1
|
Su Z, Li J, Lin J, Li Z, Che Y, Zhang Z, Zheng G, Ye G, Yu W, Zeng Y, Xu P, Xu X, Xie Z, Wu Y, Shen H. TNF-α-Induced KAT2A Impedes BMMSC Quiescence by Mediating Succinylation of the Mitophagy-Related Protein VCP. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2303388. [PMID: 38145956 PMCID: PMC10933659 DOI: 10.1002/advs.202303388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 12/07/2023] [Indexed: 12/27/2023]
Abstract
Regular quiescence and activation are important for the function of bone marrow mesenchymal stem cells (BMMSC), multipotent stem cells that are widely used in the clinic due to their capabilities in tissue repair and inflammatory disease treatment. TNF-α is previously reported to regulate BMMSC functions, including multilineage differentiation and immunoregulation. The present study demonstrates that TNF-α impedes quiescence and promotes the activation of BMMSC in vitro and in vivo. Mechanistically, the TNF-α-induced expression of KAT2A promotes the succinylation of VCP at K658, which inhibits the interaction between VCP and MFN1 and thus inhibits mitophagy. Furthermore, activated BMMSC exhibits stronger fracture repair and immunoregulation functions in vivo. This study contributes to a better understanding of the mechanisms of BMMSC quiescence and activation and to improving the effectiveness of BMMSC in clinical applications.
Collapse
Affiliation(s)
- Zepeng Su
- Department of OrthopedicsThe Eighth Affiliated Hospital of Sun Yat‐Sen UniversityShenzhen518000China
| | - Jinteng Li
- Department of OrthopedicsThe Eighth Affiliated Hospital of Sun Yat‐Sen UniversityShenzhen518000China
| | - Jiajie Lin
- Department of OrthopedicsThe Eighth Affiliated Hospital of Sun Yat‐Sen UniversityShenzhen518000China
| | - Zhikun Li
- Department of OrthopedicsThe Eighth Affiliated Hospital of Sun Yat‐Sen UniversityShenzhen518000China
| | - Yunshu Che
- Department of OrthopedicsThe Eighth Affiliated Hospital of Sun Yat‐Sen UniversityShenzhen518000China
| | - Zhaoqiang Zhang
- Department of OrthopedicsThe Eighth Affiliated Hospital of Sun Yat‐Sen UniversityShenzhen518000China
| | - Guan Zheng
- Department of OrthopedicsThe Eighth Affiliated Hospital of Sun Yat‐Sen UniversityShenzhen518000China
| | - Guiwen Ye
- Department of OrthopedicsThe Eighth Affiliated Hospital of Sun Yat‐Sen UniversityShenzhen518000China
| | - Wenhui Yu
- Department of OrthopedicsThe Eighth Affiliated Hospital of Sun Yat‐Sen UniversityShenzhen518000China
| | - Yipeng Zeng
- Department of OrthopedicsThe Eighth Affiliated Hospital of Sun Yat‐Sen UniversityShenzhen518000China
| | - Peitao Xu
- Department of OrthopedicsThe Eighth Affiliated Hospital of Sun Yat‐Sen UniversityShenzhen518000China
| | - Xiaojun Xu
- Department of OrthopedicsThe Eighth Affiliated Hospital of Sun Yat‐Sen UniversityShenzhen518000China
| | - Zhongyu Xie
- Department of OrthopedicsThe Eighth Affiliated Hospital of Sun Yat‐Sen UniversityShenzhen518000China
| | - Yanfeng Wu
- Center for BiotherapyThe Eighth Affiliated Hospital of Sun Yat‐Sen UniversityShenzhen518000China
| | - Huiyong Shen
- Department of OrthopedicsThe Eighth Affiliated Hospital of Sun Yat‐Sen UniversityShenzhen518000China
| |
Collapse
|
2
|
Miao M, Wu M, Li Y, Zhang L, Jin Q, Fan J, Xu X, Gu R, Hao H, Zhang A, Jia Z. Clinical Potential of Hypoxia Inducible Factors Prolyl Hydroxylase Inhibitors in Treating Nonanemic Diseases. Front Pharmacol 2022; 13:837249. [PMID: 35281917 PMCID: PMC8908211 DOI: 10.3389/fphar.2022.837249] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/19/2022] [Indexed: 12/19/2022] Open
Abstract
Hypoxia inducible factors (HIFs) and their regulatory hydroxylases the prolyl hydroxylase domain enzymes (PHDs) are the key mediators of the cellular response to hypoxia. HIFs are normally hydroxylated by PHDs and degraded, while under hypoxia, PHDs are suppressed, allowing HIF-α to accumulate and transactivate multiple target genes, including erythropoiesis, and genes participate in angiogenesis, iron metabolism, glycolysis, glucose transport, cell proliferation, survival, and so on. Aiming at stimulating HIFs, a group of small molecules antagonizing HIF-PHDs have been developed. Of these HIF-PHDs inhibitors (HIF-PHIs), roxadustat (FG-4592), daprodustat (GSK-1278863), vadadustat (AKB-6548), molidustat (BAY 85-3934) and enarodustat (JTZ-951) are approved for clinical usage or have progressed into clinical trials for chronic kidney disease (CKD) anemia treatment, based on their activation effect on erythropoiesis and iron metabolism. Since HIFs are involved in many physiological and pathological conditions, efforts have been made to extend the potential usage of HIF-PHIs beyond anemia. This paper reviewed the progress of preclinical and clinical research on clinically available HIF-PHIs in pathological conditions other than CKD anemia.
Collapse
Affiliation(s)
- Mengqiu Miao
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Mengqiu Wu
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Yuting Li
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Lingge Zhang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Qianqian Jin
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Jiaojiao Fan
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China.,School of Medicine, Southeast University, Nanjing, China
| | - Xinyue Xu
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China.,School of Medicine, Southeast University, Nanjing, China
| | - Ran Gu
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Haiping Hao
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism, China Pharmaceutical University, Nanjing, China
| | - Aihua Zhang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Zhanjun Jia
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| |
Collapse
|
3
|
Garcia-Aponte OF, Herwig C, Kozma B. Lymphocyte expansion in bioreactors: upgrading adoptive cell therapy. J Biol Eng 2021; 15:13. [PMID: 33849630 PMCID: PMC8042697 DOI: 10.1186/s13036-021-00264-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/29/2021] [Indexed: 12/25/2022] Open
Abstract
Bioreactors are essential tools for the development of efficient and high-quality cell therapy products. However, their application is far from full potential, holding several challenges when reconciling the complex biology of the cells to be expanded with the need for a manufacturing process that is able to control cell growth and functionality towards therapy affordability and opportunity. In this review, we discuss and compare current bioreactor technologies by performing a systematic analysis of the published data on automated lymphocyte expansion for adoptive cell therapy. We propose a set of requirements for bioreactor design and identify trends on the applicability of these technologies, highlighting the specific challenges and major advancements for each one of the current approaches of expansion along with the opportunities that lie in process intensification. We conclude on the necessity to develop targeted solutions specially tailored for the specific stimulation, supplementation and micro-environmental needs of lymphocytes’ cultures, and the benefit of applying knowledge-based tools for process control and predictability.
Collapse
Affiliation(s)
- Oscar Fabian Garcia-Aponte
- Research Area Biochemical Engineering, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorferstraße 1a, 1060, Vienna, Austria
| | - Christoph Herwig
- Research Area Biochemical Engineering, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorferstraße 1a, 1060, Vienna, Austria.
| | - Bence Kozma
- Research Area Biochemical Engineering, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Gumpendorferstraße 1a, 1060, Vienna, Austria
| |
Collapse
|
4
|
CD14+ HLA-DR-/low MDSCs are elevated in the periphery of early-stage breast cancer patients and suppress autologous T cell proliferation. Breast Cancer Res Treat 2017; 168:401-411. [PMID: 29230664 DOI: 10.1007/s10549-017-4594-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 11/22/2017] [Indexed: 02/07/2023]
Abstract
PURPOSE Despite the recent expansion in the use of immunotherapy for many cancer types, it is still not a standard treatment for breast cancer. Identifying differences in the immune systems of breast cancer patients compared to healthy women might provide insight into potential targets for immunotherapy and thus may assist its clinical implementation. METHODS Multi-colour flow cytometry was used to investigate myeloid and lymphoid populations in the peripheral blood of breast cancer patients (n = 40) and in the blood of healthy age-matched women (n = 25). We additionally performed functional testing to identify immune suppressive mechanisms used by circulating CD14+ myeloid cells from breast cancer patients. RESULTS Our results show that breast cancer patients have significantly elevated frequencies of cells with the monocytic myeloid-derived suppressor cell (mMDSC) phenotype CD14+ HLA-DR-/low compared with healthy women (p < 0.01). We also observed higher levels of earlier differentiated T cells and correspondingly lower levels of T cells in later stages of differentiation (p < 0.05). These disease-associated differences could already be detected in early-stage breast cancer patients in stages 1 and 2 (n = 33 of 40) (p < 0.05). Levels of circulating T cells correlated with certain clinical features and with patient age (p < 0.05). Functional tests showed that CD14+ myeloid cells from breast cancer patients more potently suppressed autologous T cell proliferation than CD14+ cells from healthy women (p < 0.01). Subsequent investigation determined that suppression was mediated in part by reactive oxygen species, because inhibiting this pathway partially restored T cell proliferation (p < 0.01). CONCLUSION Our results highlight the potential importance of cells with mMDSC phenotypes in breast cancer, identifiable already at early stages of disease. This may provide a basis for identifying possible new therapeutic targets to enhance anti-cancer immunity.
Collapse
|
5
|
Latanova A, Petkov S, Kuzmenko Y, Kilpeläinen A, Ivanov A, Smirnova O, Krotova O, Korolev S, Hinkula J, Karpov V, Isaguliants M, Starodubova E. Fusion to Flaviviral Leader Peptide Targets HIV-1 Reverse Transcriptase for Secretion and Reduces Its Enzymatic Activity and Ability to Induce Oxidative Stress but Has No Major Effects on Its Immunogenic Performance in DNA-Immunized Mice. J Immunol Res 2017; 2017:7407136. [PMID: 28717654 PMCID: PMC5498913 DOI: 10.1155/2017/7407136] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 04/13/2017] [Indexed: 01/10/2023] Open
Abstract
Reverse transcriptase (RT) is a key enzyme in viral replication and susceptibility to ART and a crucial target of immunotherapy against drug-resistant HIV-1. RT induces oxidative stress which undermines the attempts to make it immunogenic. We hypothesized that artificial secretion may reduce the stress and make RT more immunogenic. Inactivated multidrug-resistant RT (RT1.14opt-in) was N-terminally fused to the signal providing secretion of NS1 protein of TBEV (Ld) generating optimized inactivated Ld-carrying enzyme RT1.14oil. Promotion of secretion prohibited proteasomal degradation increasing the half-life and content of RT1.14oil in cells and cell culture medium, drastically reduced the residual polymerase activity, and downmodulated oxidative stress. BALB/c mice were DNA-immunized with RT1.14opt-in or parental RT1.14oil by intradermal injections with electroporation. Fluorospot and ELISA tests revealed that RT1.14opt-in and RT1.14oil induced IFN-γ/IL-2, RT1.14opt-in induced granzyme B, and RT1.14oil induced perforin production. Perforin secretion correlated with coproduction of IFN-γ and IL-2 (R = 0,97). Both DNA immunogens induced strong anti-RT antibody response. Ld peptide was not immunogenic. Thus, Ld-driven secretion inferred little change to RT performance in DNA immunization. Positive outcome was the abrogation of polymerase activity increasing safety of RT-based DNA vaccines. Identification of the molecular determinants of low cellular immunogenicity of RT requires further studies.
Collapse
Affiliation(s)
- Anastasia Latanova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- Gamaleja Research Center of Epidemiology and Microbiology, Moscow, Russia
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Stefan Petkov
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Yulia Kuzmenko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Athina Kilpeläinen
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Alexander Ivanov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Olga Smirnova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Olga Krotova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- Gamaleja Research Center of Epidemiology and Microbiology, Moscow, Russia
| | - Sergey Korolev
- Chemistry Department, Belozersky Research Institute of Physico-Chemical Biology of Lomonosov Moscow State University, Moscow, Russia
| | | | - Vadim Karpov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Maria Isaguliants
- Gamaleja Research Center of Epidemiology and Microbiology, Moscow, Russia
- Riga Stradins University, Riga, Latvia
- M.P. Chumakov Institute of Poliomyelitis and Viral Encephalities, Russian Academy of Sciences, Moscow, Russia
| | - Elizaveta Starodubova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- M.P. Chumakov Institute of Poliomyelitis and Viral Encephalities, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
6
|
Pantsulaia I, Ciszewski WM, Niewiarowska J. Senescent endothelial cells: Potential modulators of immunosenescence and ageing. Ageing Res Rev 2016; 29:13-25. [PMID: 27235855 DOI: 10.1016/j.arr.2016.05.011] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Revised: 05/24/2016] [Accepted: 05/24/2016] [Indexed: 02/08/2023]
Abstract
Recent studies have demonstrated that the accumulation of senescent endothelial cells may be the primary cause of cardiovascular diseases. Because of their multifunctional properties, endothelial cells actively take part in stimulating the immune system and inflammation. In addition, ageing is characterized by the progressive deterioration of immune cells and a decline in the activation of the immune response. This results in a loss of the primary function of the immune system, which is eliminating damaged/senescent cells and neutralizing potential sources of harmful inflammatory reactions. In this review, we discuss cellular senescence and the senescence-associated secretory phenotype (SASP) of endothelial cells and summarize the link between endothelial cells and immunosenescence. We describe the possibility that age-related changes in Toll-like receptors (TLRs) and microRNAs can affect the phenotypes of senescent endothelial cells and immune cells via a negative feedback loop aimed at restraining the excessive pro-inflammatory response. This review also addresses the following questions: how do senescent endothelial cells influence ageing or age-related changes in the inflammatory burden; what is the connection between ECs and immunosenescence, and what are the crucial hypothetical pathways linking endothelial cells and the immune system during ageing.
Collapse
|
7
|
Abstract
Demographic changes are associated with a steady increase of older patients with end-stage organ failure in need for transplantation. As a result, the majority of transplant recipients are currently older than 50 years, and organs from elderly donors are more frequently used. Nevertheless, the benefit of transplantation in older patients is well recognized, whereas the most frequent causes of death among older recipients are potentially linked to side effects of their immunosuppressants.Immunosenescence is a physiological part of aging linked to higher rates of diabetes, bacterial infections, and malignancies representing the major causes of death in older patients. These age-related changes impact older transplant candidates and may have significant implications for an age-adapted immunosuppression. For instance, immunosenescence is linked to lower rates of acute rejections in older recipients, whereas the engraftment of older organs has been associated with higher rejection rates. Moreover, new-onset diabetes mellitus after transplantation is more frequent in the elderly, potentially related to corticosteroids, calcineurin inhibitors, and mechanistic target of rapamycin inhibitors.This review presents current knowledge for an age-adapted immunosuppression based on both, experimental and clinical studies in and beyond transplantation. Recommendations of maintenance and induction therapy may help to improve graft function and to design future clinical trials in the elderly.
Collapse
|
8
|
Novel ageing-biomarker discovery using data-intensive technologies. Mech Ageing Dev 2015; 151:114-21. [PMID: 26056714 DOI: 10.1016/j.mad.2015.05.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 05/01/2015] [Accepted: 05/28/2015] [Indexed: 12/23/2022]
Abstract
Ageing is accompanied by many visible characteristics. Other biological and physiological markers are also well-described e.g. loss of circulating sex hormones and increased inflammatory cytokines. Biomarkers for healthy ageing studies are presently predicated on existing knowledge of ageing traits. The increasing availability of data-intensive methods enables deep-analysis of biological samples for novel biomarkers. We have adopted two discrete approaches in MARK-AGE Work Package 7 for biomarker discovery; (1) microarray analyses and/or proteomics in cell systems e.g. endothelial progenitor cells or T cell ageing including a stress model; and (2) investigation of cellular material and plasma directly from tightly-defined proband subsets of different ages using proteomic, transcriptomic and miR array. The first approach provided longitudinal insight into endothelial progenitor and T cell ageing. This review describes the strategy and use of hypothesis-free, data-intensive approaches to explore cellular proteins, miR, mRNA and plasma proteins as healthy ageing biomarkers, using ageing models and directly within samples from adults of different ages. It considers the challenges associated with integrating multiple models and pilot studies as rational biomarkers for a large cohort study. From this approach, a number of high-throughput methods were developed to evaluate novel, putative biomarkers of ageing in the MARK-AGE cohort.
Collapse
|
9
|
Bhandari T, Nizet V. Hypoxia-Inducible Factor (HIF) as a Pharmacological Target for Prevention and Treatment of Infectious Diseases. Infect Dis Ther 2014; 3:159-74. [PMID: 25134687 PMCID: PMC4269623 DOI: 10.1007/s40121-014-0030-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Indexed: 02/07/2023] Open
Abstract
In the present era of ever-increasing antibiotic resistance and increasingly complex and immunosuppressed patient populations, physicians and scientists are seeking novel approaches to battle difficult infectious disease conditions. Development of a serious infection implies a failure of innate immune capabilities in the patient, and one may consider whether pharmacological strategies exist to correct and enhance innate immune cell function. Hypoxia-inducible factor-1 (HIF-1), the central regulator of the cellular response to hypoxic stress, has recently been recognized to control the activation state and key microbicidal functions of immune cells. HIF-1 boosting drugs are in clinical development for anemia and other indications, and could be repositioned as infectious disease therapeutics. With equal attention to opportunities and complexities, we review our current understanding of HIF-1 regulation of microbial host-pathogen interactions with an eye toward future drug development.
Collapse
Affiliation(s)
- Tamara Bhandari
- Center for Immunity, Infection and Inflammation, Department of Pediatrics and Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, USA
| | - Victor Nizet
- Center for Immunity, Infection and Inflammation, Department of Pediatrics and Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, USA.
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, USA.
- Center for Immunity, Infection and Inflammation, Medical Sciences Research 4113, University of California, San Diego, 9500 Gilman Drive, MC 0760, La Jolla, CA, 92093-0760, USA.
| |
Collapse
|
10
|
Cellular signaling in the aging immune system. Curr Opin Immunol 2014; 29:105-11. [PMID: 24934647 DOI: 10.1016/j.coi.2014.05.007] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 05/16/2014] [Accepted: 05/19/2014] [Indexed: 12/11/2022]
Abstract
Causes for immunosenescence and inflamm-aging have to be established. Efficient function of the immune system requires homeostatic regulation from receptor recognition of antigenic challenge to cell responses and adaptation to its changing environment. It is reasonable to assume that one of the most important molecular causes of immunosenescence is alteration in the regulation of signaling pathways. Indeed, alterations in feed-forward and negative feedback (inhibitory) signaling have been highlighted in all cells involved in the immune response including short-lived (neutrophils) and long-lived (T lymphocytes) cells. These dysregulations tip the balance in favor of altered (less efficient) function of the immune system. In this review, we summarize our knowledge on signal transduction changes in the aging immune system and propose a unifying mechanism as one of the causes of immunosenescence. Modulation of these pathways with aging represents a major challenge to restore the immune response to functional levels.
Collapse
|
11
|
Ohta A, Madasu M, Subramanian M, Kini R, Jones G, Choukèr A, Ohta A, Sitkovsky M. Hypoxia-induced and A2A adenosine receptor-independent T-cell suppression is short lived and easily reversible. Int Immunol 2013; 26:83-91. [PMID: 24150242 DOI: 10.1093/intimm/dxt045] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Tissue hypoxia plays a key role in establishing an immunosuppressive environment in vivo by, among other effects, increasing the level of extracellular adenosine, which then signals through A2A adenosine receptor (A2AR) to elicit its immunosuppressive effect. Although the important role of the adenosine--A2AR interaction in limiting inflammation has been established, the current study revisited this issue by asking whether hypoxia can also exert its T-cell inhibitory effects even without A2AR. A similar degree of hypoxia-triggered inhibition was observed in wild-type and A2AR-deficient T cells both in vitro and, after exposure of mice to a hypoxic atmosphere, in vivo. This A2AR-independent hypoxic T-cell suppression was qualitatively and mechanistically different from immunosuppression by A2AR stimulation. The A2AR-independent hypoxic immunosuppression strongly reduced T-cell proliferation, while IFN-γ-producing activity was more susceptible to the A2AR-dependent inhibition. In contrast to the sustained functional impairment after A2AR-mediated T-cell inhibition, the A2AR-independent inhibition under hypoxia was short lived, as evidenced by the quick recovery of IFN-γ-producing activity upon re-stimulation. These data support the view that T-cell inhibition by hypoxia can be mediated by multiple mechanisms and that both A2AR and key molecules in the A2AR-independent T-cell inhibition should be targeted to overcome the hypoxia-related immunosuppression in infected tissues and tumors.
Collapse
Affiliation(s)
- Akio Ohta
- New England Inflammation and Tissue Protection Institute, Northeastern University, Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Isaguliants M, Smirnova O, Ivanov AV, Kilpelainen A, Kuzmenko Y, Petkov S, Latanova A, Krotova O, Engström G, Karpov V, Kochetkov S, Wahren B, Starodubova E. Oxidative stress induced by HIV-1 reverse transcriptase modulates the enzyme's performance in gene immunization. Hum Vaccin Immunother 2013; 9:2111-2119. [PMID: 23881028 PMCID: PMC3906395 DOI: 10.4161/hv.25813] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 07/05/2013] [Accepted: 07/19/2013] [Indexed: 12/21/2022] Open
Abstract
UNLABELLED HIV-1 infection induces chronic oxidative stress. The resultant neurotoxicity has been associated with Tat protein. Here, we for the first time describe the induction of oxidative stress by another HIV-1 protein, reverse transcriptase (RT). Expression of HIV-1 RT in human embryonic kidney cells generated potent production of the reactive oxygen species (ROS), detected by the fluorescence-based probes. Quantitative RT-PCR demonstrated that expression of RT in HEK293 cells induced a 10- to 15-fold increased transcription of the phase II detoxifying enzymes human NAD(P)H quinone oxidoreductase (Nqo1) and heme oxygenase 1 (HO-1), indicating the induction of oxidative stress response. The capacity to induce oxidative stress and stress response appeared to be an intrinsic property of a vast variety of RTs: enzymatically active and inactivated, bearing mutations of drug resistance, following different routes of processing and presentation, expressed from viral or synthetic expression-optimized genes. The total ROS production induced by RT genes of the viral origin was found to be lower than that induced by the synthetic/expression-optimized or chimeric RT genes. However, the viral RT genes induced higher levels of ROS production and higher levels of HO-1 mRNA than the synthetic genes per unit of protein in the expressing cell. The capacity of RT genes to induce the oxidative stress and stress response was then correlated with their immunogenic performance. For this, RT genes were administered into BALB/c mice by intradermal injections followed by electroporation. Splenocytes of immunized mice were stimulated with the RT-derived and control antigens and antigen-specific proliferation was assessed by IFN-γ/IL-2 Fluorospot. RT variants generating high total ROS levels induced significantly stronger IFN-γ responses than the variants inducing lower total ROS, while high levels of ROS normalized per unit of protein in expressing cell were associated with a weak IFN-γ response. Poor gene immunogenicity was also associated with a high (per unit of protein) transcription of antioxidant response element (ARE) dependent phase II detoxifying enzyme genes, specifically HO-1. Thus, we have revealed a direct link between the propensity of the microbial proteins to induce oxidative stress and their immunogenicity.
Collapse
Affiliation(s)
- Maria Isaguliants
- Microbiology, Tumor, and Cell Biology Center; Karolinska Institutet; Stockholm, Sweden
- DI Ivanovsky Institute of Virology; Moscow, Russia
| | - Olga Smirnova
- Engelhardt Institute of Molecular Biology; Russian Academy of Sciences; Moscow, Russia
| | - Alexander V. Ivanov
- Engelhardt Institute of Molecular Biology; Russian Academy of Sciences; Moscow, Russia
| | - Athina Kilpelainen
- Microbiology, Tumor, and Cell Biology Center; Karolinska Institutet; Stockholm, Sweden
| | - Yulia Kuzmenko
- Engelhardt Institute of Molecular Biology; Russian Academy of Sciences; Moscow, Russia
| | - Stefan Petkov
- Microbiology, Tumor, and Cell Biology Center; Karolinska Institutet; Stockholm, Sweden
| | - Anastasia Latanova
- Engelhardt Institute of Molecular Biology; Russian Academy of Sciences; Moscow, Russia
| | - Olga Krotova
- DI Ivanovsky Institute of Virology; Moscow, Russia
- Engelhardt Institute of Molecular Biology; Russian Academy of Sciences; Moscow, Russia
| | - Gunnel Engström
- Microbiology, Tumor, and Cell Biology Center; Karolinska Institutet; Stockholm, Sweden
| | - Vadim Karpov
- Engelhardt Institute of Molecular Biology; Russian Academy of Sciences; Moscow, Russia
| | - Sergey Kochetkov
- Engelhardt Institute of Molecular Biology; Russian Academy of Sciences; Moscow, Russia
| | - Britta Wahren
- Microbiology, Tumor, and Cell Biology Center; Karolinska Institutet; Stockholm, Sweden
| | - Elizaveta Starodubova
- Microbiology, Tumor, and Cell Biology Center; Karolinska Institutet; Stockholm, Sweden
- Engelhardt Institute of Molecular Biology; Russian Academy of Sciences; Moscow, Russia
| |
Collapse
|
13
|
Gaber T, Tran CL, Schellmann S, Hahne M, Strehl C, Hoff P, Radbruch A, Burmester GR, Buttgereit F. Pathophysiological hypoxia affects the redox state and IL-2 signalling of human CD4+T cells and concomitantly impairs survival and proliferation. Eur J Immunol 2013; 43:1588-97. [DOI: 10.1002/eji.201242754] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 01/23/2013] [Accepted: 03/15/2013] [Indexed: 11/08/2022]
Affiliation(s)
| | | | | | | | | | | | | | - Gerd-Rüdiger Burmester
- Department of Rheumatology and Clinical Immunology; Charité University Hospital; Berlin; Germany
| | - Frank Buttgereit
- Department of Rheumatology and Clinical Immunology; Charité University Hospital; Berlin; Germany
| |
Collapse
|
14
|
Goldeck D, Low I, Shadan NB, Mustafah S, Pawelec G, Larbi A. Multi-parametric phospho-flow cytometry: a crucial tool for T lymphocyte signaling studies. Cytometry A 2013; 83:265-72. [PMID: 23359365 DOI: 10.1002/cyto.a.22252] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 12/16/2012] [Accepted: 12/18/2012] [Indexed: 11/09/2022]
Abstract
Tools such as protein immunoblotting have proven benefits for investigating T lymphocyte signaling but have several drawbacks such as the number of cells required and the difficulty of distinguishing subset-specific differences without expensive and invasive cell sorting. Recent advances in immunology and the identification of T lymphocyte sub-populations making up only a very small fraction of the total population highlight the importance of studying signaling in those small subsets in a feasible, cost-effective, high-throughput manner. To this end, we have developed a simplified protocol to study both intracellular phosphorylation patterns of important signal transduction molecules concomitantly with T cell surface marker expression. A multi-parametric analysis may allow the quantification of the phosphorylation of up to five signaling molecules in CD4 and CD8 T lymphocytes and their naïve, central memory, effector memory, and TEMRA subsets. This enables precise identification of subset-specific signaling and alterations of signaling pathways in physiological and pathological situations. The importance of such detailed analysis is discussed.
Collapse
Affiliation(s)
- David Goldeck
- Center for Medical Research ZMF, Tübingen Aging and Tumor Immunology group, Tübingen, Germany
| | | | | | | | | | | |
Collapse
|
15
|
Chondrogianni N, Petropoulos I, Grimm S, Georgila K, Catalgol B, Friguet B, Grune T, Gonos ES. Protein damage, repair and proteolysis. Mol Aspects Med 2012; 35:1-71. [PMID: 23107776 DOI: 10.1016/j.mam.2012.09.001] [Citation(s) in RCA: 177] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 09/26/2012] [Indexed: 01/10/2023]
Abstract
Proteins are continuously affected by various intrinsic and extrinsic factors. Damaged proteins influence several intracellular pathways and result in different disorders and diseases. Aggregation of damaged proteins depends on the balance between their generation and their reversal or elimination by protein repair systems and degradation, respectively. With regard to protein repair, only few repair mechanisms have been evidenced including the reduction of methionine sulfoxide residues by the methionine sulfoxide reductases, the conversion of isoaspartyl residues to L-aspartate by L-isoaspartate methyl transferase and deglycation by phosphorylation of protein-bound fructosamine by fructosamine-3-kinase. Protein degradation is orchestrated by two major proteolytic systems, namely the lysosome and the proteasome. Alteration of the function for both systems has been involved in all aspects of cellular metabolic networks linked to either normal or pathological processes. Given the importance of protein repair and degradation, great effort has recently been made regarding the modulation of these systems in various physiological conditions such as aging, as well as in diseases. Genetic modulation has produced promising results in the area of protein repair enzymes but there are not yet any identified potent inhibitors, and, to our knowledge, only one activating compound has been reported so far. In contrast, different drugs as well as natural compounds that interfere with proteolysis have been identified and/or developed resulting in homeostatic maintenance and/or the delay of disease progression.
Collapse
Affiliation(s)
- Niki Chondrogianni
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Helenic Research Foundation, 48 Vas. Constantinou Ave., 116 35 Athens, Greece.
| | - Isabelle Petropoulos
- Laboratoire de Biologie Cellulaire du Vieillissement, UR4-UPMC, IFR 83, Université Pierre et Marie Curie-Paris 6, 4 Place Jussieu, 75005 Paris, France
| | - Stefanie Grimm
- Department of Nutritional Toxicology, Institute of Nutrition, Friedrich-Schiller University, Dornburger Straße 24, 07743 Jena, Germany
| | - Konstantina Georgila
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Helenic Research Foundation, 48 Vas. Constantinou Ave., 116 35 Athens, Greece
| | - Betul Catalgol
- Department of Biochemistry, Faculty of Medicine, Genetic and Metabolic Diseases Research Center (GEMHAM), Marmara University, Haydarpasa, Istanbul, Turkey
| | - Bertrand Friguet
- Laboratoire de Biologie Cellulaire du Vieillissement, UR4-UPMC, IFR 83, Université Pierre et Marie Curie-Paris 6, 4 Place Jussieu, 75005 Paris, France
| | - Tilman Grune
- Department of Nutritional Toxicology, Institute of Nutrition, Friedrich-Schiller University, Dornburger Straße 24, 07743 Jena, Germany
| | - Efstathios S Gonos
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Helenic Research Foundation, 48 Vas. Constantinou Ave., 116 35 Athens, Greece.
| |
Collapse
|
16
|
Fulop T, Le Page A, Garneau H, Azimi N, Baehl S, Dupuis G, Pawelec G, Larbi A. Aging, immunosenescence and membrane rafts: the lipid connection. LONGEVITY & HEALTHSPAN 2012; 1:6. [PMID: 24764511 PMCID: PMC3886260 DOI: 10.1186/2046-2395-1-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 07/13/2012] [Indexed: 11/10/2022]
Abstract
The decreased efficiency of immune responses in older people is partly a consequence of alterations in T lymphocyte functions caused by modifications in the early events of signal transduction. Several alterations in the signaling pathways of T lymphocytes have been described in older humans and animals. A unifying cause could be modifications in the physicochemical properties of the plasma membrane resulting from changes in its lipid composition and the distribution and function of lipid rafts (LR). The latter serve to assemble the initial components of the signaling cascade. Accumulating data suggest that the function of plasma membrane LR is altered with aging; we hypothesize that this would significantly contribute to immune dysregulation. The role of aging and cholesterol in LR functions in T lymphocytes is reviewed and discussed here.
Collapse
Affiliation(s)
- Tamas Fulop
- Department of Medicine, Research Center on Aging, Graduate Program in Immunology, Faculty of Medicine and Health Sciences, University of Sherbrooke, 3001 12th Avenue North, Sherbrooke, Qc, J1H 5N4, Canada ; Research Center on Aging, University of Sherbrooke, 1036, rue Belvedere Sud, Sherbrooke, Qc, J1H 4C4, Canada
| | - Aurélie Le Page
- Department of Medicine, Research Center on Aging, Graduate Program in Immunology, Faculty of Medicine and Health Sciences, University of Sherbrooke, 3001 12th Avenue North, Sherbrooke, Qc, J1H 5N4, Canada
| | - Hugo Garneau
- Department of Medicine, Research Center on Aging, Graduate Program in Immunology, Faculty of Medicine and Health Sciences, University of Sherbrooke, 3001 12th Avenue North, Sherbrooke, Qc, J1H 5N4, Canada
| | - Naheed Azimi
- Department of Medicine, Research Center on Aging, Graduate Program in Immunology, Faculty of Medicine and Health Sciences, University of Sherbrooke, 3001 12th Avenue North, Sherbrooke, Qc, J1H 5N4, Canada
| | - Sarra Baehl
- Department of Medicine, Research Center on Aging, Graduate Program in Immunology, Faculty of Medicine and Health Sciences, University of Sherbrooke, 3001 12th Avenue North, Sherbrooke, Qc, J1H 5N4, Canada
| | - Gilles Dupuis
- Department of Biochemistry, Graduate Program in Immunology, Faculty of Medicine and Health Sciences, University of Sherbrooke, 3001 12th Avenue North, Sherbrooke, Qc, J1H 5N4, Canada
| | - Graham Pawelec
- Center for Medical Research, Tübingen Aging and Tumor Immunology Group, University of Tübingen, Waldhörnlestrasse 22, Tübingen, D-72072, Germany
| | - Anis Larbi
- Singapore Immunology Network (SIgN), Immunos Building/Biopolis, Agency for Science Technology and Research (ASTAR), 8A Biomedical Grove, Singapore, 138648, Singapore
| |
Collapse
|
17
|
Gain and loss of T cell subsets in old age--age-related reshaping of the T cell repertoire. J Clin Immunol 2011; 31:137-46. [PMID: 21243520 DOI: 10.1007/s10875-010-9499-x] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 12/13/2010] [Indexed: 02/07/2023]
Abstract
The immune system is affected by the aging process and undergoes significant age-related changes, termed immunosenescence. Different T cell subsets are affected by this process. Alterations within the bone marrow and thymus lead to a shift in the composition of the T cell repertoire from naïve to antigen-experienced T cells, thereby compromising the diversity of the T cell pool. Additional infection with latent pathogens such as cytomegalovirus aggravates this process. In this review, we focus on the major age-related changes that occur in the naïve and the antigen-experienced T cell population. We discuss the mechanisms responsible for the generation and maintenance of these subsets and how age-related changes can be delayed or prevented by clinical interventions.
Collapse
|
18
|
Valle-Prieto A, Conget PA. Human mesenchymal stem cells efficiently manage oxidative stress. Stem Cells Dev 2010; 19:1885-93. [PMID: 20380515 DOI: 10.1089/scd.2010.0093] [Citation(s) in RCA: 234] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The transplantation of mesenchymal stem cells (MSCs) proves to be useful to treat pathologies in which tissue damage is linked to oxidative stress (OS). The aim of our work was to evaluate whether primary human MSCs (hMSCs) can manage OS. For this, in vitro we assessed the following parameters: (1) cell viability of hMSCs exposed to increasing concentrations of reactive oxygen species (ROS; source: hydrogen peroxide), reactive nitrogen species (RNS; source: S-nitroso-N-acetylpenicillamine), or both (ROS and RNS; source: 3-morpholinosydnonimine hydrochloride); (2) intracellular level of reactive species in hMSCs exposed to ROS and RNS; (3) basal gene expression and activity of superoxide dismutases, catalase, and glutathione peroxidase of hMSCs; (4) basal level of total glutathione (GSx) of hMSCs; and (5) cell viability of GSx-depleted hMSCs exposed to ROS and/or RNS. Results showed that hMSCs have a high resistance to OS-induced death, which correlates with low levels of intracellular reactive species, constitutive expression of enzymes required to manage OS, and high levels of GSx. When hMSCs were depleted of GSx they lose their capacity to manage OS. Thus, in vitro hMSCs were able to scavenge ROS and RNS and efficiently manage OS. If this potential is maintained in vivo, hMSCs could also contribute to tissue regeneration, limiting OS-induced tissue damage.
Collapse
Affiliation(s)
- Araceli Valle-Prieto
- Instituto de Ciencias, Facultad de Medicina Clinica Alemana, Universidad del Desarrollo, Santiago, Chile
| | | |
Collapse
|