1
|
Thorp EB, Ananthakrishnan A, Lantz CW. Decoding immune cell interactions during cardiac allograft vasculopathy: insights derived from bioinformatic strategies. Front Cardiovasc Med 2025; 12:1568528. [PMID: 40342971 PMCID: PMC12058854 DOI: 10.3389/fcvm.2025.1568528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 04/04/2025] [Indexed: 05/11/2025] Open
Abstract
Chronic allograft vasculopathy (CAV) is a major cause of late graft failure in heart transplant recipients, characterized by progressive intimal thickening and diffuse narrowing of the coronary arteries. Unlike atherosclerosis, CAV exhibits a distinct cellular composition and lesion distribution, yet its pathogenesis remains incompletely understood. A major challenge in CAV research has been the limited application of advanced "-omics" technologies, which have revolutionized the study of other vascular diseases. Recent advancements in single-cell and spatial transcriptomics, proteomics, and metabolomics have begun to uncover the complex immune-endothelial-stromal interactions driving CAV progression. Notably, single-cell RNA sequencing has identified previously unrecognized immune cell populations and signaling pathways implicated in endothelial injury and vascular remodeling after heart transplantation. Despite these breakthroughs, studies applying these technologies to CAV remain sparse, limiting the translation of these insights into clinical practice. This review aims to bridge this gap by summarizing recent findings from single-cell and multi-omic approaches, highlighting key discoveries, and discussing their implications for understanding CAV pathogenesis.
Collapse
Affiliation(s)
- Edward B. Thorp
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Aparnaa Ananthakrishnan
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Connor W. Lantz
- Department of Surgery, Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
2
|
Kulkarni HS, Tague LK, Calabrese DR, Liao F, Liu Z, Garnica L, Shankar N, Wu X, Kulkarni DH, Bernardt C, Byers D, Chen C, Huang HJ, Witt CA, Hachem RR, Kreisel D, Atkinson JP, Greenland JR, Gelman AE. Impaired complement regulation drives chronic lung allograft dysfunction after lung transplantation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.17.623951. [PMID: 39605452 PMCID: PMC11601477 DOI: 10.1101/2024.11.17.623951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
A greater understanding of chronic lung allograft dysfunction (CLAD) pathobiology, the primary cause of mortality after lung transplantation, is needed to improve outcomes. The complement system links innate to adaptive immune responses and is activated early post-lung transplantation to form the C3 convertase, a critical enzyme that cleaves the central complement component C3. We hypothesized that LTx recipients with a genetic predisposition to enhanced complement activation have worse CLAD-free survival mediated through increased adaptive alloimmunity. We interrogated a known functional C3 polymorphism (C3R102G) that increases complement activation through impaired C3 convertase inactivation in two independent LTx recipient cohorts. C3R102G, identified in at least one out of three LTx recipients, was associated with worse CLAD-free survival, particularly in the subset of recipients who developed donor-specific antibodies (DSA). In a mouse orthotopic lung transplantation model, impaired recipient complement regulation resulted in more severe obstructive airway lesions when compared to wildtype controls, despite only moderate differences in graft-infiltrating effector T cells. Impaired complement regulation promoted the intragraft accumulation of memory B cells and antibody-secreting cells, resulting in increased DSA levels. In summary, genetic predisposition to complement activation is associated with B cell activation and worse CLAD-free survival.
Collapse
Affiliation(s)
- Hrishikesh S. Kulkarni
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine, David Geffen School of Medicine at the University of California-Los Angeles, Los Angeles, CA, USA
| | - Laneshia K. Tague
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Daniel R. Calabrese
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
- Medical Service, Veterans Affairs Health Care System, San Francisco, California, USA
| | - Fuyi Liao
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Zhiyi Liu
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Lorena Garnica
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Nishanth Shankar
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Xiaobo Wu
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Devesha H. Kulkarni
- Department of Medicine, David Geffen School of Medicine at the University of California-Los Angeles, Los Angeles, CA, USA
| | - Cory Bernardt
- Department of Pathology, Washington University School of Medicine, St. Louis, MO, USA
| | - Derek Byers
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Catherine Chen
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Howard J. Huang
- Department of Medicine, Houston Methodist Hospital, Houston, TX, USA
| | - Chad A. Witt
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Ramsey R. Hachem
- Department of Internal Medicine, University of Utah Spencer Fox Eccles School of Medicine, Salt Lake City, UT
| | - Daniel Kreisel
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - John P. Atkinson
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - John R. Greenland
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
- Medical Service, Veterans Affairs Health Care System, San Francisco, California, USA
| | - Andrew E. Gelman
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
3
|
Vafadar A, Vosough P, Jahromi HK, Tajbakhsh A, Savardshtaki A, Butler AE, Sahebkar A. The role of efferocytosis and transplant rejection: Strategies in promoting transplantation tolerance using apoptotic cell therapy and/or synthetic particles. Cell Biochem Funct 2023; 41:959-977. [PMID: 37787641 DOI: 10.1002/cbf.3852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/26/2023] [Accepted: 08/24/2023] [Indexed: 10/04/2023]
Abstract
Recently, efforts have been made to recognize the precise reason(s) for transplant failure and the process of rejection utilizing the molecular signature. Most transplant recipients do not appreciate the unknown length of survival of allogeneic grafts with the existing standard of care. Two noteworthy immunological pathways occur during allogeneic transplant rejection. A nonspecific innate immune response predominates in the early stages of the immune reaction, and allogeneic antigens initiate a donor-specific adaptive reaction. Though the adaptive response is the major cause of allograft rejection, earlier pro-inflammatory responses that are part of the innate immune response are also regarded as significant in graft loss. The onset of the innate and adaptive immune response causes chronic and acute transplant rejection. Currently employed immunosuppressive medications have shown little or no influence on chronic rejection and, as a result, on overall long-term transplant survival. Furthermore, long-term pharmaceutical immunosuppression is associated with side effects, toxicity, and an increased risk of developing diseases, both infectious and metabolic. As a result, there is a need for the development of innovative donor-specific immunosuppressive medications to regulate the allorecognition pathways that induce graft loss and to reduce the side effects of immunosuppression. Efferocytosis is an immunomodulatory mechanism with fast and efficient clearance of apoptotic cells (ACs). As such, AC therapy strategies have been suggested to limit transplant-related sequelae. Efferocytosis-based medicines/treatments can also decrease the use of immunosuppressive drugs and have no detrimental side effects. Thus, this review aims to investigate the impact of efferocytosis on transplant rejection/tolerance and identify approaches using AC clearance to increase transplant viability.
Collapse
Affiliation(s)
- Asma Vafadar
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Parisa Vosough
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Kargar Jahromi
- Research Center for Non-Communicable Disease, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Amir Tajbakhsh
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Savardshtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Alexandra E Butler
- Research Department, Royal College of Surgeons in Ireland - Bahrain, Adliya, Bahrain
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
4
|
Efferocytosis in lung mucosae: implications for health and disease. Immunol Lett 2022; 248:109-118. [PMID: 35843361 DOI: 10.1016/j.imlet.2022.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/15/2022] [Accepted: 07/11/2022] [Indexed: 11/21/2022]
Abstract
Efferocytosis is imperative to maintain lung homeostasis and control inflammation. Populations of lung macrophages are the main efferocytes in this tissue, responsible for controlling immune responses and avoiding unrestrained inflammation and autoimmunity through the expression of a plethora of receptors that recognize multiple 'eat me' signals on apoptotic cells. Efferocytosis is essentially anti-inflammatory and tolerogenic. However, in some situations, apoptotic cells phagocytosis can elicit inflammatory and immunogenic immune responses. Here, we summarized the current knowledge of the mechanisms of efferocytosis, and how any abnormality in this process may have an important contribution to the lung pathophysiology of many chronic inflammatory lung diseases such as asthma, acute lung injury, chronic obstructive pulmonary disease, and cystic fibrosis. Further, we consider the consequences of the dual role of efferocytosis on the susceptibility or resistance to pulmonary microbial infections. Understanding how efferocytosis works in different contexts will be useful to the development of new and more effective strategies to control the diversity of lung diseases.
Collapse
|
5
|
Bos S, Filby AJ, Vos R, Fisher AJ. Effector immune cells in Chronic Lung Allograft Dysfunction: a Systematic Review. Immunology 2022; 166:17-37. [PMID: 35137398 PMCID: PMC9426626 DOI: 10.1111/imm.13458] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/13/2022] [Accepted: 02/02/2022] [Indexed: 11/29/2022] Open
Abstract
Chronic lung allograft dysfunction (CLAD) remains the major barrier to long‐term survival after lung transplantation and improved insight into its underlying immunological mechanisms is critical to better understand the disease and to identify treatment targets. We systematically searched the electronic databases of PubMed and EMBASE for original research publications, published between January 2000 and April 2021, to comprehensively assess current evidence on effector immune cells in lung tissue and bronchoalveolar lavage fluid from lung transplant recipients with CLAD. Literature search revealed 1351 articles, 76 of which met the criteria for inclusion in our analysis. Our results illustrate significant complexity in both innate and adaptive immune cell responses in CLAD, along with presence of numerous immune cell products, including cytokines, chemokines and proteases associated with tissue remodelling. A clear link between neutrophils and eosinophils and CLAD incidence has been seen, in which eosinophils more specifically predisposed to restrictive allograft syndrome. The presence of cytotoxic and T‐helper cells in CLAD pathogenesis is well‐documented, although it is challenging to draw conclusions about their role in tissue processes from predominantly bronchoalveolar lavage data. In restrictive allograft syndrome, a more prominent humoral immune involvement with increased B cells, immunoglobulins and complement deposition is seen. Our evaluation of published studies over the last 20 years summarizes the complex multifactorial immunopathology of CLAD onset and progression. It highlights the phenotype of several key effector immune cells involved in CLAD pathogenesis, as well as the paucity of single cell resolution spatial studies in lung tissue from patients with CLAD.
Collapse
Affiliation(s)
- Saskia Bos
- Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, United Kingdom.,Institute of Transplantation, The Newcastle Upon Tyne Hospital NHS Foundation Trust, Newcastle Upon Tyne, United Kingdom
| | - Andrew J Filby
- Flow Cytometry Core and Innovation, Methodology and Application Research Theme, Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Robin Vos
- Department of CHROMETA, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium.,University Hospitals Leuven, Dept. of Respiratory Diseases, Leuven, Belgium
| | - Andrew J Fisher
- Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, United Kingdom.,Institute of Transplantation, The Newcastle Upon Tyne Hospital NHS Foundation Trust, Newcastle Upon Tyne, United Kingdom
| |
Collapse
|
6
|
Fang L, Chen L, Song M, He J, Zhang L, Li C, Wang Q, Yang W, Sun W, Leng Y, Shi H, Wang S, Gao X, Wang H. Naoxintong accelerates diabetic wound healing by attenuating inflammatory response. PHARMACEUTICAL BIOLOGY 2021; 59:252-261. [PMID: 33684026 PMCID: PMC7946048 DOI: 10.1080/13880209.2021.1877735] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/18/2020] [Accepted: 01/14/2021] [Indexed: 06/04/2023]
Abstract
CONTEXT Naoxintong (NXT), a prescribed traditional Chinese medicine, widely used in cerebrovascular and cardiovascular diseases, could be effective in diabetic wounds. OBJECTIVE This study evaluates the wound healing activity of NXT by employing an excisional wound splinting model. MATERIALS AND METHODS NXT was dissolved in saline and given daily by gavage. Wounds were induced at the dorsum of non-diabetic (db/+) and diabetic (db/db) mice and treated with saline or 700 mg/kg/d NXT for 16 days. Wound closure was measured every four days. Extracellular matrix (ECM) remodelling, collagen deposition, leukocyte infiltration and expression of Col-3, CK14, CXCL1, CXCL2, MPO, Ly6G, CD68, CCR7, CD206, p-JAK1, p-STAT3 and p-STAT6 was analysed. RESULTS NXT significantly accelerated rate of wound closure increased from 70% to 84%, accompanied by up-regulation of collagen deposition and ECM at days 16 post-injury. Moreover, NXT alleviated neutrophil infiltration, accompanied by down-regulation of CXCL1 and CXCL2 mRNA expression. In addition, NXT markedly augmented neutrophil efferocytosis. In diabetic wounds, the levels of M1 marker gene (CCR7) increased, while M2 marker gene (CD206) decreased, demonstrating a pro-inflammatory shift. Application of NXT increased M2 macrophage phenotype in db/db mice. Mechanistically, NXT treatment increased expression level of p-STAT3 and p-STAT6 at days 3 post-injury, indicating NXT mediated macrophages towards M2 phenotype and alleviated inflammation in diabetic wounds by activation of STAT3 and STAT6. CONCLUSIONS Our study provides evidence that NXT accelerates diabetic wound healing by attenuating inflammatory response, which provides an important basis for use of NXT in the treatment of chronic diabetic wound healing.
Collapse
Affiliation(s)
- Leyu Fang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Chinese Medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lu Chen
- State Key Laboratory of Component-based Chinese Medicine, Tianjin, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Chinese Medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Min Song
- State Key Laboratory of Component-based Chinese Medicine, Tianjin, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Chinese Medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Juan He
- Buchang Pharmaceutical Co. Ltd., Xi'an, China
| | - Lusha Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Chinese Medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chunxiao Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Chinese Medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qianyi Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Chinese Medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wenjie Yang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Chinese Medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wei Sun
- State Key Laboratory of Component-based Chinese Medicine, Tianjin, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Chinese Medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuze Leng
- State Key Laboratory of Component-based Chinese Medicine, Tianjin, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Chinese Medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hong Shi
- State Key Laboratory of Component-based Chinese Medicine, Tianjin, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Chinese Medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shaoxia Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Chinese Medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiumei Gao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Chinese Medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hong Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Chinese Medicine Pharmacology, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
7
|
Kulkarni HS, Ramphal K, Ma L, Brown M, Oyster M, Speckhart KN, Takahashi T, Byers DE, Porteous MK, Kalman L, Hachem RR, Rushefski M, McPhatter J, Cano M, Kreisel D, Scavuzzo M, Mittler B, Cantu E, Pilely K, Garred P, Christie JD, Atkinson JP, Gelman AE, Diamond JM. Local complement activation is associated with primary graft dysfunction after lung transplantation. JCI Insight 2020; 5:138358. [PMID: 32750037 PMCID: PMC7526453 DOI: 10.1172/jci.insight.138358] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 07/29/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The complement system plays a key role in host defense but is activated by ischemia/reperfusion injury (IRI). Primary graft dysfunction (PGD) is a form of acute lung injury occurring predominantly due to IRI, which worsens survival after lung transplantation (LTx). Local complement activation is associated with acute lung injury, but whether it is more reflective of allograft injury compared with systemic activation remains unclear. We proposed that local complement activation would help identify those who develop PGD after LTx. We also aimed to identify which complement activation pathways are associated with PGD. METHODS We performed a multicenter cohort study at the University of Pennsylvania and Washington University School of Medicine. Bronchoalveolar lavage (BAL) and plasma specimens were obtained from recipients within 24 hours after LTx. PGD was scored based on the consensus definition. Complement activation products and components of each arm of the complement cascade were measured using ELISA. RESULTS In both cohorts, sC4d and sC5b-9 levels were increased in BAL of subjects with PGD compared with those without PGD. Subjects with PGD also had higher C1q, C2, C4, and C4b, compared with subjects without PGD, suggesting classical and lectin pathway involvement. Ba levels were higher in subjects with PGD, suggesting alternative pathway activation. Among lectin pathway–specific components, MBL and FCN-3 had a moderate-to-strong correlation with the terminal complement complex in the BAL but not in the plasma. CONCLUSION Complement activation fragments are detected in the BAL within 24 hours after LTx. Components of all 3 pathways are locally increased in subjects with PGD. Our findings create a precedent for investigating complement-targeted therapeutics to mitigate PGD. FUNDING This research was supported by the NIH, American Lung Association, Children’s Discovery Institute, Robert Wood Johnson Foundation, Cystic Fibrosis Foundation, Barnes-Jewish Hospital Foundation, Danish Heart Foundation, Danish Research Foundation of Independent Research, Svend Andersen Research Foundation, and Novo Nordisk Research Foundation. Substantial differences between local and systemic complement activation in lung transplant recipients who develop primary graft dysfunction are identified in two independent cohorts.
Collapse
Affiliation(s)
- Hrishikesh S Kulkarni
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Kristy Ramphal
- Department of Medicine, Perlman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Lina Ma
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Melanie Brown
- Department of Medicine, Perlman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Michelle Oyster
- Department of Medicine, Perlman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kaitlyn N Speckhart
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Tsuyoshi Takahashi
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Derek E Byers
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Mary K Porteous
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Laurel Kalman
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Ramsey R Hachem
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Melanie Rushefski
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Ja'Nia McPhatter
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Marlene Cano
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Daniel Kreisel
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | - Brigitte Mittler
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Edward Cantu
- Department of Surgery, Perlman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Katrine Pilely
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet and Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Peter Garred
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet and Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Jason D Christie
- Department of Medicine, Perlman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - John P Atkinson
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Andrew E Gelman
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA.,Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Joshua M Diamond
- Department of Medicine, Perlman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
8
|
Ito H, Yamashita Y, Tanaka T, Takaki M, Le MN, Yoshida LM, Morimoto K. Cigarette smoke induces endoplasmic reticulum stress and suppresses efferocytosis through the activation of RhoA. Sci Rep 2020; 10:12620. [PMID: 32724133 PMCID: PMC7387437 DOI: 10.1038/s41598-020-69610-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 07/15/2020] [Indexed: 12/22/2022] Open
Abstract
Impaired efferocytosis is a key mechanism of inflammatory lung diseases, including chronic obstructive pulmonary disease and cystic fibrosis. Cigarette smoking activates RhoA and impairs efferocytosis in alveolar macrophages, but the mechanism has not been fully elucidated. We investigated the role of endoplasmic reticulum (ER) stress induced by cigarette smoking in the disruption of efferocytosis. Both tunicamycin (10 μg/ml) and thapsigargin (0.1 and 1 μM), which are ER stress inducers, suppressed efferocytosis in J774 cells, and a Rho-associated coiled-coil-forming kinase (ROCK) inhibitor (Y27632) reversed this effect. We validated the effect of tunicamycin on efferocytosis in experiments using RAW264.7 cells. Then, we investigated the role of the unfolded protein response (UPR) in efferocytosis impaired by ER stress. A PERK inhibitor (GSK2606414) restored the efferocytosis that had been impaired by TM, and an eIF2α dephosphorylation inhibitor (salubrinal) suppressed efferocytosis. Cigarette smoke extract (CSE) induced ER stress in J774 macrophages and RhoA activation in J774 cells, and the CSE-induced ROCK activity was successfully reversed by GSK2606414 and tauroursodeoxycholic acid. Finally, we confirmed that ER stress suppresses efferocytosis in murine alveolar macrophages and that GSK2606414 could rescue this process. These data suggest that cigarette smoke-induced ER stress and the UPR play crucial roles in RhoA activation and suppression of efferocytosis in the lung.
Collapse
Affiliation(s)
- Hiroyuki Ito
- Department of Clinical Medicine, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki City, Nagasaki, 852-8523, Japan.,Department of Clinical Tropical Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yoshiro Yamashita
- Department of Clinical Medicine, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki City, Nagasaki, 852-8523, Japan
| | - Takeshi Tanaka
- Department of Clinical Medicine, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki City, Nagasaki, 852-8523, Japan
| | - Masahiro Takaki
- Department of Clinical Medicine, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki City, Nagasaki, 852-8523, Japan
| | - Minh Nhat Le
- Department of Pediatric Infectious Diseases, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Lay-Myint Yoshida
- Department of Pediatric Infectious Diseases, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Konosuke Morimoto
- Department of Clinical Medicine, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki City, Nagasaki, 852-8523, Japan. .,Department of Clinical Tropical Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.
| |
Collapse
|
9
|
Ween MP, Hamon R, Macowan MG, Thredgold L, Reynolds PN, Hodge SJ. Effects of E‐cigarette E‐liquid components on bronchial epithelial cells: Demonstration of dysfunctional efferocytosis. Respirology 2019; 25:620-628. [DOI: 10.1111/resp.13696] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 06/16/2019] [Accepted: 07/23/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Miranda P. Ween
- Department of Thoracic MedicineRoyal Adelaide Hospital Adelaide SA Australia
- School of MedicineUniversity of Adelaide Adelaide SA Australia
| | - Rhys Hamon
- Department of Thoracic MedicineRoyal Adelaide Hospital Adelaide SA Australia
- School of MedicineUniversity of Adelaide Adelaide SA Australia
| | - Matthew G. Macowan
- Department of Thoracic MedicineRoyal Adelaide Hospital Adelaide SA Australia
- School of MedicineUniversity of Adelaide Adelaide SA Australia
| | - Leigh Thredgold
- Department of Occupational and Environmental Health, School of Public HealthUniversity of Adelaide Adelaide SA Australia
| | - Paul N. Reynolds
- Department of Thoracic MedicineRoyal Adelaide Hospital Adelaide SA Australia
- School of MedicineUniversity of Adelaide Adelaide SA Australia
| | - Sandra J. Hodge
- School of MedicineUniversity of Adelaide Adelaide SA Australia
| |
Collapse
|
10
|
Strzelak A, Ratajczak A, Adamiec A, Feleszko W. Tobacco Smoke Induces and Alters Immune Responses in the Lung Triggering Inflammation, Allergy, Asthma and Other Lung Diseases: A Mechanistic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:E1033. [PMID: 29883409 PMCID: PMC5982072 DOI: 10.3390/ijerph15051033] [Citation(s) in RCA: 370] [Impact Index Per Article: 52.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/08/2018] [Accepted: 05/09/2018] [Indexed: 02/06/2023]
Abstract
Many studies have been undertaken to reveal how tobacco smoke skews immune responses contributing to the development of chronic obstructive pulmonary disease (COPD) and other lung diseases. Recently, environmental tobacco smoke (ETS) has been linked with asthma and allergic diseases in children. This review presents the most actual knowledge on exact molecular mechanisms responsible for the skewed inflammatory profile that aggravates inflammation, promotes infections, induces tissue damage, and may promote the development of allergy in individuals exposed to ETS. We demonstrate how the imbalance between oxidants and antioxidants resulting from exposure to tobacco smoke leads to oxidative stress, increased mucosal inflammation, and increased expression of inflammatory cytokines (such as interleukin (IL)-8, IL-6 and tumor necrosis factor α ([TNF]-α). Direct cellular effects of ETS on epithelial cells results in increased permeability, mucus overproduction, impaired mucociliary clearance, increased release of proinflammatory cytokines and chemokines, enhanced recruitment of macrophages and neutrophils and disturbed lymphocyte balance towards Th2. The plethora of presented phenomena fully justifies a restrictive policy aiming at limiting the domestic and public exposure to ETS.
Collapse
Affiliation(s)
- Agnieszka Strzelak
- Department of Pediatric Pulmonology and Allergy, Medical University of Warsaw, Zwirki i Wigury 61, 02-091 Warszawa, Poland.
| | - Aleksandra Ratajczak
- Department of Pediatric Pulmonology and Allergy, Medical University of Warsaw, Zwirki i Wigury 61, 02-091 Warszawa, Poland.
| | - Aleksander Adamiec
- Department of Pediatric Pulmonology and Allergy, Medical University of Warsaw, Zwirki i Wigury 61, 02-091 Warszawa, Poland.
| | - Wojciech Feleszko
- Department of Pediatric Pulmonology and Allergy, Medical University of Warsaw, Zwirki i Wigury 61, 02-091 Warszawa, Poland.
| |
Collapse
|
11
|
Tran HB, Jersmann H, Truong TT, Hamon R, Roscioli E, Ween M, Pitman MR, Pitson SM, Hodge G, Reynolds PN, Hodge S. Disrupted epithelial/macrophage crosstalk via Spinster homologue 2-mediated S1P signaling may drive defective macrophage phagocytic function in COPD. PLoS One 2017; 12:e0179577. [PMID: 29112690 PMCID: PMC5675303 DOI: 10.1371/journal.pone.0179577] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 05/31/2017] [Indexed: 12/21/2022] Open
Abstract
INTRODUCTION We have previously established a link between impaired phagocytic capacity and deregulated S1P signaling in alveolar macrophages from COPD subjects. We hypothesize that this defect may include a disruption of epithelial-macrophage crosstalk via Spns2-mediated intercellular S1P signaling. METHODS Primary alveolar macrophages and bronchial epithelial cells from COPD subjects and controls, cell lines, and a mouse model of chronic cigarette smoke exposure were studied. Cells were exposed to 10% cigarette smoke extract, or vehicle control. Spns2 expression and subcellular localization was studied by immunofluorescence, confocal microscopy and RT-PCR. Phagocytosis was assessed by flow-cytometry. Levels of intra- and extracellular S1P were measured by S1P [3H]-labeling. RESULTS Spns2 expression was significantly increased (p<0.05) in alveolar macrophages from current-smokers/COPD patients (n = 5) compared to healthy nonsmokers (n = 8) and non-smoker lung transplant patients (n = 4). Consistent with this finding, cigarette smoke induced a significant increase in Spns2 expression in both human alveolar and THP-1 macrophages. In contrast, a remarkable Spns2 down-regulation was noted in response to cigarette smoke in 16HBE14o- cell line (p<0.001 in 3 experiments), primary nasal epithelial cells (p<0.01 in 2 experiments), and in smoke-exposed mice (p<0.001, n = 6 animals per group). Spns2 was localized to cilia in primary bronchial epithelial cells. In both macrophage and epithelial cell types, Spns2 was also found localized to cytoplasm and the nucleus, in line with a predicted bipartile Nuclear Localization Signal at the position aa282 of the human Spns2 sequence. In smoke-exposed mice, alveolar macrophage phagocytic function positively correlated with Spns2 protein expression in bronchial epithelial cells. CONCLUSION Our data suggest that the epithelium may be the major source for extracellular S1P in the airway and that there is a possible disruption of epithelial/macrophage cross talk via Spns2-mediated S1P signaling in COPD and in response to cigarette smoke exposure.
Collapse
Affiliation(s)
- Hai B. Tran
- Lung Research Unit, Hanson Institute and Department of Thoracic Medicine, Royal Adelaide Hospital, and Department of Medicine, University of Adelaide, Adelaide, Australia
| | - Hubertus Jersmann
- Lung Research Unit, Hanson Institute and Department of Thoracic Medicine, Royal Adelaide Hospital, and Department of Medicine, University of Adelaide, Adelaide, Australia
| | - Tung Thanh Truong
- Lung Research Unit, Hanson Institute and Department of Thoracic Medicine, Royal Adelaide Hospital, and Department of Medicine, University of Adelaide, Adelaide, Australia
- Department of TB & Lung Diseases, Hospital 175, Hochiminh City, Vietnam
| | - Rhys Hamon
- Lung Research Unit, Hanson Institute and Department of Thoracic Medicine, Royal Adelaide Hospital, and Department of Medicine, University of Adelaide, Adelaide, Australia
| | - Eugene Roscioli
- Lung Research Unit, Hanson Institute and Department of Thoracic Medicine, Royal Adelaide Hospital, and Department of Medicine, University of Adelaide, Adelaide, Australia
| | - Miranda Ween
- Lung Research Unit, Hanson Institute and Department of Thoracic Medicine, Royal Adelaide Hospital, and Department of Medicine, University of Adelaide, Adelaide, Australia
| | - Melissa R. Pitman
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia
| | - Stuart M. Pitson
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia
| | - Greg Hodge
- Lung Research Unit, Hanson Institute and Department of Thoracic Medicine, Royal Adelaide Hospital, and Department of Medicine, University of Adelaide, Adelaide, Australia
| | - Paul N. Reynolds
- Lung Research Unit, Hanson Institute and Department of Thoracic Medicine, Royal Adelaide Hospital, and Department of Medicine, University of Adelaide, Adelaide, Australia
| | - Sandra Hodge
- Lung Research Unit, Hanson Institute and Department of Thoracic Medicine, Royal Adelaide Hospital, and Department of Medicine, University of Adelaide, Adelaide, Australia
| |
Collapse
|
12
|
DeBerge M, Zhang S, Glinton K, Grigoryeva L, Hussein I, Vorovich E, Ho K, Luo X, Thorp EB. Efferocytosis and Outside-In Signaling by Cardiac Phagocytes. Links to Repair, Cellular Programming, and Intercellular Crosstalk in Heart. Front Immunol 2017; 8:1428. [PMID: 29163503 PMCID: PMC5671945 DOI: 10.3389/fimmu.2017.01428] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 10/13/2017] [Indexed: 12/24/2022] Open
Abstract
Phagocytic sensing and engulfment of dying cells and extracellular bodies initiate an intracellular signaling cascade within the phagocyte that can polarize cellular function and promote communication with neighboring non-phagocytes. Accumulating evidence links phagocytic signaling in the heart to cardiac development, adult myocardial homeostasis, and the resolution of cardiac inflammation of infectious, ischemic, and aging-associated etiology. Phagocytic clearance in the heart may be carried out by professional phagocytes, such as macrophages, and non-professional cells, including myofibrolasts and potentially epithelial cells. During cardiac development, phagocytosis initiates growth cues for early cardiac morphogenesis. In diseases of aging, including myocardial infarction, heightened levels of cell death require efficient phagocytic debridement to salvage further loss of terminally differentiated adult cardiomyocytes. Additional risk factors, including insulin resistance and other systemic risk factors, contribute to inefficient phagocytosis, altered phagocytic signaling, and delayed cardiac inflammation resolution. Under such conditions, inflammatory presentation of myocardial antigen may lead to autoimmunity and even possible rejection of transplanted heart allografts. Increased understanding of these basic mechanisms offers therapeutic opportunities.
Collapse
Affiliation(s)
- Matthew DeBerge
- Department of Pathology, Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Shuang Zhang
- Department of Pathology, Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Kristofor Glinton
- Department of Pathology, Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Luba Grigoryeva
- Department of Pathology, Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Islam Hussein
- Department of Pathology, Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Esther Vorovich
- Department of Pathology, Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Karen Ho
- Department of Pathology, Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Xunrong Luo
- Department of Pathology, Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Edward B Thorp
- Department of Pathology, Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
13
|
Hodge S, Tran HB, Hamon R, Roscioli E, Hodge G, Jersmann H, Ween M, Reynolds PN, Yeung A, Treiberg J, Wilbert S. Nonantibiotic macrolides restore airway macrophage phagocytic function with potential anti-inflammatory effects in chronic lung diseases. Am J Physiol Lung Cell Mol Physiol 2017; 312:L678-L687. [PMID: 28258107 DOI: 10.1152/ajplung.00518.2016] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 02/24/2017] [Accepted: 02/24/2017] [Indexed: 11/22/2022] Open
Abstract
We reported defective efferocytosis associated with cigarette smoking and/or airway inflammation in chronic lung diseases, including chronic obstructive pulmonary disease, severe asthma, and childhood bronchiectasis. We also showed defects in phagocytosis of nontypeable Haemophilus influenzae (NTHi), a common colonizer of the lower airway in these diseases. These defects could be substantially overcome with low-dose azithromycin; however, chronic use may induce bacterial resistance. The aim of the present study was therefore to investigate two novel macrolides-2'-desoxy-9-(S)-erythromycylamine (GS-459755) and azithromycin-based 2'-desoxy molecule (GS-560660)-with significantly diminished antibiotic activity against Staphylococcus aureus, Streptococcus pneumonia, Moraxella catarrhalis, and H. influenzae We tested their effects on efferocytosis, phagocytosis of NTHi, cell viability, receptors involved in recognition of apoptotic cells and/or NTHi (flow cytometry), secreted and cleaved intracellular IL-1β (cytometric bead array, immunofluorescence/confocal microscopy), and nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) using primary alveolar macrophages and THP-1 macrophages ± 10% cigarette smoke extract. Dose-response experiments showed optimal prophagocytic effects of GS-459755 and GS-560660 at concentrations of 0.5-1 µg/ml compared with our findings with azithromycin. Both macrolides significantly improved phagocytosis of apoptotic cells and NTHi (e.g., increases in efferocytosis and phagocytosis of NTHi: GS-459755, 23 and 22.5%, P = 0.043; GS-560660, 23.5 and 22%, P = 0.043, respectively). Macrophage viability remained >85% following 24 h exposure to either macrolide at concentrations up to 20 µg/ml. Secreted and intracellular-cleaved IL-1β was decreased with both macrolides with no significant changes in recognition molecules c-mer proto-oncogene tyrosine kinase; scavenger receptor class A, member 1; Toll-like receptor 2/4; or CD36. Particulate cytoplasmic immunofluorescence of NLRP3 inflammasome was also reduced significantly. We conclude that GS-459755 and GS-560660 may be useful for reducing airway inflammation in chronic lung diseases without inducing bacterial resistance.
Collapse
Affiliation(s)
- Sandra Hodge
- Lung Research Unit, Hanson Institute, and Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, Australia; .,Department of Medicine, University of Adelaide, Adelaide, Australia; and
| | - Hai B Tran
- Lung Research Unit, Hanson Institute, and Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, Australia
| | - Rhys Hamon
- Lung Research Unit, Hanson Institute, and Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, Australia
| | - Eugene Roscioli
- Lung Research Unit, Hanson Institute, and Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, Australia.,Department of Medicine, University of Adelaide, Adelaide, Australia; and
| | - Greg Hodge
- Lung Research Unit, Hanson Institute, and Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, Australia.,Department of Medicine, University of Adelaide, Adelaide, Australia; and
| | - Hubertus Jersmann
- Lung Research Unit, Hanson Institute, and Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, Australia.,Department of Medicine, University of Adelaide, Adelaide, Australia; and
| | - Miranda Ween
- Lung Research Unit, Hanson Institute, and Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, Australia.,Department of Medicine, University of Adelaide, Adelaide, Australia; and
| | - Paul N Reynolds
- Lung Research Unit, Hanson Institute, and Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, Australia.,Department of Medicine, University of Adelaide, Adelaide, Australia; and
| | | | | | | |
Collapse
|
14
|
Apoptosis of the Tracheal Epithelium Can Increase the Number of Recipient Bone Marrow–Derived Myofibroblasts in Allografts and Exacerbate Obliterative Bronchiolitis After Tracheal Transplantation in Mice. Transplantation 2016; 100:1880-8. [DOI: 10.1097/tp.0000000000001230] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
15
|
Hodge S, Upham JW, Pizzutto S, Petsky HL, Yerkovich S, Baines KJ, Gibson P, Simpson JL, Buntain H, Chen ACH, Hodge G, Chang AB. Is Alveolar Macrophage Phagocytic Dysfunction in Children With Protracted Bacterial Bronchitis a Forerunner to Bronchiectasis? Chest 2016; 149:508-515. [PMID: 26867834 DOI: 10.1016/j.chest.2015.10.066] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 10/11/2015] [Accepted: 10/15/2015] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Children with recurrent protracted bacterial bronchitis (PBB) and bronchiectasis share common features, and PBB is likely a forerunner to bronchiectasis. Both diseases are associated with neutrophilic inflammation and frequent isolation of potentially pathogenic microorganisms, including nontypeable Haemophilus influenzae (NTHi), from the lower airway. Defective alveolar macrophage phagocytosis of apoptotic bronchial epithelial cells (efferocytosis), as found in other chronic lung diseases, may also contribute to tissue damage and neutrophil persistence. Thus, in children with bronchiectasis or PBB and in control subjects, we quantified the phagocytosis of airway apoptotic cells and NTHi by alveolar macrophages and related the phagocytic capacity to clinical and airway inflammation. METHODS Children with bronchiectasis (n = 55) or PBB (n = 13) and control subjects (n = 13) were recruited. Alveolar macrophage phagocytosis, efferocytosis, and expression of phagocytic scavenger receptors were assessed by flow cytometry. Bronchoalveolar lavage fluid interleukin (IL) 1β was measured by enzyme-linked immunosorbent assay. RESULTS For children with PBB or bronchiectasis, macrophage phagocytic capacity was significantly lower than for control subjects (P = .003 and P < .001 for efferocytosis and P = .041 and P = .004 for phagocytosis of NTHi; PBB and bronchiectasis, respectively); median phagocytosis of NTHi for the groups was as follows: bronchiectasis, 13.7% (interquartile range [IQR], 11%-16%); PBB, 16% (IQR, 11%-16%); control subjects, 19.0% (IQR, 13%-21%); and median efferocytosis for the groups was as follows: bronchiectasis, 14.1% (IQR, 10%-16%); PBB, 16.2% (IQR, 14%-17%); control subjects, 18.1% (IQR, 16%-21%). Mannose receptor expression was significantly reduced in the bronchiectasis group (P = .019), and IL-1β increased in both bronchiectasis and PBB groups vs control subjects. CONCLUSIONS A reduced alveolar macrophage phagocytic host response to apoptotic cells or NTHi may contribute to neutrophilic inflammation and NTHi colonization in both PBB and bronchiectasis. Whether this mechanism also contributes to the progression of PBB to bronchiectasis remains unknown.
Collapse
Affiliation(s)
- Sandra Hodge
- Chronic Inflammatory Lung Disease Research Laboratory, Lung Research Unit, Hanson Institute and Department of Thoracic Medicine, Royal Adelaide Hospital, and The School of Medicine, The University of Adelaide, Adelaide, SA, Australia.
| | - John W Upham
- Princess Alexandra Hospital, Brisbane, QLD, Australia; The School of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Susan Pizzutto
- Child Health Division, Menzies School of Health Research, Darwin, NT, Australia
| | - Helen L Petsky
- Queensland University of Technology, South Brisbane, QLD, Australia
| | - Stephanie Yerkovich
- The School of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Katherine J Baines
- Respiratory and Sleep Medicine, School of Medicine and Public Health, Centre for Asthma and Respiratory Disease, The University of Newcastle, Callaghan, NSW, Australia
| | - Peter Gibson
- Respiratory and Sleep Medicine, School of Medicine and Public Health, Centre for Asthma and Respiratory Disease, The University of Newcastle, Callaghan, NSW, Australia
| | - Jodie L Simpson
- Respiratory and Sleep Medicine, School of Medicine and Public Health, Centre for Asthma and Respiratory Disease, The University of Newcastle, Callaghan, NSW, Australia
| | - Helen Buntain
- Queensland Children's Health Service, Brisbane, QLD, and Queensland Children's Medical Research Institute, Brisbane, QLD, Australia
| | - Alice C H Chen
- The School of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Greg Hodge
- Chronic Inflammatory Lung Disease Research Laboratory, Lung Research Unit, Hanson Institute and Department of Thoracic Medicine, Royal Adelaide Hospital, and The School of Medicine, The University of Adelaide, Adelaide, SA, Australia
| | - Anne B Chang
- Child Health Division, Menzies School of Health Research, Darwin, NT, Australia; Queensland Children's Health Service, Brisbane, QLD, and Queensland Children's Medical Research Institute, Brisbane, QLD, Australia
| |
Collapse
|
16
|
Ween M, Ahern J, Carroll A, Hodge G, Pizzutto S, Jersmann H, Reynolds P, Hodge S. A small volume technique to examine and compare alveolar macrophage phagocytosis of apoptotic cells and non typeable Haemophilus influenzae (NTHi). J Immunol Methods 2016; 429:7-14. [DOI: 10.1016/j.jim.2015.12.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 12/07/2015] [Accepted: 12/07/2015] [Indexed: 12/11/2022]
|
17
|
Chiu S, Kanter J, Sun H, Bharat A, Sporn PHS, Bharat A. Effects of Hypercapnia in Lung Tissue Repair and Transplant. CURRENT TRANSPLANTATION REPORTS 2015. [DOI: 10.1007/s40472-014-0047-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
18
|
Tran HB, Ahern J, Hodge G, Holt P, Dean MM, Reynolds PN, Hodge S. Oxidative stress decreases functional airway mannose binding lectin in COPD. PLoS One 2014; 9:e98571. [PMID: 24901869 PMCID: PMC4047017 DOI: 10.1371/journal.pone.0098571] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Accepted: 05/05/2014] [Indexed: 01/22/2023] Open
Abstract
We have previously established that a defect in the ability of alveolar macrophages (AM) to phagocytose apoptotic cells (efferocytosis) and pathogens is a potential therapeutic target in COPD. We further showed that levels of mannose binding lectin (MBL; required for effective macrophage phagocytic function) were reduced in the airways but not circulation of COPD patients. We hypothesized that increased oxidative stress in the airway could be a cause for such disturbances. We therefore studied the effects of oxidation on the structure of the MBL molecule and its functional interactions with macrophages. Oligomeric structure of plasma derived MBL (pdMBL) before and after oxidation (oxMBL) with 2,2′-azobis(2-methylpropionamidine)dihydrochroride (AAPH) was investigated by blue native PAGE. Macrophage function in the presence of pd/oxMBL was assessed by measuring efferocytosis, phagocytosis of non-typeable Haemophilus influenzae (NTHi) and expression of macrophage scavenger receptors. Oxidation disrupted higher order MBL oligomers. This was associated with changed macrophage function evident by a significantly reduced capacity to phagocytose apoptotic cells and NTHi in the presence of oxMBL vs pdMBL (eg, NTHi by 55.9 and 27.0% respectively). Interestingly, oxidation of MBL significantly reduced macrophage phagocytic ability to below control levels. Flow cytometry and immunofluorescence revealed a significant increase in expression of macrophage scavenger receptor (SRA1) in the presence of pdMBL that was abrogated in the presence of oxMBL. We show the pulmonary macrophage dysfunction in COPD may at least partially result from an oxidative stress-induced effect on MBL, and identify a further potential therapeutic strategy for this debilitating disease.
Collapse
Affiliation(s)
- Hai B. Tran
- Lung Research, Hanson Institute and Department Thoracic Medicine, Royal Adelaide Hospital, Adelaide, South Australia, Australia
- * E-mail:
| | - Jessica Ahern
- Lung Research, Hanson Institute and Department Thoracic Medicine, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Greg Hodge
- Lung Research, Hanson Institute and Department Thoracic Medicine, Royal Adelaide Hospital, Adelaide, South Australia, Australia
- Department of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Phillip Holt
- Lung Research, Hanson Institute and Department Thoracic Medicine, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Melinda M. Dean
- Research and Development, Australian Red Cross Blood Service, Brisbane, Queensland, Australia
| | - Paul N. Reynolds
- Lung Research, Hanson Institute and Department Thoracic Medicine, Royal Adelaide Hospital, Adelaide, South Australia, Australia
- Department of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Sandra Hodge
- Lung Research, Hanson Institute and Department Thoracic Medicine, Royal Adelaide Hospital, Adelaide, South Australia, Australia
- Department of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
19
|
Pągowska-Klimek I, Cedzyński M. Mannan-binding lectin in cardiovascular disease. BIOMED RESEARCH INTERNATIONAL 2014; 2014:616817. [PMID: 24877121 PMCID: PMC4022110 DOI: 10.1155/2014/616817] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 04/10/2014] [Indexed: 01/19/2023]
Abstract
Cardiovascular disease remains the leading cause of mortality and morbidity worldwide so research continues into underlying mechanisms. Since innate immunity and its potent component mannan-binding lectin have been proven to play an important role in the inflammatory response during infection and ischaemia-reperfusion injury, attention has been paid to its role in the development of cardiovascular complications as well. This review provides a general outline of the structure and genetic polymorphism of MBL and its role in inflammation/tissue injury with emphasis on associations with cardiovascular disease. MBL appears to be involved in the pathogenesis of atherosclerosis and, in consequence, coronary artery disease and also inflammation and tissue injury after myocardial infarction and heart transplantation. The relationship between MBL and disease is rather complex and depends on different genetic and environmental factors. That could be why the data obtained from animal and clinical studies are sometimes contradictory proving not for the first time that innate immunity is a "double-edge sword," sometimes beneficial and, at other times disastrous for the host.
Collapse
Affiliation(s)
- Izabela Pągowska-Klimek
- Department of Anesthesiology and Intensive Care, Polish Mother's Memorial Hospital Institute, Rzgowska 281/289, 93-338 Łódź, Poland
| | - Maciej Cedzyński
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232 Łódź, Poland
| |
Collapse
|
20
|
Weigt SS, DerHovanessian A, Wallace WD, Lynch JP, Belperio JA. Bronchiolitis obliterans syndrome: the Achilles' heel of lung transplantation. Semin Respir Crit Care Med 2013; 34:336-51. [PMID: 23821508 PMCID: PMC4768744 DOI: 10.1055/s-0033-1348467] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Lung transplantation is a therapeutic option for patients with end-stage pulmonary disorders. Unfortunately, chronic lung allograft dysfunction (CLAD), most commonly manifest as bronchiolitis obliterans syndrome (BOS), continues to be highly prevalent and is the major limitation to long-term survival. The pathogenesis of BOS is complex and involves alloimmune and nonalloimmune pathways. Clinically, BOS manifests as airway obstruction and dyspnea that are classically progressive and ultimately fatal; however, the course is highly variable, and distinguishable phenotypes may exist. There are few controlled studies assessing treatment efficacy, but only a minority of patients respond to current treatment modalities. Ultimately, preventive strategies may prove more effective at prolonging survival after lung transplantation, but their remains considerable debate and little data regarding the best strategies to prevent BOS. A better understanding of the risk factors and their relationship to the pathological mechanisms of chronic lung allograft rejection should lead to better pharmacological targets to prevent or treat this syndrome.
Collapse
Affiliation(s)
- S Samuel Weigt
- Division of Pulmonary, Critical Care Medicine, Allergy, and Clinical Immunology, Department of Internal Medicine, The David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095, USA.
| | | | | | | | | |
Collapse
|
21
|
Kennedy VE, Todd JL, Palmer SM. Bronchoalveolar lavage as a tool to predict, diagnose and understand bronchiolitis obliterans syndrome. Am J Transplant 2013; 13:552-61. [PMID: 23356456 PMCID: PMC3582805 DOI: 10.1111/ajt.12091] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 12/03/2012] [Accepted: 12/08/2012] [Indexed: 01/25/2023]
Abstract
Bronchiolitis obliterans syndrome (BOS), a condition of irreversible small airway fibrosis, is the principal factor limiting long-term survival after lung transplantation. Bronchoscopy and bronchoalveolar lavage (BAL), techniques central to lung transplant clinical practice, provide a unique opportunity to interrogate the lung allograft during BOS development and identify potential disease mechanisms or biomarkers. Over the past 20 years, numerous studies have evaluated the BAL cellular composition, cytokine profiles and protein constituents in lung transplant recipients with BOS. To date, however, no summative evaluation of this literature has been reported. We developed and applied objective criteria to qualitatively rank the strength of associations between BAL parameters and BOS in order to provide a comprehensive and systematic assessment of the literature. Our analysis indicates that several BAL parameters, including neutrophil count, interleukin-8, alpha defensins and MMP-9, demonstrate highly replicable associations with BOS. Additionally, we suggest that considerable opportunity exists to increase the knowledge gained from BAL analyses in BOS through increased sample sizes, covariant adjustment and standardization of the BAL technique. Further efforts to leverage analysis of BAL constituents in BOS may offer great potential to provide additional in-depth and mechanistic insights into the pathogenesis of this complex disease.
Collapse
Affiliation(s)
- Vanessa E. Kennedy
- Division of Pulmonary, Allergy and Critical Care Medicine- Duke University Medical Center, Durham, NC
| | - Jamie L. Todd
- Division of Pulmonary, Allergy and Critical Care Medicine- Duke University Medical Center, Durham, NC,Duke Clinical Research Institute, Durham, NC
| | - Scott M. Palmer
- Division of Pulmonary, Allergy and Critical Care Medicine- Duke University Medical Center, Durham, NC,Duke Clinical Research Institute, Durham, NC
| |
Collapse
|
22
|
Mukaro VR, Bylund J, Hodge G, Holmes M, Jersmann H, Reynolds PN, Hodge S. Lectins offer new perspectives in the development of macrophage-targeted therapies for COPD/emphysema. PLoS One 2013; 8:e56147. [PMID: 23441163 PMCID: PMC3575470 DOI: 10.1371/journal.pone.0056147] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2012] [Accepted: 01/07/2013] [Indexed: 01/29/2023] Open
Abstract
We have previously shown that the defective ability of alveolar macrophages (AM) to phagocytose apoptotic cells (‘efferocytosis’) in chronic obstructive pulmonary disease/emphysema (COPD) could be therapeutically improved using the C-type lectin, mannose binding lectin (MBL), although the exact mechanisms underlying this effect are unknown. An S-type lectin, galectin-3, is also known to regulate macrophage phenotype and function, via interaction with its receptor CD98. We hypothesized that defective expression of galectin/CD98 would be associated with defective efferocytosis in COPD and that mechanisms would include effects on cytoskeletal remodeling and macrophage phenotype and glutathione (GSH) availability. Galectin-3 was measured by ELISA in BAL from controls, smokers and current/ex-smokers with COPD. CD98 was measured on AM using flow cytometry. We assessed the effects of galectin-3 on efferocytosis, CD98, GSH, actin polymerisation, rac activation, and the involvement of PI3K (using β-actin probing and wortmannin inhibition) in vitro using human AM and/or MH-S macrophage cell line. Significant decreases in BAL galectin-3 and AM CD98 were observed in BAL from both current- and ex-smoker COPD subjects vs controls. Galectin 3 increased efferocytosis via an increase in active GTP bound Rac1. This was confirmed with β-actin probing and the role of PI3K was confirmed using wortmannin inhibition. The increased efferocytosis was associated with increases in available glutathione and expression of CD98. We provide evidence for a role of airway lectins in the failed efferocytosis in COPD, supporting their further investigation as potential macrophage-targeted therapies.
Collapse
Affiliation(s)
- Violet R. Mukaro
- Department of Thoracic Medicine, Royal Adelaide Hospital and Lung Research Laboratory, Hanson Institute, Adelaide, South Australia, Australia
| | - Johan Bylund
- Department of Rheumatology and Inflammation Research, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Greg Hodge
- Department of Thoracic Medicine, Royal Adelaide Hospital and Lung Research Laboratory, Hanson Institute, Adelaide, South Australia, Australia
- Department of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Mark Holmes
- Department of Thoracic Medicine, Royal Adelaide Hospital and Lung Research Laboratory, Hanson Institute, Adelaide, South Australia, Australia
- Department of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Hubertus Jersmann
- Department of Thoracic Medicine, Royal Adelaide Hospital and Lung Research Laboratory, Hanson Institute, Adelaide, South Australia, Australia
- Department of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Paul N. Reynolds
- Department of Thoracic Medicine, Royal Adelaide Hospital and Lung Research Laboratory, Hanson Institute, Adelaide, South Australia, Australia
- Department of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Sandra Hodge
- Department of Thoracic Medicine, Royal Adelaide Hospital and Lung Research Laboratory, Hanson Institute, Adelaide, South Australia, Australia
- Department of Medicine, University of Adelaide, Adelaide, South Australia, Australia
- * E-mail:
| |
Collapse
|
23
|
IL-17A in human respiratory diseases: innate or adaptive immunity? Clinical implications. Clin Dev Immunol 2013; 2013:840315. [PMID: 23401702 PMCID: PMC3562607 DOI: 10.1155/2013/840315] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 12/26/2012] [Indexed: 01/28/2023]
Abstract
Since the discovery of IL-17 in 1995 as a T-cell cytokine, inducing IL-6 and IL-8 production by fibroblasts, and the report of a separate T-cell lineage producing IL-17(A), called Th17 cells, in 2005, the role of IL-17 has been studied in several inflammatory diseases. By inducing IL-8 production and subsequent neutrophil attraction towards the site of inflammation, IL-17A can link adaptive and innate immune responses. More specifically, its role in respiratory diseases has intensively been investigated. We here review its role in human respiratory diseases and try to unravel the question whether IL-17A only provides a link between the adaptive and innate respiratory immunity or whether this cytokine might also be locally produced by innate immune cells. We furthermore briefly discuss the possibility to reduce local IL-17A production as a treatment option for respiratory diseases.
Collapse
|
24
|
Budd SJ, Aris RM, Medaiyese AA, Tilley SL, Neuringer IP. Increased plasma mannose binding lectin levels are associated with bronchiolitis obliterans after lung transplantation. Respir Res 2012; 13:56. [PMID: 22762710 PMCID: PMC3441326 DOI: 10.1186/1465-9921-13-56] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Accepted: 04/09/2012] [Indexed: 11/11/2022] Open
Abstract
Background Long-term lung allograft survival is limited by bronchiolitis obliterans syndrome (BOS). Mannose binding lectin (MBL) belongs to the innate immune system, participates in complement activation, and may predispose to graft rejection. We investigated mannose binding (MBL) during cold ischemia and in tissue samples from explanted lungs with BOS, and assessed MBL and complement proteins in plasma post-lung transplantation relative to BOS staging. Methods MBL was detected by immunohistochemistry lung tissue at the time of cold ischemia and in samples with BOS. MBL was assayed in the peripheral blood of 66 lung transplant patients transplanted between 1990–2007. Results MBL localized to vasculature and basement membrane during cold ischemia and BOS. Patients further out post-lung transplant > 5 years (n = 33), had significantly lower levels of MBL in the blood compared to lung transplant patients < 5 years with BOS Op-3 (n = 17), 1738 ± 250 ng/ml vs 3198 ± 370 ng/ml, p = 0.027, and similar levels to lung transplant patients < 5 years with BOS 0 (n = 16), 1738 ± 250 ng/ml vs 1808 ± 345 ng/ml. MBL levels in all BOS 0 (n = 30) vs. all BOS Op-3 (n = 36) were 1378 ± 275 ng/ml vs. 2578 ± 390 ng/ml, p = 0.001, respectively. C3 plasma levels in BOS 0 (n = 30) vs. BOS Op-3 (n = 36) were 101 ± 19.8 mg/ml vs. 114 ± 25.2 mg/ml, p = 0.024, respectively. Conclusions MBL localizes within the lung during graft ischemia and BOS, higher levels of plasma MBL are associated with BOS Op-3 and < 5 years post-transplant, and higher level of plasma complement protein C3 was associated with BOS Op-3 clinical status. MBL may serve as a biomarker for poorer outcome post-lung transplantation.
Collapse
|
25
|
Kwakkel-van Erp JM, Paantjens AWM, van Kessel DA, Grutters JC, van den Bosch JMM, van de Graaf EA, Otten HG. Mannose-binding lectin deficiency linked to cytomegalovirus (CMV) reactivation and survival in lung transplantation. Clin Exp Immunol 2011; 165:410-6. [PMID: 21707593 DOI: 10.1111/j.1365-2249.2011.04436.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Despite the use of immunosuppressives mainly influencing T and B cell responses, the prevalence of the bronchiolitis obliterans syndrome (BOS) after lung transplantation is high. Mannose-binding lectin (MBL) is a pattern recognition molecule of complement and an important component of the innate immunity. MBL is associated with rejection, infection and survival in other solid organ transplantations. In this study the relation between functional MBL levels and cytomegalovirus (CMV) reactivations and the development of BOS and survival after lung transplantation was investigated. MBL levels were measured in 85 patients before and in 57 of these patients after lung transplantation. The relation of MBL on survival, CMV reactivation and the development of BOS were investigated with Kaplan-Meier (log-rank) survival analysis. MBL levels decreased on average by 20% (P < 0·001) after transplantation and eventually returned to pretransplant levels. Fourteen of the 85 patients had deficient pretransplant MBL levels and these patients had a tendency towards a better survival compared to those with normal MBL levels (P = 0·08). Although no correlation was found between MBL deficiency and the development of BOS, more CMV reactivations occurred in recipients with deficient versus normal levels of MBL (P = 0·03). Our results suggest that MBL deficiency is associated with CMV reactivations and a longer overall survival, but not with the development of BOS.
Collapse
Affiliation(s)
- J M Kwakkel-van Erp
- Respiratory Medicine, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | | | | | | | | | | |
Collapse
|