In addition, we briefly describe emerging Nox therapies and their potential in improving the health of the elderly population.
Collapse
|
18
|
Meijles DN, Fan LM, Ghazaly MM, Howlin B, Krönke M, Brooks G, Li JM. p22phox C242T Single-Nucleotide Polymorphism Inhibits Inflammatory Oxidative Damage to Endothelial Cells and Vessels. Circulation 2016; 133:2391-403. [PMID: 27162237 DOI: 10.1161/circulationaha.116.021993] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 05/09/2016] [Indexed: 02/03/2023]
Abstract
BACKGROUND The NADPH oxidase, by generating reactive oxygen species, is involved in the pathophysiology of many cardiovascular diseases and represents a therapeutic target for the development of novel drugs. A single-nucleotide polymorphism, C242T of the p22(phox) subunit of NADPH oxidase, has been reported to be negatively associated with coronary heart disease and may predict disease prevalence. However, the underlying mechanisms remain unknown. METHODS AND RESULTS With the use of computer molecular modeling, we discovered that C242T single-nucleotide polymorphism causes significant structural changes in the extracellular loop of p22(phox) and reduces its interaction stability with Nox2 subunit. Gene transfection of human pulmonary microvascular endothelial cells showed that C242T p22(phox) significantly reduced Nox2 expression but had no significant effect on basal endothelial O2 (.-) production or the expression of Nox1 and Nox4. When cells were stimulated with tumor necrosis factor-α (or high glucose), C242T p22(phox) significantly inhibited tumor necrosis factor-α-induced Nox2 maturation, O2 (.-) production, mitogen-activated protein kinases and nuclear factor κB activation, and inflammation (all P<0.05). These C242T effects were further confirmed using p22(phox) short-hairpin RNA-engineered HeLa cells and Nox2(-/-) coronary microvascular endothelial cells. Clinical significance was investigated by using saphenous vein segments from non-coronary heart disease subjects after phlebotomies. TT (C242T) allele was common (prevalence of ≈22%) and, in comparison with CC, veins bearing TT allele had significantly lower levels of Nox2 expression and O2 (.-) generation in response to high-glucose challenge. CONCLUSIONS C242T single-nucleotide polymorphism causes p22(phox) structural changes that inhibit endothelial Nox2 activation and oxidative response to tumor necrosis factor-α or high-glucose stimulation. C242T single-nucleotide polymorphism may represent a natural protective mechanism against inflammatory cardiovascular diseases.
Collapse
Affiliation(s)
- Daniel N Meijles
- From Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, UK (D.N.M., G.B., J.-M.L.); Faculty of Engineering and Physical Sciences, University of Surrey, UK (D.N.M., M.M.G., B.H.); Department of Cardiology, Royal Berkshire Hospital, UK (L.M.F.); and Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Germany (M.K.)
| | - Lampson M Fan
- From Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, UK (D.N.M., G.B., J.-M.L.); Faculty of Engineering and Physical Sciences, University of Surrey, UK (D.N.M., M.M.G., B.H.); Department of Cardiology, Royal Berkshire Hospital, UK (L.M.F.); and Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Germany (M.K.)
| | - Maziah M Ghazaly
- From Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, UK (D.N.M., G.B., J.-M.L.); Faculty of Engineering and Physical Sciences, University of Surrey, UK (D.N.M., M.M.G., B.H.); Department of Cardiology, Royal Berkshire Hospital, UK (L.M.F.); and Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Germany (M.K.)
| | - Brendan Howlin
- From Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, UK (D.N.M., G.B., J.-M.L.); Faculty of Engineering and Physical Sciences, University of Surrey, UK (D.N.M., M.M.G., B.H.); Department of Cardiology, Royal Berkshire Hospital, UK (L.M.F.); and Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Germany (M.K.)
| | - Martin Krönke
- From Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, UK (D.N.M., G.B., J.-M.L.); Faculty of Engineering and Physical Sciences, University of Surrey, UK (D.N.M., M.M.G., B.H.); Department of Cardiology, Royal Berkshire Hospital, UK (L.M.F.); and Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Germany (M.K.)
| | - Gavin Brooks
- From Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, UK (D.N.M., G.B., J.-M.L.); Faculty of Engineering and Physical Sciences, University of Surrey, UK (D.N.M., M.M.G., B.H.); Department of Cardiology, Royal Berkshire Hospital, UK (L.M.F.); and Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Germany (M.K.)
| | - Jian-Mei Li
- From Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, UK (D.N.M., G.B., J.-M.L.); Faculty of Engineering and Physical Sciences, University of Surrey, UK (D.N.M., M.M.G., B.H.); Department of Cardiology, Royal Berkshire Hospital, UK (L.M.F.); and Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Germany (M.K.).
| |
Collapse
|
19
|
Xie X, Zhang T, Zhao S, Li W, Ma L, Ding M, Liu Y. Effects of n-3 polyunsaturated fatty acids high fat diet intervention on the synthesis of hepatic high-density lipoprotein cholesterol in obesity-insulin resistance rats. Lipids Health Dis 2016; 15:81. [PMID: 27101976 PMCID: PMC4840880 DOI: 10.1186/s12944-016-0250-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 04/14/2016] [Indexed: 12/21/2022] Open
Abstract
Background n-3 polyunsaturated fatty acids (PUFA) have previously been demonstrated in association with a reduced risk of chronic diseases, including insulin resistance, cancer and cardiovascular disease. In the present study, we analyzed the effects of n-3 PUFA-rich perilla oil (PO) and fish oil (FO) high fat diet intervention against the synthesis of hepatic high-density lipoprotein cholesterol (HDL-c) in obesity-insulin resistance model rats. Methods In the modeling period, the male SD rats were randomly divided into 2 groups. The rats in the high fat (HF) group were given a high fat pure diet containing 20.62 % lard. In the intervention period, the model rats were intervened with purified high-fat diets rich in PO or FO, containing same energy content with high fat pure diet in HF. After the intervention, the protein and mRNA expressions status of the key genes involved in synthesis of hepatic HDL-c were measured for further analytic comparison. Results The obesity-insulin resistance model rats were characterized by surprisingly high levels of serum triglyceride (TG) and increased body weight (P < 0.05, each). After the intervention, there were no apparent changes in the serum HDL-c and total cholesterol (TCH). In addition, the FO could up-regulate the hepatic adenosine triphosphate (ATP) binding cassette transporter A1 (ABCA1) mRNA (P < 0.01) and protein expressions, as well as increase the level of serum apolipoprotein A-1 (apoA-1) (P < 0.0001), and elevate the hepatic apoA-1mRNA expression (P < 0.01). Different from FO, the PO specifically elevated the hepatic ABCA1mRNA expression (P < 0.01). Conclusions The FO high fat diets promoted the synthesis of HDL-c in the obesity-insulin resistance rats.
Collapse
Affiliation(s)
- Xianxing Xie
- Laboratory Animal Center of the Academy of Military Medical Sciences, Beijing, 100071, China
| | - Tao Zhang
- Laboratory Animal Center of the Academy of Military Medical Sciences, Beijing, 100071, China
| | - Shuang Zhao
- Laboratory Animal Center of the Academy of Military Medical Sciences, Beijing, 100071, China
| | - Wei Li
- Laboratory Animal Center of the Academy of Military Medical Sciences, Beijing, 100071, China
| | - Lanzhi Ma
- Laboratory Animal Center of the Academy of Military Medical Sciences, Beijing, 100071, China
| | - Ming Ding
- Laboratory Animal Center of the Academy of Military Medical Sciences, Beijing, 100071, China
| | - Yuan Liu
- Laboratory Animal Center of the Academy of Military Medical Sciences, Beijing, 100071, China.
| |
Collapse
|
20
|
Gill SE, Rohan M, Mehta S. Role of pulmonary microvascular endothelial cell apoptosis in murine sepsis-induced lung injury in vivo. Respir Res 2015; 16:109. [PMID: 26376777 PMCID: PMC4574190 DOI: 10.1186/s12931-015-0266-7] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 08/24/2015] [Indexed: 02/07/2023] Open
Abstract
Background Sepsis remains a common and serious condition with significant morbidity and mortality due to multiple organ dysfunction, especially acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). Sepsis-induced ALI is characterized by injury and dysfunction of the pulmonary microvasculature and pulmonary microvascular endothelial cells (PMVEC), resulting in enhanced pulmonary microvascular sequestration and pulmonary infiltration of polymorphonuclear leukocytes (PMN) as well as disruption of the normal alveolo-capillary permeability barrier with leak of albumin-rich edema fluid into pulmonary interstitium and alveoli. The role of PMVEC death and specifically apoptosis in septic pulmonary microvascular dysfunction in vivo has not been established. Methods In a murine cecal ligation/perforation (CLP) model of sepsis, we quantified and correlated time-dependent changes in pulmonary microvascular Evans blue (EB)-labeled albumin permeability with (1) PMVEC death (propidium iodide [PI]-staining) by both fluorescent intravital videomicroscopy (IVVM) and histology, and (2) PMVEC apoptosis using histologic fluorescent microscopic assessment of a panel of 3 markers: cell surface phosphatidylserine (detected by Annexin V binding), caspase activation (detected by FLIVO labeling), and DNA fragmentation (TUNEL labeling). Results Compared to sham mice, CLP-sepsis resulted in pulmonary microvascular barrier dysfunction, quantified by increased EB-albumin leak, and PMVEC death (PI+ staining) as early as 2 h and more marked by 4 h after CLP. Septic PMVEC also exhibited increased presence of all 3 markers of apoptosis (Annexin V+, FLIVO+, TUNEL+) as early as 30 mins – 1 h after CLP-sepsis, which all similarly increased markedly until 4 h. The time-dependent changes in septic pulmonary microvascular albumin-permeability barrier dysfunction were highly correlated with PMVEC death (PI+; r = 0.976, p < 0.01) and PMVEC apoptosis (FLIVO+; r = 0.991, p < 0.01). Treatment with the pan-caspase inhibitor Q-VD prior to CLP reduced PMVEC death/apoptosis and attenuated septic pulmonary microvascular dysfunction, including both albumin-permeability barrier dysfunction and pulmonary microvascular PMN sequestration (p < 0.05). Septic PMVEC apoptosis and pulmonary microvascular dysfunction were also abrogated following CLP-sepsis in mice deficient in iNOS (Nos2−/−) or NADPH oxidase (p47phox−/− or gp91phox−/−) and in wild-type mice treated with the NADPH oxidase inhibitor, apocynin. Conclusions Septic murine pulmonary microvascular dysfunction in vivo is due to PMVEC death, which is mediated through caspase-dependent apoptosis and iNOS/NADPH-oxidase dependent signaling.
Collapse
Affiliation(s)
- Sean E Gill
- Centre for Critical Illness Research, Lawson Health Research Institute, London Health Sciences Center, London, ON, Canada.,Division of Respirology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.,Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.,Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Marta Rohan
- Centre for Critical Illness Research, Lawson Health Research Institute, London Health Sciences Center, London, ON, Canada
| | - Sanjay Mehta
- Centre for Critical Illness Research, Lawson Health Research Institute, London Health Sciences Center, London, ON, Canada. .,Division of Respirology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada. .,Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada. .,Division of Respirology, E6.204, London Health Sciences Center - Victoria Hospital, 800 Commissioners Road East, London, ON, N6A 5W9, Canada.
| |
Collapse
|
21
|
Cahill-Smith S, Li JM. Oxidative stress, redox signalling and endothelial dysfunction in ageing-related neurodegenerative diseases: a role of NADPH oxidase 2. Br J Clin Pharmacol 2015; 78:441-53. [PMID: 25279404 DOI: 10.1111/bcp.12357] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Chronic oxidative stress and oxidative damage of the cerebral microvasculature and brain cells has become one of the most convincing theories in neurodegenerative pathology. Controlled oxidative metabolism and redox signalling in the central nervous system are crucial for maintaining brain function; however, excessive production of reactive oxygen species and enhanced redox signalling damage neurons. While several enzymes and metabolic processes can generate intracellular reactive oxygen species in the brain, recently an O2−-generating enzyme, NADPH oxidase 2 (Nox2), has emerged as a major source of oxidative stress in ageing-related vascular endothelial dysfunction and neurodegenerative diseases. The currently available inhibitors of Nox2 are not specific, and general antioxidant therapy is not effective in the clinic; therefore, insights into the mechanism of Nox2 activation and its signalling pathways are needed for the discovery of novel drug targets to prevent or treat these neurodegenerative diseases. This review summarizes the recent developments in understanding the mechanisms of Nox2 activation and redox-sensitive signalling pathways and biomarkers involved in the pathophysiology of the most common neurodegenerative diseases, such as ageing-related mild cognitive impairment, Alzheimer's disease and Parkinson's disease.
Collapse
|
22
|
Abstract
It is a need to define the line between pathological and physiological functions of reactive oxygen species (ROS) in order to understand their beneficial role over their injurious consequences.
Collapse
Affiliation(s)
- Arun Kumar Sharma
- Department of Pharmacology
- Amity Institute of Pharmacy
- Amity University
- Noida-201303
- India
| | - Gourav Taneja
- Department of Pharmacology
- Amity Institute of Pharmacy
- Amity University
- Noida-201303
- India
| | - Deepa Khanna
- Department of Pharmacology
- Rajendra Institute of Technology and Sciences
- Sirsa-125 055
- India
| | - Satyendra K. Rajput
- Department of Pharmacology
- Amity Institute of Pharmacy
- Amity University
- Noida-201303
- India
| |
Collapse
|
23
|
Song SH, Kim K, Park JJ, Min KH, Suh W. Reactive oxygen species regulate the quiescence of CD34-positive cells derived from human embryonic stem cells. Cardiovasc Res 2014; 103:147-55. [PMID: 24747991 DOI: 10.1093/cvr/cvu106] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AIMS Reactive oxygen species (ROS) are involved in a wide range of cellular processes. However, few studies have examined the generation and function of ROS in human embryonic vascular development. In this study, the sources of ROS and their roles in the vascular differentiation of human embryonic stem cells (hESCs) were investigated. METHODS AND RESULTS During vascular differentiation of hESCs, CD34(+) cells had quiescence-related gene expression profiles and a large fraction of these cells were in G0 phase. In addition, levels of ROS, which were primarily generated through NOX4, were substantially higher in hESC-derived CD34(+) cells than in hESC-derived CD34(-) cells. To determine whether excess levels of ROS induce quiescence of hESC-derived CD34(+) cells, ROS levels were moderately reduced using selenium to enhance antioxidant activities of thioredoxin reductase and glutathione peroxidase. In comparison to untreated CD34(+) cells, selenium-treated CD34(+) cells exhibited changes in gene expression that favoured cell cycle progression, and had a greater proliferation and a smaller fraction of cells in G0 phase. Thus, selenium treatment increased the number of hESC-derived CD34(+) cells, thereby enhancing the efficiency with which hESCs differentiated into vascular endothelial and smooth muscle cells. CONCLUSION This study reveals that NOX4 produces ROS in CD34(+) cells during vascular differentiation of hESCs, and shows that modulation of ROS levels using antioxidants such as selenium may be a novel approach to increase the vascular differentiation efficiency of hESCs.
Collapse
Affiliation(s)
- Sun-Hwa Song
- College of Pharmacy, Ajou University, San 5, Woncheon-Dong, Yeongtong-Gu, Suwon, Gyeonggi-do 443-749, Korea
| | - Kyungjong Kim
- College of Pharmacy, Ajou University, San 5, Woncheon-Dong, Yeongtong-Gu, Suwon, Gyeonggi-do 443-749, Korea
| | - Jeong Joo Park
- College of Pharmacy, Ajou University, San 5, Woncheon-Dong, Yeongtong-Gu, Suwon, Gyeonggi-do 443-749, Korea
| | - Kyung Hoon Min
- College of Pharmacy, Chung-Ang University, Seoul 156-756, Korea
| | - Wonhee Suh
- College of Pharmacy, Ajou University, San 5, Woncheon-Dong, Yeongtong-Gu, Suwon, Gyeonggi-do 443-749, Korea
| |
Collapse
|
24
|
Fan LM, Li JM. Evaluation of methods of detecting cell reactive oxygen species production for drug screening and cell cycle studies. J Pharmacol Toxicol Methods 2014; 70:40-7. [PMID: 24721421 DOI: 10.1016/j.vascn.2014.03.173] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 03/25/2014] [Accepted: 03/28/2014] [Indexed: 01/22/2023]
Abstract
Intracellular reactive oxygen species (ROS) production is essential to normal cell function. However, excessive ROS production causes oxidative damage and cell death. Many pharmacological compounds exert their effects on cell cycle progression by changing intracellular redox state and in many cases cause oxidative damage leading to drug cytotoxicity. Appropriate measurement of intracellular ROS levels during cell cycle progression is therefore crucial in understanding redox-regulation of cell function and drug toxicity and for the development of new drugs. However, due to the extremely short half-life of ROS, measuring the changes in intracellular ROS levels during a particular phase of cell cycle for drug intervention can be challenging. In this article, we have provided updated information on the rationale, the applications, the advantages and limitations of common methods for screening drug effects on intracellular ROS production linked to cell cycle study. Our aim is to facilitate biomedical scientists and researchers in the pharmaceutical industry in choosing or developing specific experimental regimens to suit their research needs.
Collapse
Affiliation(s)
- Lampson M Fan
- John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Jian-Mei Li
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK.
| |
Collapse
|
25
|
Russell FD, Hamilton KD. Nutrient deprivation increases vulnerability of endothelial cells to proinflammatory insults. Free Radic Biol Med 2014; 67:408-15. [PMID: 24334251 DOI: 10.1016/j.freeradbiomed.2013.12.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 12/05/2013] [Accepted: 12/06/2013] [Indexed: 11/21/2022]
Abstract
Nutrient deprivation is a stimulus for oxidative stress and is an established method for induction of cell autophagy and apoptosis. The aims of this study were to identify conditions that evoke superoxide production in cultured human umbilical vein endothelial cells (HUVECs), determine the mechanism of action for this response, and examine whether the stimulus might facilitate the adhesion of human isolated neutrophils to the HUVECs. HUVECs were incubated in M199 medium under conditions of serum starvation (serum-free M199 medium), low serum (medium containing 2% fetal calf serum), and high serum (medium containing 20% fetal calf serum). HUVECs were also incubated under proinflammatory conditions, in medium supplemented with 50ng/ml tumor necrosis factor-α (TNF-α) or neutrophils preactivated with 10nM phorbol 12-myristate 13-acetate (PMA). Superoxide production was increased fourfold in serum-starved HUVECs compared to cells incubated in 20% medium, and this was reduced by inhibitors of the mitochondrial electron transport chain and mitochondrial Ca(2+) uniporter. Superoxide production was 23.6% higher in HUVECs incubated with TNF-α in 2% medium compared to 2% medium alone, but unchanged with TNF-α in 20% medium. PMA-activated neutrophils adhered to morphologically aberrant HUVECs, which were mainly evident under the low-serum condition. The findings show a role of mitochondrial enzymes in superoxide production in response to nutrient deprivation and suggest that proinflammatory responses in HUVECs become manifest when HUVECs are in an already-compromised state.
Collapse
Affiliation(s)
- Fraser D Russell
- Inflammation and Healing Research Cluster, School of Health and Sport Sciences, University of the Sunshine Coast, Maroochydore, QLD 4558, Australia.
| | - Karina D Hamilton
- Inflammation and Healing Research Cluster, School of Health and Sport Sciences, University of the Sunshine Coast, Maroochydore, QLD 4558, Australia
| |
Collapse
|
26
|
Jeon H, Boo YC. Roles of NADPH oxidase 2 and 4 in endothelial cell survival and death under serum depletion. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/abc.2014.41003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
27
|
Ethers and esters derived from apocynin avoid the interaction between p47phox and p22phox subunits of NADPH oxidase: evaluation in vitro and in silico. Biosci Rep 2013; 33:BSR20130029. [PMID: 23802190 PMCID: PMC3731894 DOI: 10.1042/bsr20130029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
NOX (NADPH oxidase) plays an important role during several pathologies because it produces the superoxide anion (O2•−), which reacts with NO (nitric oxide), diminishing its vasodilator effect. Although different isoforms of NOX are expressed in ECs (endothelial cells) of blood vessels, the NOX2 isoform has been considered the principal therapeutic target for vascular diseases because it can be up-regulated by inhibiting the interaction between its p47phox (cytosolic protein) and p22phox (transmembrane protein) subunits. In this research, two ethers, 4-(4-acetyl-2-methoxy-phenoxy)-acetic acid (1) and 4-(4-acetyl-2-methoxy-phenoxy)-butyric acid (2) and two esters, pentanedioic acid mono-(4-acetyl-2-methoxy-phenyl) ester (3) and heptanedioic acid mono-(4-acetyl-2-methoxy-phenyl) ester (4), which are apocynin derivatives were designed, synthesized and evaluated as NOX inhibitors by quantifying O2•− production using EPR (electron paramagnetic resonance) measurements. In addition, the antioxidant activity of apocynin and its derivatives were determined. A docking study was used to identify the interactions between the NOX2′s p47phox subunit and apocynin or its derivatives. The results showed that all of the compounds exhibit inhibitory activity on NOX, being 4 the best derivative. However, neither apocynin nor its derivatives were free radical scavengers. On the other hand, the in silico studies demonstrated that the apocynin and its derivatives were recognized by the polybasic SH3A and SH3B domains, which are regions of p47phox that interact with p22phox. Therefore this experimental and theoretical study suggests that compound 4 could prevent the formation of the complex between p47phox and p22phox without needing to be activated by MPO (myeloperoxidase), this being an advantage over apocynin.
Collapse
|
28
|
Jeon H, Boo YC. Senescent endothelial cells are prone to TNF-α-induced cell death due to expression of FAS receptor. Biochem Biophys Res Commun 2013; 438:277-82. [DOI: 10.1016/j.bbrc.2013.07.052] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 07/14/2013] [Indexed: 10/26/2022]
|
29
|
Bolisetty S, Jaimes EA. Mitochondria and reactive oxygen species: physiology and pathophysiology. Int J Mol Sci 2013; 14:6306-44. [PMID: 23528859 PMCID: PMC3634422 DOI: 10.3390/ijms14036306] [Citation(s) in RCA: 176] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 03/08/2013] [Accepted: 03/11/2013] [Indexed: 02/06/2023] Open
Abstract
The air that we breathe contains nearly 21% oxygen, most of which is utilized by mitochondria during respiration. While we cannot live without it, it was perceived as a bane to aerobic organisms due to the generation of reactive oxygen and nitrogen metabolites by mitochondria and other cellular compartments. However, this dogma was challenged when these species were demonstrated to modulate cellular responses through altering signaling pathways. In fact, since this discovery of a dichotomous role of reactive species in immune function and signal transduction, research in this field grew at an exponential pace and the pursuit for mechanisms involved began. Due to a significant number of review articles present on the reactive species mediated cell death, we have focused on emerging novel pathways such as autophagy, signaling and maintenance of the mitochondrial network. Despite its role in several processes, increased reactive species generation has been associated with the origin and pathogenesis of a plethora of diseases. While it is tempting to speculate that anti-oxidant therapy would protect against these disorders, growing evidence suggests that this may not be true. This further supports our belief that these reactive species play a fundamental role in maintenance of cellular and tissue homeostasis.
Collapse
Affiliation(s)
- Subhashini Bolisetty
- Nephrology Division, University of Alabama at Birmingham, Birmingham, AL 35294, USA; E-Mail:
| | - Edgar A. Jaimes
- Nephrology Division, University of Alabama at Birmingham, Birmingham, AL 35294, USA; E-Mail:
- Veterans Affairs Medical Center, Birmingham, AL 35233, USA
| |
Collapse
|
30
|
Hall PR, Elmore BO, Spang CH, Alexander SM, Manifold-Wheeler BC, Castleman MJ, Daly SM, Peterson MM, Sully EK, Femling JK, Otto M, Horswill AR, Timmins GS, Gresham HD. Nox2 modification of LDL is essential for optimal apolipoprotein B-mediated control of agr type III Staphylococcus aureus quorum-sensing. PLoS Pathog 2013; 9:e1003166. [PMID: 23459693 PMCID: PMC3573103 DOI: 10.1371/journal.ppat.1003166] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 12/17/2012] [Indexed: 12/29/2022] Open
Abstract
Staphylococcus aureus contains an autoinducing quorum-sensing system encoded within the agr operon that coordinates expression of virulence genes required for invasive infection. Allelic variation within agr has generated four agr specific groups, agr I-IV, each of which secretes a distinct autoinducing peptide pheromone (AIP1-4) that drives agr signaling. Because agr signaling mediates a phenotypic change in this pathogen from an adherent colonizing phenotype to one associated with considerable tissue injury and invasiveness, we postulated that a significant contribution to host defense against tissue damaging and invasive infections could be provided by innate immune mechanisms that antagonize agr signaling. We determined whether two host defense factors that inhibit AIP1-induced agrI signaling, Nox2 and apolipoprotein B (apoB), also contribute to innate control of AIP3-induced agrIII signaling. We hypothesized that apoB and Nox2 would function differently against AIP3, which differs from AIP1 in amino acid sequence and length. Here we show that unlike AIP1, AIP3 is resistant to direct oxidant inactivation by Nox2 characteristic ROS. Rather, the contribution of Nox2 to defense against agrIII signaling is through oxidation of LDL. ApoB in the context of oxLDL, and not LDL, provides optimal host defense against S. aureus agrIII infection by binding the secreted signaling peptide, AIP3, and preventing expression of the agr-driven virulence factors which mediate invasive infection. ApoB within the context of oxLDL also binds AIP 1-4 and oxLDL antagonizes agr signaling by all four agr alleles. Our results suggest that Nox2-mediated oxidation of LDL facilitates a conformational change in apoB to one sufficient for binding and sequestration of all four AIPs, demonstrating the interdependence of apoB and Nox2 in host defense against agr signaling. These data reveal a novel role for oxLDL in host defense against S. aureus quorum-sensing signaling.
Collapse
Affiliation(s)
- Pamela R Hall
- Department of Pharmaceutical Sciences, University of New Mexico College of Pharmacy, Albuquerque, New Mexico, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Jeon H, Boo YC. Laminar shear stress enhances endothelial cell survival through a NADPH oxidase 2-dependent mechanism. Biochem Biophys Res Commun 2013; 430:460-5. [DOI: 10.1016/j.bbrc.2012.12.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 12/05/2012] [Indexed: 10/27/2022]
|
32
|
Harrison CB, Selemidis S, Guida E, King PT, Sobey CG, Drummond GR. NOX2β: A novel splice variant of NOX2 that regulates NADPH oxidase activity in macrophages. PLoS One 2012; 7:e48326. [PMID: 23118986 PMCID: PMC3485160 DOI: 10.1371/journal.pone.0048326] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 09/24/2012] [Indexed: 12/13/2022] Open
Abstract
Nox2 oxidase is one isoform in a family of seven NADPH oxidases that generate reactive oxygen species (ROS) and thereby contribute to physiological and pathological processes including host defense, redox signaling and oxidative tissue damage. While alternative mRNA splicing has been shown to influence the activity of several Nox-family proteins, functionally relevant splice variants of Nox2 have not previously been identified. We immunoscreened several mouse tissues and cells for the presence of truncated Nox2 proteins and identified a 30 kDa protein in lung, spleen and macrophages. RT-PCR analysis of mRNA from primary and immortalised (RAW264.7) mouse macrophages, and from human alveolar macrophages, identified a truncated Nox2 transcript which, upon sequence analysis, was found to be a product of the ‘exon skipping’ mode of alternative splicing, lacking exons 4–10 of the Nox2 gene. The predicted protein is comparable in size to that identified by immunoscreening and contains two transmembrane helices and an extended cytosolic C-terminus with binding sites for NADPH and the Nox organiser protein p47phox. Importantly, selective siRNA-mediated knockdown of the transcript reduced expression of the 30 kDa protein in macrophages, and suppressed phorbol ester-stimulated ROS production by 50%. We thus provide the first evidence that Nox2 undergoes alternative mRNA splicing to yield a 30 kDa protein – herein termed Nox2β – that regulates NADPH oxidase activity in macrophages from mice and humans. The discovery of Nox2β paves the way for future examination of its role in physiological and pathological processes.
Collapse
Affiliation(s)
- Craig B. Harrison
- Vascular Biology and Immunopharmacology Group, Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | - Stavros Selemidis
- Vascular Biology and Immunopharmacology Group, Department of Pharmacology, Monash University, Clayton, Victoria, Australia
- * E-mail:
| | - Elizabeth Guida
- Vascular Biology and Immunopharmacology Group, Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | - Paul T. King
- Department of Medicine/Respiratory Medicine, Monash Medical Centre, Clayton, Victoria, Australia
| | - Christopher G. Sobey
- Vascular Biology and Immunopharmacology Group, Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | - Grant R. Drummond
- Vascular Biology and Immunopharmacology Group, Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
33
|
Lassègue B, San Martín A, Griendling KK. Biochemistry, physiology, and pathophysiology of NADPH oxidases in the cardiovascular system. Circ Res 2012; 110:1364-90. [PMID: 22581922 PMCID: PMC3365576 DOI: 10.1161/circresaha.111.243972] [Citation(s) in RCA: 612] [Impact Index Per Article: 47.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 03/09/2012] [Indexed: 02/07/2023]
Abstract
The NADPH oxidase (Nox) enzymes are critical mediators of cardiovascular physiology and pathophysiology. These proteins are expressed in virtually all cardiovascular cells, and regulate such diverse functions as differentiation, proliferation, apoptosis, senescence, inflammatory responses and oxygen sensing. They target a number of important signaling molecules, including kinases, phosphatases, transcription factors, ion channels, and proteins that regulate the cytoskeleton. Nox enzymes have been implicated in many different cardiovascular pathologies: atherosclerosis, hypertension, cardiac hypertrophy and remodeling, angiogenesis and collateral formation, stroke, and heart failure. In this review, we discuss in detail the biochemistry of Nox enzymes expressed in the cardiovascular system (Nox1, 2, 4, and 5), their roles in cardiovascular cell biology, and their contributions to disease development.
Collapse
Affiliation(s)
- Bernard Lassègue
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
34
|
Mora-Pale M, Kwon SJ, Linhardt RJ, Dordick JS. Trimer hydroxylated quinone derived from apocynin targets cysteine residues of p47phox preventing the activation of human vascular NADPH oxidase. Free Radic Biol Med 2012; 52:962-9. [PMID: 22240153 PMCID: PMC3278529 DOI: 10.1016/j.freeradbiomed.2011.12.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Revised: 12/14/2011] [Accepted: 12/16/2011] [Indexed: 01/09/2023]
Abstract
Enzymatically derived oligophenols from apocynin can be effective inhibitors of human vascular NADPH oxidase (Nox). An isolated trimer hydroxylated quinone (IIIHyQ) has been shown to inhibit endothelial NADPH oxidase with an IC(50) ~30 nM. In vitro studies demonstrated that IIIHyQ is capable of disrupting the interaction between p47(phox) and p22(phox), thereby blocking the activation of the Nox2 isoform. Herein, we report the role of key cysteine residues in p47(phox) as targets for the IIIHyQ. Incubation of p47(phox) with IIIHyQ results in a decrease of ~80% of the protein free cysteine residues; similar results were observed using 1,2- and 1,4-naphthoquinones, whereas apocynin was unreactive. Mutants of p47(phox), in which each Cys was individually replaced by Ala (at residues 111, 196, and 378) or Gly (at residue 98), were generated to evaluate their individual importance in IIIHyQ-mediated inhibition of p47(phox) interaction with p22(phox). Specific Michael addition on Cys196, within the N-SH3 domain, by the IIIHyQ is critical for disrupting the p47(phox)-p22(phox) interaction. When a C196A mutation was tested, the IIIHyQ was unable to disrupt the p47(phox)-p22(phox) interaction. However, the IIIHyQ was effective at disrupting this interaction with the other mutants, displaying IC(50) values (4.9, 21.0, and 2.3μM for the C111A, C378A, and C98G mutants, respectively) comparable to that of wild-type p47(phox).
Collapse
Affiliation(s)
- Mauricio Mora-Pale
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Center for Biotechnology and Interdisciplinary Studies, Troy, NY 12180, USA
| | | | | | | |
Collapse
|
35
|
Bone morphogenic protein-4 induces endothelial cell apoptosis through oxidative stress-dependent p38MAPK and JNK pathway. J Mol Cell Cardiol 2011; 52:237-44. [PMID: 22064324 DOI: 10.1016/j.yjmcc.2011.10.013] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 09/16/2011] [Accepted: 10/17/2011] [Indexed: 12/22/2022]
Abstract
The expression of bone morphogenic protein 4 (BMP4), a new pro-inflammatory marker, is increased by disturbed flow in endothelial cells (ECs). BMP4 stimulates production of reactive oxygen species (ROS) and causes endothelial cell dysfunction. The present study examined BMP4-induced apoptosis in ECs and isolated arteries from rat, mouse, and human, and the signaling pathways mediating BMP4-induced apoptosis. Apoptosis was assessed by flow cytometry to detect Annexin-V positive cells, and terminal deoxynucleotidyl transferase dUTP nick end (TUNEL) labeling. The superoxide production was measured by dihydroethidium fluorescence. BMP4 induced EC apoptosis in human mesenteric arteries, mouse aortic endothelium, rat primary ECs, and human ECs. BMP4-induced EC apoptosis was mediated through ROS production by activation of NADPH oxidase, which led to cleaved caspase-3 expression. BMP4 also induced sequential activation of p38 MAPK and JNK which was upstream of caspase 3 activation. Knockdown of BMP receptor 1A by lentiviral shRNA or NOX4 siRNA transfection inhibited BMP4-induced ROS production, p38 and JNK phosphorylation, and caspase-3 activation in ECs. JNK siRNA inhibited BMP4-induced JNK phosphorylation and caspase-3 activation. The present study delineates that BMP4 causes EC apoptosis through activation of caspase-3 in a ROS/p38MAPK/JNK-dependent signaling cascade.
Collapse
|
36
|
Lu J, Mitra S, Wang X, Khaidakov M, Mehta JL. Oxidative stress and lectin-like ox-LDL-receptor LOX-1 in atherogenesis and tumorigenesis. Antioxid Redox Signal 2011; 15:2301-33. [PMID: 21338316 DOI: 10.1089/ars.2010.3792] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) has been identified as a major receptor for oxidized low-density lipoprotein (ox-LDL) in endothelial cells, monocytes, platelets, cardiomyocytes, and vascular smooth muscle cells. Its expression is minimal under physiological conditions but can be induced under pathological conditions. The upregulation of LOX-1 by ox-LDL appears to be important for physiologic processes, such as endothelial cell proliferation, apoptosis, and endothelium remodeling. Pathophysiologic effects of ox-LDL in atherogenesis have also been firmly established, including endothelial cell dysfunction, smooth muscle cell growth and migration, monocyte transformation into macrophages, and finally platelet aggregation-seen in atherogenesis. Recent studies show a positive correlation between increased serum ox-LDL levels and an increased risk of colon, breast, and ovarian cancer. As in atherosclerosis, ox-LDL and its receptor LOX-1 activate the inflammatory pathway through nuclear factor-kappa B, leading to cell transformation. LOX-1 is important for maintaining the transformed state in developmentally diverse cancer cell lines and for tumor growth, suggesting a molecular connection between atherogenesis and tumorigenesis.
Collapse
Affiliation(s)
- Jingjun Lu
- Cardiovascular Division, VA Medical Center, University of Arkansas for Medical Sciences, Little Rock, AR 72212, USA
| | | | | | | | | |
Collapse
|
37
|
Suh YA, Post SM, Elizondo-Fraire AC, Maccio DR, Jackson JG, El-Naggar AK, Van Pelt C, Terzian T, Lozano G. Multiple stress signals activate mutant p53 in vivo. Cancer Res 2011; 71:7168-75. [PMID: 21983037 DOI: 10.1158/0008-5472.can-11-0459] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
p53 levels are tightly regulated in normal cells, and thus, the wild-type p53 protein is nearly undetectable until stimulated through a variety of stresses. In response to stress, p53 is released from its negative regulators, mainly murine double minute 2 (Mdm2), allowing p53 to be stabilized to activate cell-cycle arrest, senescence, and apoptosis programs. Many of the upstream signals that regulate wild-type p53 are known; however, limited information for the regulation of mutant p53 exists. Previously, we showed that wild-type and mutant p53R172H are regulated in a similar manner in the absence of Mdm2 or p16. In addition, this stabilization of mutant p53 is responsible for the gain-of-function metastatic phenotype observed in the mouse. In this report, we examined the role of oncogenes, DNA damage, and reactive oxygen species, signals that stabilize wild-type p53, on the stabilization of mutant p53 in vivo and the consequences of this expression on tumor formation and survival. These factors stabilized mutant p53 protein which oftentimes contributed to exacerbated tumor phenotypes. These findings, coupled with the fact that patients carry p53 mutations without stabilization of p53, suggest that personalized therapeutic schemes may be needed for individual patients depending on their p53 status.
Collapse
Affiliation(s)
- Young-Ah Suh
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Tickner J, Fan LM, Du J, Meijles D, Li JM. Nox2-derived ROS in PPARγ signaling and cell-cycle progression of lung alveolar epithelial cells. Free Radic Biol Med 2011; 51:763-72. [PMID: 21664456 PMCID: PMC3157571 DOI: 10.1016/j.freeradbiomed.2011.05.027] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 05/05/2011] [Accepted: 05/23/2011] [Indexed: 11/22/2022]
Abstract
Reactive oxygen species (ROS) play important roles in peroxisome proliferator-activated receptor γ (PPARγ) signaling and cell-cycle regulation. However, the PPARγ redox-signaling pathways in lung alveolar epithelial cells remain unclear. In this study, we investigated the in vivo and in vitro effects of PPARγ activation on the levels of lung ROS production and cell-cycle progression using C57BL/6J wild-type and Nox2 knockout mice (n=10) after intraperitoneal injection of a selective PPARγ agonist (GW1929, 5 mg/kg body wt, daily) for 14 days. Compared to vehicle-treated mice, GW1929 increased significantly the levels of ROS production in wild-type lungs, and this was accompanied by significant up-regulation of PPARγ, Nox2, PCNA, and cyclin D1 and phosphorylation of ERK1/2 and p38MAPK. These effects were absent in Nox2 knockout mice. In cultured alveolar epithelial cells, GW1929 (5 μM for 24 h) increased ROS production and promoted cell-cycle progression from G0/G1 into S and G2/M phases, and these effects were abolished by (1) adding a PPARγ antagonist (BADGE, 1 μM), (2) knockdown of PPARγ using siRNA, or (3) knockout of Nox2. In conclusion, PPARγ activation through Nox2-derived ROS promotes cell-cycle progression in normal mouse lungs and in cultured normal alveolar epithelial cells.
Collapse
Key Words
- ros, reactive oxygen species
- pparγ, peroxisome proliferator-activated receptor γ
- ko, knockout
- dhe, dihydroethidium
- badge, bisphenol a diglycidyl ether
- l-name, nω-nitro-l-arginine methyl ester
- dpi, diphenyleneiodonium
- sod, superoxide dismutase
- ddc, diethyldithiocarbamate
- mapk, mitogen-activated protein kinase
- nadph, nicotinamide adenine dinucleotide phosphate
- nox, nadph oxidase
- pcna, proliferating cell nuclear antigen
- dmem, dulbecco's modified eagle medium
- redox signaling
- lung
- pparγ
- nox2
- mapk
- cell cycle
- free radicals
Collapse
|
39
|
Ferreira LM. Cancer metabolism: The Warburg effect today. Exp Mol Pathol 2010; 89:372-80. [DOI: 10.1016/j.yexmp.2010.08.006] [Citation(s) in RCA: 194] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Revised: 08/22/2010] [Accepted: 08/22/2010] [Indexed: 11/30/2022]
|
40
|
Thakur S, Du J, Hourani S, Ledent C, Li JM. Inactivation of adenosine A2A receptor attenuates basal and angiotensin II-induced ROS production by Nox2 in endothelial cells. J Biol Chem 2010; 285:40104-13. [PMID: 20940302 PMCID: PMC3000993 DOI: 10.1074/jbc.m110.184606] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Endothelial cells (ECs) express a Nox2 enzyme, which, by generating reactive oxygen species (ROS), contributes to EC redox signaling and angiotensin II (AngII)-induced endothelial dysfunction. ECs also express abundantly an adenosine A(2A) receptor (A(2A)R), but its role in EC ROS production remains unknown. In this study, we investigated the role of A(2A)R in the regulation of Nox2 activity and signaling in ECs with or without acute AngII stimulation. In cultured ECs (SVEC4-10), AngII (100 nm, 30 min) significantly increased Nox2 membrane translocation and association with A(2A)R. These were accompanied by p47(phox), ERK1/2, p38 MAPK, and Akt phosphorylation and an increased ROS production (169 ± 0.04%). These AngII effects were inhibited back to the control levels by a specific A(2A)R antagonist (SCH58261), or adenosine deaminase, or by knockdown of A(2A)R or Nox2 using specific siRNAs. Knockdown of A(2A)R, as determined by Western blotting, decreased Nox2 and p47(phox) expression. In wild-type mouse aorta, SCH58261 significantly reduced acute AngII-induced ROS production and preserved endothelium-dependent vessel relaxation to acetylcholine. These results were further confirmed by using aortas from A(2A)R knock-out mice. In conclusion, A(2A)R is involved in the regulation of EC ROS production by Nox2. Inhibition or blockade of A(2A)R protects ECs from acute AngII-induced oxidative stress, MAPK activation, and endothelium dysfunction.
Collapse
Affiliation(s)
- Sapna Thakur
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom
| | | | | | | | | |
Collapse
|
41
|
Borchi E, Parri M, Papucci L, Becatti M, Nassi N, Nassi P, Nediani C. Role of NADPH oxidase in H9c2 cardiac muscle cells exposed to simulated ischaemia-reperfusion. J Cell Mol Med 2010; 13:2724-2735. [PMID: 18754815 DOI: 10.1111/j.1582-4934.2008.00485.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Oxidative stress is associated with several cardiovascular pathologies, including hypertension, cardiac hypertrophy and heart failure. Although oxidative stress is also increased after ischaemia-reperfusion (I/R), little is known about the role and the activation mechanisms, in cardiac myocytes under these conditions, of NADPH oxidase, a superoxide-producing enzyme. We found that rat cardiac muscle cells (H9c2) subjected to an in vitro simulated ischaemia (substrate-free medium plus hypoxia) followed by 'reperfusion', displayed increased reactive oxygen species (ROS) production attributable to a parallel increase of NADPH oxidase activity. Our investigation on mechanisms responsible for NADPH oxidase activation showed a contribution of both the increase of NOX2 expression and p47(phox) translocation to the membrane. We also found that the increase of NADPH oxidase activity was associated with higher levels of lipid peroxidation, the activation of redox-sensitive kinases, in particular ERK and JNK, and with cell death. Diphenyleneiodonium (DPI), a flavoprotein inhibitor used as NADPH oxidase inhibitor, prevented I/R-induced ROS formation in treated cells, together with the related lipoperoxidative damage, and JNK phosphorylation without affecting ERK activation, resulting in protection against cell death. Our results provide evidence that NADPH oxidase is a key enzyme involved in I/R-induced oxidant generation and suggest it can be a possible target in cardioprotective strategies against I/R injury, a condition of great importance in human pathology.
Collapse
Affiliation(s)
- Elisabetta Borchi
- Department of Biochemical Sciences, University of Florence, Florence, Italy
| | - Matteo Parri
- Department of Biochemical Sciences, University of Florence, Florence, Italy
| | - Laura Papucci
- Department of Experimental Pathology and Oncology, University of Florence, Florence, Italy
| | - Matteo Becatti
- Department of Biochemical Sciences, University of Florence, Florence, Italy
| | - Niccolò Nassi
- Department of Pediatrics, University of Florence, Florence, Italy
| | - Paolo Nassi
- Department of Biochemical Sciences, University of Florence, Florence, Italy
| | - Chiara Nediani
- Department of Biochemical Sciences, University of Florence, Florence, Italy
| |
Collapse
|
42
|
Soucy-Faulkner A, Mukawera E, Fink K, Martel A, Jouan L, Nzengue Y, Lamarre D, Vande Velde C, Grandvaux N. Requirement of NOX2 and reactive oxygen species for efficient RIG-I-mediated antiviral response through regulation of MAVS expression. PLoS Pathog 2010; 6:e1000930. [PMID: 20532218 PMCID: PMC2880583 DOI: 10.1371/journal.ppat.1000930] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Accepted: 04/28/2010] [Indexed: 12/22/2022] Open
Abstract
The innate immune response is essential to the host defense against viruses, through restriction of virus replication and coordination of the adaptive immune response. Induction of antiviral genes is a tightly regulated process initiated mainly through sensing of invading virus nucleic acids in the cytoplasm by RIG-I like helicases, RIG-I or Mda5, which transmit the signal through a common mitochondria-associated adaptor, MAVS. Although major breakthroughs have recently been made, much remains unknown about the mechanisms that translate virus recognition into antiviral genes expression. Beside the reputed detrimental role, reactive oxygen species (ROS) act as modulators of cellular signaling and gene regulation. NADPH oxidase (NOX) enzymes are a main source of deliberate cellular ROS production. Here, we found that NOX2 and ROS are required for the host cell to trigger an efficient RIG-I-mediated IRF-3 activation and downstream antiviral IFNbeta and IFIT1 gene expression. Additionally, we provide evidence that NOX2 is critical for the expression of the central mitochondria-associated adaptor MAVS. Taken together these data reveal a new facet to the regulation of the innate host defense against viruses through the identification of an unrecognized role of NOX2 and ROS.
Collapse
Affiliation(s)
- Anton Soucy-Faulkner
- CRCHUM - Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
- Department of Biochemistry, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Espérance Mukawera
- CRCHUM - Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
| | - Karin Fink
- CRCHUM - Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
- Department of Biochemistry, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Alexis Martel
- CRCHUM - Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
- Department of Biochemistry, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Loubna Jouan
- CRCHUM - Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Yves Nzengue
- CRCHUM - Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
- Department of Biochemistry, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Daniel Lamarre
- CRCHUM - Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Christine Vande Velde
- CRCHUM - Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Nathalie Grandvaux
- CRCHUM - Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
- Department of Biochemistry, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
43
|
Montezano AC, Burger D, Paravicini TM, Chignalia AZ, Yusuf H, Almasri M, He Y, Callera GE, He G, Krause KH, Lambeth D, Quinn MT, Touyz RM. Nicotinamide adenine dinucleotide phosphate reduced oxidase 5 (Nox5) regulation by angiotensin II and endothelin-1 is mediated via calcium/calmodulin-dependent, rac-1-independent pathways in human endothelial cells. Circ Res 2010; 106:1363-73. [PMID: 20339118 DOI: 10.1161/circresaha.109.216036] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
RATIONALE Although Nox5 (Nox2 homolog) has been identified in the vasculature, its regulation and functional significance remain unclear. OBJECTIVES We sought to test whether vasoactive agents regulate Nox5 through Ca(2+)/calmodulin-dependent processes and whether Ca(2+)-sensitive Nox5, associated with Rac-1, generates superoxide (O(2)(*-)) and activates growth and inflammatory responses via mitogen-activated protein kinases in human endothelial cells (ECs). METHODS AND RESULTS Cultured ECs, exposed to angiotensin II (Ang II) and endothelin (ET)-1 in the absence and presence of diltiazem (Ca(2+) channel blocker), calmidazolium (calmodulin inhibitor), and EHT1864 (Rac-1 inhibitor), were studied. Nox5 was downregulated with small interfering RNA. Ang II and ET-1 increased Nox5 expression (mRNA and protein). Effects were inhibited by actinomycin D and cycloheximide and blunted by diltiazem, calmidazolium and low extracellular Ca(2+) ([Ca(2+)](e)). Ang II and ET-1 activated NADPH oxidase, an effect blocked by low [Ca(2+)](e), but not by EHT1864. Nox5 knockdown abrogated agonist-stimulated O(2)(*-) production and inhibited phosphorylation of extracellular signal-regulated kinase (ERK)1/2, but not p38 MAPK (mitogen-activated protein kinase) or SAPK/JNK (stress-activated protein kinase/c-Jun N-terminal kinase). Nox5 small interfering RNA blunted Ang II-induced, but not ET-1-induced, upregulation of proliferating-cell nuclear antigen and vascular cell adhesion molecule-1, important in growth and inflammation. CONCLUSIONS Human ECs possess functionally active Nox5, regulated by Ang II and ET-1 through Ca(2+)/calmodulin-dependent, Rac-1-independent mechanisms. Nox5 activation by Ang II and ET-1 induces ROS generation and ERK1/2 phosphorylation. Nox5 is involved in ERK1/2-regulated growth and inflammatory signaling by Ang II but not by ET-1. We elucidate novel mechanisms whereby vasoactive peptides regulate Nox5 in human ECs and demonstrate differential Nox5-mediated functional responses by Ang II and ET-1. Such phenomena link Ca(2+)/calmodulin to Nox5 signaling, potentially important in the regulation of endothelial function by Ang II and ET-1.
Collapse
Affiliation(s)
- Augusto C Montezano
- Kidney Research Centre, University of Ottawa, 451 Smyth Rd, Ottawa, K1H 8M5, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Reactive oxygen species (ROS) were seen as destructive molecules, but recently, they have been shown also to act as second messengers in varying intracellular signaling pathways. This review concentrates on hydrogen peroxide (H2O2), as it is a more stable ROS, and delineates its role as a survival molecule. In the first part, the production of H2O2 through the NADPH oxidase (Nox) family is investigated. Through careful examination of Nox proteins and their regulation, it is determined how they respond to stress and how this can be prosurvival rather than prodeath. The pathways on which H2O2 acts to enable its prosurvival function are then examined in greater detail. The main survival pathways are kinase driven, and oxidation of cysteines in the active sites of various phosphatases can thus regulate those survival pathways. Regulation of transcription factors such as p53, NF-kappaB, and AP-1 also are reviewed. Finally, prodeath proteins such as caspases could be directly inhibited through their cysteine residues. A better understanding of the prosurvival role of H2O2 in cells, from the why and how it is generated to the various molecules it can affect, will allow more precise targeting of therapeutics to this pathway.
Collapse
Affiliation(s)
- Gillian Groeger
- Cell Development and Disease Laboratory, Biochemistry Department, Biosciences Institute, University College Cork , Cork, Ireland
| | | | | |
Collapse
|
45
|
Fan LM, Teng L, Li JM. Knockout of p47 phox uncovers a critical role of p40 phox in reactive oxygen species production in microvascular endothelial cells. Arterioscler Thromb Vasc Biol 2009; 29:1651-6. [PMID: 19608974 DOI: 10.1161/atvbaha.109.191502] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE p40(phox) is an important regulatory subunit of NADPH oxidase, but its role in endothelial reactive oxygen species (ROS) production remains unknown. METHODS AND RESULTS Using coronary microvascular endothelial cells isolated from wild-type and p47(phox) knockout mice, we found that knockout of p47(phox) increased the level of p40(phox) expression, whereas depletion of p40(phox) in wild-type cells increased p47(phox) expression. In both cases, the basal ROS production (without agonist stimulation) was well preserved. Double knockout of p40(phox) and p47(phox) dramatically reduced (approximately 65%) ROS production and cells started to die. The transcriptional regulation of p40(phox) and p47(phox) expressions involves HBP1. p40(phox) was prephosphorylated in resting cells. PMA stimulation induced p40(phox) swift dephosphorylation (within 1 minute) in parallel with the start of p47(phox) phosphorylation. p40(phox) was then rephosphorylated, and this was accompanied with an increase in ROS production. Depletion of p40(phox) resulted in approximately 67% loss in agonist-induced ROS production despite the presence of p47(phox). These were further supported by experiments on mouse aortas stimulated with angiotensin II. CONCLUSIONS p40(phox) is prephosphorylated in resting endothelial cells and can compensate p47(phox) in keeping basal ROS production. Dephosphorylation of p40(phox) is a prerequisite for agonist-induced p47(phox) phosphorylation, and p40(phox) through its dynamic dephosphorylation and rephosphorylation is involved in the regulation of agonist-induced ROS production.
Collapse
Affiliation(s)
- Lampson M Fan
- Faculty of Health and Medical Sciences, AY Building, University of Surrey, Guildford, Surrey GU2 7XH, UK
| | | | | |
Collapse
|
46
|
Mora-Pale M, Weïwer M, Yu J, Linhardt RJ, Dordick JS. Inhibition of human vascular NADPH oxidase by apocynin derived oligophenols. Bioorg Med Chem 2009; 17:5146-52. [PMID: 19523836 PMCID: PMC2723721 DOI: 10.1016/j.bmc.2009.05.061] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2009] [Revised: 05/19/2009] [Accepted: 05/22/2009] [Indexed: 02/07/2023]
Abstract
Enzymatic oxidation of apocynin, which may mimic in vivo metabolism, affords a large number of oligomers (apocynin oxidation products, AOP) that inhibit vascular NADPH oxidase. In vitro studies of NADPH oxidase activity were performed to identify active inhibitors, resulting in a trimer hydroxylated quinone (IIIHyQ) that inhibited NADPH oxidase with an IC(50)=31nM. Apocynin itself possessed minimal inhibitory activity. NADPH oxidase is believed to be inhibited through prevention of the interaction between two NADPH oxidase subunits, p47(phox) and p22(phox). To that end, while apocynin was unable to block the interaction of his-tagged p47(phox) with a surface immobilized biotinylated p22(phox) peptide, the IIIHyQ product strongly interfered with this interaction (apparent IC(50)=1.6microM). These results provide evidence that peroxidase-generated AOP, which consist of oligomeric phenols and quinones, inhibit critical interactions that are involved in the assembly and activation of human vascular NADPH oxidase.
Collapse
Affiliation(s)
- Mauricio Mora-Pale
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | | | | | | | | |
Collapse
|
47
|
Calpain-1 induces apoptosis in pulmonary microvascular endothelial cells under septic conditions. Microvasc Res 2009; 78:33-9. [PMID: 19379762 DOI: 10.1016/j.mvr.2009.04.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Revised: 03/29/2009] [Accepted: 04/09/2009] [Indexed: 11/22/2022]
Abstract
This study was to investigate the role of calpain in the apoptosis of pulmonary microvascular endothelial cells (PMEC) during septic plasma stimulation. Septic plasma was collected from endotoxemic mice. In cultured PMEC, incubation with septic plasma stimulated calpain activation, increased caspase-3 activity and induced apoptotic cell death. These effects of septic plasma were abrogated by knockdown of calpain-1 but not calpain-2 using specific siRNA. Consistently, treatment with calpain inhibitor-III, or over-expression of calpastatin, an endogenous calpain inhibitor significantly decreased apoptosis induced by septic plasma. Septic plasma also induced NADPH oxidase activation and reactive oxygen species (ROS) production. Inhibiting NADPH oxidase or scavenging ROS attenuated calpain activity and decreased apoptosis in PMEC during septic plasma stimulation. In summary, our study demonstrates that ROS produced from NADPH oxidase stimulates calpain-1 activation, which induces apoptosis under septic conditions. Thus, targeting calpain-1/calpastatin may represent a potential strategy to protect against endothelial injury in sepsis.
Collapse
|
48
|
Frey RS, Ushio-Fukai M, Malik AB. NADPH oxidase-dependent signaling in endothelial cells: role in physiology and pathophysiology. Antioxid Redox Signal 2009; 11:791-810. [PMID: 18783313 PMCID: PMC2790033 DOI: 10.1089/ars.2008.2220] [Citation(s) in RCA: 317] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Reactive oxygen species (ROS) including superoxide (O(2)(.-)) and hydrogen peroxide (H(2)O(2)) are produced endogenously in response to cytokines, growth factors; G-protein coupled receptors, and shear stress in endothelial cells (ECs). ROS function as signaling molecules to mediate various biological responses such as gene expression, cell proliferation, migration, angiogenesis, apoptosis, and senescence in ECs. Signal transduction activated by ROS, "oxidant signaling," has received intense investigation. Excess amount of ROS contribute to various pathophysiologies, including endothelial dysfunction, atherosclerosis, hypertension, diabetes, and acute respiratory distress syndrome (ARDS). The major source of ROS in EC is a NADPH oxidase. The prototype phagaocytic NADPH oxidase is composed of membrane-bound gp91phox and p22hox, as well as cytosolic subunits such as p47(phox), p67(phox) and small GTPase Rac. In ECs, in addition to all the components of phagocytic NADPH oxidases, homologues of gp91(phox) (Nox2) including Nox1, Nox4, and Nox5 are expressed. The aim of this review is to provide an overview of the emerging area of ROS derived from NADPH oxidase and oxidant signaling in ECs linked to physiological and pathophysiological functions. Understanding these mechanisms may provide insight into the NADPH oxidase and oxidant signaling components as potential therapeutic targets.
Collapse
Affiliation(s)
- Randall S Frey
- Department of Pharmacology, Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, Illinois 60612, USA.
| | | | | |
Collapse
|
49
|
Fan L, Sawbridge D, George V, Teng L, Bailey A, Kitchen I, Li JM. Chronic cocaine-induced cardiac oxidative stress and mitogen-activated protein kinase activation: the role of Nox2 oxidase. J Pharmacol Exp Ther 2009; 328:99-106. [PMID: 18952886 PMCID: PMC2685902 DOI: 10.1124/jpet.108.145201] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2008] [Accepted: 10/23/2008] [Indexed: 11/22/2022] Open
Abstract
Chronic cocaine exposure is associated with severe cardiac complications, but the mechanisms of cocaine cardiotoxicity remain unclear, and current therapies are unsatisfactory. We investigated the hypothesis of oxidative stress-mediated cardiotoxicity and the role of NADPH oxidase in this process in a mouse model of chronic escalating "binge" cocaine administration (milligrams per kilogram): days 1 to 4 at 3 x 15 mg, days 5 to 8 at 3 x 20 mg, days 9 to 12 at 3 x 25 mg, and days 13 to 14 at 3 x 30 mg. Compared with vehicle controls, chronic binge cocaine administration significantly increased the cardiac NADPH-dependent O(2)(.) production (1.96- +/- 0.4-fold) as detected by tiron (an O(2)(.) scavenger)-inhibitable lucigenin chemiluminescence and dihydroethidium fluorescence. Cocaine-induced reactive oxygen species (ROS) production was associated with significant increases ( approximately 2-fold) in the protein expressions of Nox2 (an isoform of NADPH oxidase) and its regulatory subunits: p22(phox), p67(phox), p47(phox), p40(phox), and Rac1, and in p47(phox) phosphorylation as detected by immunoblotting (all p < 0.03). Increased Nox2 activity was accompanied by the activation of extracellular signal-regulated kinase 1/2, p38 mitogen-activated protein kinase (MAPK), and c-Jun NH(2)-terminal kinase, notably in the cardiomyocytes. Cell culture experiments revealed that cocaine-induced ROS production was primarily a direct action of cocaine on cardiac myocytes, which caused severe oxidative damage to myocytes and cell death as detected by terminal deoxynucleotidyl transferase dUTP nick-end labeling assay. These could be inhibited by inhibitors to protein kinase C (bisindolymaleimide) or by depletion of Nox2 using small interfering RNA. In conclusion, chronic cocaine administration directly causes severe myocardial oxidative stress through the activation of Nox2 oxidase. Increased ROS production contributes to MAPK activation and the subsequent myocyte damage. Inhibitors to NADPH oxidase or antioxidants may have therapeutic potential in the treatment of cocaine cardiotoxicity.
Collapse
Affiliation(s)
- Lampson Fan
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey GU2 7XH, UK
| | | | | | | | | | | | | |
Collapse
|
50
|
Chen X, Andresen1 BT, Hill M, Zhang J, Booth F, Zhang C. Role of Reactive Oxygen Species in Tumor Necrosis Factor-alpha Induced Endothelial Dysfunction. Curr Hypertens Rev 2008; 4:245-255. [PMID: 20559453 DOI: 10.2174/157340208786241336] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Endothelial cell injury and dysfunction are the major triggers of pathophysiological processes leading to cardiovascular disease. Endothelial dysfunction (ED) has been implicated in atherosclerosis, hypertension, coronary artery disease, vascular complications of diabetes, chronic renal failure, insulin resistance and hypercholesterolemia. Although now recognized as a class of physiological second messengers, reactive oxygen species (ROS) are important mediators in cellular injury, specifically, as a factor in endothelial cell damage. Uncontrolled ROS production and/or decreased antioxidant activity results in a deleterious state referred to as 'oxidative stress'. A candidate factor in causing ROS production in endothelial cells is tumor necrosis factor alpha (TNF-α), a pleiotropic inflammatory cytokine. TNF-α has been shown to both be secreted by endothelial cells and to induce intracellular ROS formation. These observations provide a potential mechanism by which TNF-α may activate and injure endothelial cells resulting in ED. In this review, we focus on the relationship between intracellular ROS formation and ED in endothelial cells or blood vessels exposed to TNF-α to provide insight into the role of this important cytokine in cardiovascular disease.
Collapse
Affiliation(s)
- Xiuping Chen
- Department of Internal Medicine, University of Missouri-Columbia, Columbia, MO 65211, USA
| | | | | | | | | | | |
Collapse
|