1
|
Song X, Liu Y, Tian X, Gui L, Zhang G. Silencing of a chemosensory membrane protein gene, the odorant receptor co-receptor (Orco), induces a significant disruption in olfactory-driven behaviors of the pumpkin fruit fly, Bactrocera tau (Walker) (Diptera: Tephritidae). Int J Biol Macromol 2025; 312:144213. [PMID: 40373915 DOI: 10.1016/j.ijbiomac.2025.144213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 04/19/2025] [Accepted: 05/12/2025] [Indexed: 05/17/2025]
Abstract
Bactrocera tau is an economically important invasive pest damaging many vegetables and fruits. Due to the hidden characteristics of its larval infestation, a strategy for regulating B. tau adults' olfactory-driven behaviors to control the pest is desirable. The olfactory co-receptor (Orco) is a key chemosensory membrane protein in insect olfactory systems. However, the function of Orco in the olfactory-driven behaviors of this pest remains under explored. In this study, we characterized the Orco gene from B. tau, named BtauOrco. The complete open reading frame (ORF) of BtauOrco is 1422 bp, which encodes a protein of 473 amino acids, with seven structural domains in the transmembrane, and shares high identity with other insect Orcos. Real-time quantitative PCR (RT-qPCR) analysis showed that BtauOrco is predominantly expressed in the antennae of both male and female B. tau flies. After silencing Orco in B. tau flies, we found the responses of Orco-silenced flies to nine behaviorally active compounds were abolished. Moreover, the Orco-silenced flies exhibited an impaired foraging behavior. Our findings suggested that Orco plays a crucial role in B. tau olfactory-driven behaviors, which indicates that Orco is an excellent target for the control of B. tau.
Collapse
Affiliation(s)
- Xurong Song
- College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China
| | - Yi Liu
- College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China
| | - Xiaoli Tian
- College of Life Science, Yangtze University, Jingzhou 434025, Hubei, China
| | - Lianyou Gui
- College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China
| | - Guohui Zhang
- College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China.
| |
Collapse
|
2
|
Chen X, Yao S, Xie L, Li J, Xiong L, Yang X, Chen Y, Cao F, Hou Q, You M, Liu Y, Gurr GM, You S. Disruption of the odorant receptor co-receptor (Orco) reveals its critical role in multiple olfactory behaviors of a cosmopolitan pest. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2025; 177:104248. [PMID: 39674517 DOI: 10.1016/j.ibmb.2024.104248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/21/2024] [Accepted: 12/11/2024] [Indexed: 12/16/2024]
Abstract
The olfactory system of insects plays a pivotal role in multiple, essential activities including feeding, mating, egg laying, and host localization. The capacity of odorant receptors to recognize odor molecules relies on odorant receptor co-receptors forming heterodimers. Here we report the successful engineering a homozygous mutant strain of diamondback moth (Plutella xylostella) in which the odorant receptor co-receptor PxOrco was silenced using CRISPR/Cas9. This insect is a globally important crop pest for which novel control methods are urgently required. Behavioral assays demonstrated that PxOrco knockout males exhibited abolished courtship behaviors, inability to mate, and loss of selective preference for P. xylostella's key sex pheromone components. Whilst female mating behavior and fecundity remained unaffected by PxOrco knockout, oviposition response to leaf alcohol, a key cue for normal oviposition behavior, was lost. Electroantennography revealed drastically reduced responses to sex pheromones and plant volatiles in PxOrco-deficient adults but food location by larvae was unaffected. Moreover, expression analysis of PxOrco-deficient pheromone receptors (PRs) indicated varied regulation patterns, with down-regulation observed in several PRs in both sexes. These findings underscore the critical role of PxOrco in regulating multiple olfactory aspects in P. xylostella, including feeding, mating, and host location. Our study identifies the potential of disrupting the Orco gene in this and other pest species to provide novel avenues for future pest control.
Collapse
Affiliation(s)
- Xuanhao Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Science, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, 350002, China.
| | - Shuyuan Yao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Science, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, 350002, China.
| | - Liangqian Xie
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Science, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, 350002, China.
| | - Jinyang Li
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Science, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, 350002, China.
| | - Lei Xiong
- Institute of Plant Protection, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China.
| | - Xiaozhen Yang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Science, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, 350002, China.
| | - Yi Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Science, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, 350002, China.
| | - Fang Cao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Science, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, 350002, China.
| | - Qing Hou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Science, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, 350002, China.
| | - Minsheng You
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Science, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, 350002, China.
| | - Yuanyuan Liu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Science, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Geoff M Gurr
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Science, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, 350002, China; Gulbali Institute, Charles Sturt University, Orange, NSW, 2800, Australia.
| | - Shijun You
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Science, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, 350002, China.
| |
Collapse
|
3
|
Zhang X, Wang X, Zhao S, Fang K, Wang Z, Liu J, Xi J, Wang S, Zhang J. Response of Odorant Receptors with Phenylacetaldehyde and the Effects on the Behavior of the Rice Water Weevil ( Lissorhoptrus oryzophilus). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:6541-6551. [PMID: 37058441 DOI: 10.1021/acs.jafc.2c07963] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The rice water weevil (RWW), Lissorhoptrus oryzophilus Kuschel (Coleoptera: Curculionidae), is a destructive rice pest that threatens the rice industry worldwide. Odorant receptors (ORs) and odorant receptor coreceptors (Orcos) play an important role in the process of insects' whole life activities; however, there are no related functional studies on RWW. On this basis, a heterologous study of LoryOR20/LoryOrco in Xenopus laevis oocytes was performed to detect the effects of certain natural compounds on RWWs and four active compounds were found. Electroantennogram (EAG) recordings and a behavior test showed that RWWs exhibited a significant response to phenylacetaldehyde (PAA) and an EAG measurement of dsRNA-LoryOR20-treated RWWs revealed a significant decrease in response to PAA. Our results revealed an olfactory molecular mechanism for the recognition of PAA by RWWs, thus providing a potential genetic target at the peripheral olfactory sensing level, contributing to the development of novel control strategies for pest management.
Collapse
Affiliation(s)
- Xinxin Zhang
- College of Plant Science, Jilin University, Changchun 130062, PR China
- College of Plant Protection, Northeast Agricultural University, Harbin 150030, PR China
| | - Xiao Wang
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Shiwen Zhao
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Kui Fang
- College of Plant Science, Jilin University, Changchun 130062, PR China
- Technical Center of Kunming Customs, Kunming 650228, PR China
| | - Zhun Wang
- Changchun Customs Technology Center, Changchun 130062, PR China
| | - Jianan Liu
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Jinghui Xi
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Shang Wang
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Juhong Zhang
- College of Plant Science, Jilin University, Changchun 130062, PR China
| |
Collapse
|
4
|
Ai S, Zhang Y, Chen Y, Zhang T, Zhong G, Yi X. Insect-Microorganism Interaction Has Implicates on Insect Olfactory Systems. INSECTS 2022; 13:1094. [PMID: 36555004 PMCID: PMC9787996 DOI: 10.3390/insects13121094] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Olfaction plays an essential role in various insect behaviors, including habitat selection, access to food, avoidance of predators, inter-species communication, aggregation, and reproduction. The olfactory process involves integrating multiple signals from external conditions and internal physiological states, including living environments, age, physiological conditions, and circadian rhythms. As microorganisms and insects form tight interactions, the behaviors of insects are constantly challenged by versatile microorganisms via olfactory cues. To better understand the microbial influences on insect behaviors via olfactory cues, this paper summarizes three different ways in which microorganisms modulate insect behaviors. Here, we deciphered three interesting aspects of microorganisms-contributed olfaction: (1) How do volatiles emitted by microorganisms affect the behaviors of insects? (2) How do microorganisms reshape the behaviors of insects by inducing changes in the synthesis of host volatiles? (3) How do symbiotic microorganisms act on insects by modulating behaviors?
Collapse
Affiliation(s)
- Shupei Ai
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Yuhua Zhang
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Yaoyao Chen
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Tong Zhang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Guohua Zhong
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Xin Yi
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
5
|
Wheelwright M, Whittle CR, Riabinina O. Olfactory systems across mosquito species. Cell Tissue Res 2021; 383:75-90. [PMID: 33475852 PMCID: PMC7873006 DOI: 10.1007/s00441-020-03407-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/15/2020] [Indexed: 01/06/2023]
Abstract
There are 3559 species of mosquitoes in the world (Harbach 2018) but, so far, only a handful of them have been a focus of olfactory neuroscience and neurobiology research. Here we discuss mosquito olfactory anatomy and function and connect these to mosquito ecology. We highlight the least well-known and thus most interesting aspects of mosquito olfactory systems and discuss promising future directions. We hope this review will encourage the insect neuroscience community to work more broadly across mosquito species instead of focusing narrowly on the main disease vectors.
Collapse
Affiliation(s)
- Matthew Wheelwright
- Department of Biosciences, Durham University, Stockton Road, Durham, DH1 3LE, UK
| | - Catherine R Whittle
- Department of Biosciences, Durham University, Stockton Road, Durham, DH1 3LE, UK
| | - Olena Riabinina
- Department of Biosciences, Durham University, Stockton Road, Durham, DH1 3LE, UK.
| |
Collapse
|
6
|
Hegde S, Khanipov K, Albayrak L, Golovko G, Pimenova M, Saldaña MA, Rojas MM, Hornett EA, Motl GC, Fredregill CL, Dennett JA, Debboun M, Fofanov Y, Hughes GL. Microbiome Interaction Networks and Community Structure From Laboratory-Reared and Field-Collected Aedes aegypti, Aedes albopictus, and Culex quinquefasciatus Mosquito Vectors. Front Microbiol 2018; 9:2160. [PMID: 30250462 PMCID: PMC6140713 DOI: 10.3389/fmicb.2018.02160] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 08/23/2018] [Indexed: 12/31/2022] Open
Abstract
Microbial interactions are an underappreciated force in shaping insect microbiome communities. Although pairwise patterns of symbiont interactions have been identified, we have a poor understanding regarding the scale and the nature of co-occurrence and co-exclusion interactions within the microbiome. To characterize these patterns in mosquitoes, we sequenced the bacterial microbiome of Aedes aegypti, Ae. albopictus, and Culex quinquefasciatus caught in the field or reared in the laboratory and used these data to generate interaction networks. For collections, we used traps that attracted host-seeking or ovipositing female mosquitoes to determine how physiological state affects the microbiome under field conditions. Interestingly, we saw few differences in species richness or microbiome community structure in mosquitoes caught in either trap. Co-occurrence and co-exclusion analysis identified 116 pairwise interactions substantially increasing the list of bacterial interactions observed in mosquitoes. Networks generated from the microbiome of Ae. aegypti often included highly interconnected hub bacteria. There were several instances where co-occurring bacteria co-excluded a third taxa, suggesting the existence of tripartite relationships. Several associations were observed in multiple species or in field and laboratory-reared mosquitoes indicating these associations are robust and not influenced by environmental or host factors. To demonstrate that microbial interactions can influence colonization of the host, we administered symbionts to Ae. aegypti larvae that either possessed or lacked their resident microbiota. We found that the presence of resident microbiota can inhibit colonization of particular bacterial taxa. Our results highlight that microbial interactions in mosquitoes are complex and influence microbiome composition.
Collapse
Affiliation(s)
- Shivanand Hegde
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Kamil Khanipov
- Department of Pharmacology and Toxicology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, United States
- Department of Computer Science, University of Houston, Houston, TX, United States
| | - Levent Albayrak
- Department of Pharmacology and Toxicology, Sealy Center for Structural Biology, University of Texas Medical Branch, Galveston, TX, United States
| | - George Golovko
- Department of Pharmacology and Toxicology, Sealy Center for Structural Biology, University of Texas Medical Branch, Galveston, TX, United States
| | - Maria Pimenova
- Department of Pharmacology and Toxicology, Sealy Center for Structural Biology, University of Texas Medical Branch, Galveston, TX, United States
| | - Miguel A. Saldaña
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Mark M. Rojas
- Department of Pharmacology and Toxicology, Sealy Center for Structural Biology, University of Texas Medical Branch, Galveston, TX, United States
| | - Emily A. Hornett
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Greg C. Motl
- Harris County Public Health, Mosquito & Vector Control Division, Houston, TX, United States
| | - Chris L. Fredregill
- Harris County Public Health, Mosquito & Vector Control Division, Houston, TX, United States
| | - James A. Dennett
- Harris County Public Health, Mosquito & Vector Control Division, Houston, TX, United States
| | - Mustapha Debboun
- Harris County Public Health, Mosquito & Vector Control Division, Houston, TX, United States
| | - Yuriy Fofanov
- Department of Pharmacology and Toxicology, Sealy Center for Structural Biology, University of Texas Medical Branch, Galveston, TX, United States
| | - Grant L. Hughes
- Department of Pathology, Institute for Human Infections and Immunity, Center for Tropical Diseases, Center for Biodefense and Emerging Infectious Disease, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
7
|
Guo L, Zhao H, Jiang Y. Expressional and functional interactions of two Apis cerana cerana olfactory receptors. PeerJ 2018; 6:e5005. [PMID: 29910990 PMCID: PMC6001824 DOI: 10.7717/peerj.5005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 05/29/2018] [Indexed: 11/20/2022] Open
Abstract
Apis cerana cerana relies on its sensitive olfactory system to perform foraging activities in the surrounding environment. Olfactory receptors (ORs) are a primary requirement for odorant recognition and coding. However, the molecular recognition of volatile compounds with ORs in A. cerana cerana is still not clear. Hence, in the present study, we achieved transient transfection and cell surface expression of A. cerana cerana ORs (AcerOr1 and AcerOr2; AcerOr2 is orthologous to the co-receptor) in Spodoptera frugiperda (Sf9) cells. AcerOr2 narrowly responded to N-(4-ethylphenyl)-2-((4-ethyl-5-(3-pyridinyl)-4H-1,2,4-triazol-3-yl) thio) acetamide (VUAA1), whereas AcerOr1 was sensitive to eugenol, lauric acid, ocimene, 1-nonanol, linolenic acid, hexyl acetate, undecanoic acid, 1-octyl alcohol, and nerol. Of the compounds tested, AcerOr1 showed the highest sensitivity to these odorants with EC50 values of 10−7 and 10−8 M, and AcerOr2 recognized VUAA1 with higher sensitivity [EC50 = (6.621 ± 0.26) × 10−8]. These results indicate that AcerOr2 is an essential gene for olfactory signaling, and AcerOr1 is a broadly tuned receptor. We discovered ligands that were useful for probing receptor activity during odor stimulation and validated three of them by electroantennography. The response increased with concentration of the odorant. The present study provides insight into the mechanism of olfactory discrimination in A. cerana cerana.
Collapse
Affiliation(s)
- Lina Guo
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| | - Huiting Zhao
- College of Life Science, Shanxi Agricultural University, Taigu, China
| | - Yusuo Jiang
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| |
Collapse
|
8
|
Utashiro N, Williams CR, Parrish JZ, Emoto K. Prior activity of olfactory receptor neurons is required for proper sensory processing and behavior in Drosophila larvae. Sci Rep 2018; 8:8580. [PMID: 29872087 PMCID: PMC5988719 DOI: 10.1038/s41598-018-26825-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 05/14/2018] [Indexed: 11/10/2022] Open
Abstract
Animal responses to their environment rely on activation of sensory neurons by external stimuli. In many sensory systems, however, neurons display basal activity prior to the external stimuli. This prior activity is thought to modulate neural functions, yet its impact on animal behavior remains elusive. Here, we reveal a potential role for prior activity in olfactory receptor neurons (ORNs) in shaping larval olfactory behavior. We show that prior activity in larval ORNs is mediated by the olfactory receptor complex (OR complex). Mutations of Orco, an odorant co-receptor required for OR complex function, cause reduced attractive behavior in response to optogenetic activation of ORNs. Calcium imaging reveals that Orco mutant ORNs fully respond to optogenetic stimulation but exhibit altered temporal patterns of neural responses. These findings together suggest a critical role for prior activity in information processing upon ORN activation in Drosophila larvae, which in turn contributes to olfactory behavior control.
Collapse
Affiliation(s)
- Nao Utashiro
- Department of Biological Sciences, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Claire R Williams
- Department of Biology, University of Washington, 24 Kincaid Hall, Box 351800, Seattle, WA, 98195, USA.,Molecular and Cellular Biology Program, University of Washington, Seattle, WA, 98195, USA
| | - Jay Z Parrish
- Department of Biology, University of Washington, 24 Kincaid Hall, Box 351800, Seattle, WA, 98195, USA.,Molecular and Cellular Biology Program, University of Washington, Seattle, WA, 98195, USA
| | - Kazuo Emoto
- Department of Biological Sciences, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan. .,International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
9
|
Zhang QH, Wu ZN, Zhou JJ, Du YJ. Molecular and functional characterization of a candidate sex pheromone receptor OR1 in Spodoptera litura. INSECT SCIENCE 2017; 24:543-558. [PMID: 26573759 DOI: 10.1111/1744-7917.12294] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/19/2015] [Indexed: 06/05/2023]
Abstract
Olfaction is primarily mediated by highly specified olfactory receptors (ORs). Here, we cloned and identified an olfactory receptor, named SlituOR1 (Genbank no. JN835269), from Spodoptera litura and found evidence that it is a candidate pheromone receptor. It exhibited male-biased expression in the antennae, where it was localized at the base of sensilla trichoidea, the antennal sensilla mainly responsive to pheromones in moths. Conserved orthologues of this receptor, found among known pheromone receptors within the Lepidoptera, and SlituOR1 were placed among a clade of candidate pheromone receptors in a phylogeny tree of insect OR gene sequences. SlituOR1 showed differential expression in S. litura populations attracted to traps baited with different ratios of the two sex pheromone components (9Z,11E)-tetradecadienyl acetate (Z9E11-14:OAc) and (9Z,12E)-tetradecadienyl acetate (Z9E12-14:OAc). Knocking down of SlituOR1 by RNA interference reduced the electroantennogram (EAG) response to Z9E11-14:OAc, and this result is consistent with the field trapping experiment. We infer that variation in transcription levels of olfactory receptors may modulate sex pheromone perception in male moths and could provide some of the flexibility required to maintain the functionality of communication with females when a population is adapting to a new niche and reproductive isolation becomes an advantage.
Collapse
Affiliation(s)
- Qin-Hui Zhang
- College of Life Sciences, Sichuan University, Chengdu 610065, China
- Institute of Health & Environmental Ecology, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Zhong-Nan Wu
- Institute of Health & Environmental Ecology, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jing-Jiang Zhou
- Department of Biological Chemistry and Crop Protection, Rothamsted Research, BBSRC, Harpenden, Herts. AL5 2JQ, UK
| | - Yong-Jun Du
- Institute of Health & Environmental Ecology, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| |
Collapse
|
10
|
Qu SX, Li HP, Ma L, Song JD. Insights Into the Evolution of Chemoreceptor Genes Superfamily in Tyrophagus putrescentiae (Acari: Acaridae). JOURNAL OF MEDICAL ENTOMOLOGY 2016; 53:753-759. [PMID: 27113112 DOI: 10.1093/jme/tjv257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 12/28/2015] [Indexed: 06/05/2023]
Abstract
All living organisms, including animals, plants, fungi, and bacteria, use the olfactory system to recognize chemicals or pheromone from their environment. Insects detect a volatile substance using odorant receptors (ORs) or gustatory receptors (GRs) and ionotropic receptors (IRs). The gene families of the olfactory system in Acari are still not clear. In this study, we identified seven ORs, one GR, and five IRs from the transcriptome of the storage mite, Tyrophagus putrescentiae Schrank. No olfactory coreceptor was found in this transcriptome. Phylogenetic analysis of these gene families with other Arthropoda species revealed the conservation of carbon dioxide receptors in all tested flying insects and T. putrescentiae Most of these ORs and GRs were unique to three mosquitoes (Anopheles gambiae Giles, Culex quinquefasciatus Say, and Aedes aegypti L.), Ixodes scapularis Say and Pediculus humanus L., indicating their involvement in specific aspects of both gustatory and olfactory perception. Some clades contained receptors obtained from all tested insect vector species, indicating a degree of conservation among some vector-dependent OR lineages. IRs family was a highly dynamic and independent original of the chemoreceptor genes subfamily. Our findings would make it possible for future research on the chemosensory recognition mechanism in Acari.
Collapse
Affiliation(s)
- S X Qu
- Institute of Vegetable Crops, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Jiangsu Academy of Agricultural Sciences, 50 Zhongling St., Nanjing, Jiangsu 210014, China (; ; ; ), and
| | - H P Li
- Institute of Vegetable Crops, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Jiangsu Academy of Agricultural Sciences, 50 Zhongling St., Nanjing, Jiangsu 210014, China (; ; ; ), and
| | - L Ma
- Institute of Vegetable Crops, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Jiangsu Academy of Agricultural Sciences, 50 Zhongling St., Nanjing, Jiangsu 210014, China (; ; ; ), and
| | - J D Song
- Institute of Vegetable Crops, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Jiangsu Academy of Agricultural Sciences, 50 Zhongling St., Nanjing, Jiangsu 210014, China (; ; ; ), and
| |
Collapse
|
11
|
Zhang R, Gao G, Chen H. Silencing of the olfactory co-receptor gene in Dendroctonus armandi leads to EAG response declining to major host volatiles. Sci Rep 2016; 6:23136. [PMID: 26979566 PMCID: PMC4793246 DOI: 10.1038/srep23136] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 02/29/2016] [Indexed: 11/09/2022] Open
Abstract
In this study, a polymerase chain reaction (PCR) based on homology genes of Orco was utilized to identify DarmOrco, which is essential for olfaction in D. armandi. The results showed that DarmOrco shares significant sequence homology with Orco proteins had known in other insects. Quantitative real-time PCR (qRT-PCR) analysis suggested that DarmOrco was abundantly expressed in adult D. armandi; by contrast, DarmOrco showed trace amounts of expression level in other stages. Of different tissues, DarmOrco expression level was the highest in the antennae. In order to understand the functional significance of Orco, we injected siRNA of DarmOrco into the conjunctivum between the second and third abdominal segments, and evaluated its expression after siRNA injected for 24 h, 48 h and 72 h. The results of qRT-PCR demonstrated that the reduction of mRNA expression level was significant (~80%) in DarmOrco siRNA-treated D. armandi than in water-injected and non-injected controls. The electroantennogram responses of females and males to 11 major volatiles of its host, were also reduced (30~68% for females; 16~70% for males) in siRNA-treated D. armandi compared with the controls. These results suggest that DarmOrco is crucial in mediating odorant perception.
Collapse
Affiliation(s)
- Ranran Zhang
- College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Guanqun Gao
- College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hui Chen
- College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
12
|
Yang B, Fujii T, Ishikawa Y, Matsuo T. Targeted mutagenesis of an odorant receptor co-receptor using TALEN in Ostrinia furnacalis. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 70:53-59. [PMID: 26689645 DOI: 10.1016/j.ibmb.2015.12.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 11/30/2015] [Accepted: 12/09/2015] [Indexed: 06/05/2023]
Abstract
Genome editing using transcription activator-like effector nuclease (TALEN) has been applied for various model organisms but not yet for agricultural pest insects. In this study, TALEN-mediated mutagenesis of the gene encoding odorant receptor co-receptor (Orco) of an important agricultural pest Ostrinia furnacalis (OfurOrco) was carried out. Of the two pairs of TALEN constructs designed, one generated somatic and germline mutations at rates of 70.8% and 20.8%, respectively. Physiological and behavioral analyses using a gas chromatograph-electroantennographic detector system and a wind tunnel, respectively, revealed that antennal responses to sex pheromone components were decreased to trace levels, and behavioral responses were abolished in OfurOrco mutants. This study demonstrated that TALEN-mediated mutagenesis is applicable to pest insects, and these results will open the way for a better understanding of chemosensory systems in wild insects.
Collapse
Affiliation(s)
- Bin Yang
- Department of Agricultural and Environmental Biology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Takeshi Fujii
- Department of Agricultural and Environmental Biology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yukio Ishikawa
- Department of Agricultural and Environmental Biology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Takashi Matsuo
- Department of Agricultural and Environmental Biology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| |
Collapse
|
13
|
Franco TA, Oliveira DS, Moreira MF, Leal WS, Melo ACA. Silencing the odorant receptor co-receptor RproOrco affects the physiology and behavior of the Chagas disease vector Rhodnius prolixus. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 69:82-90. [PMID: 25747010 DOI: 10.1016/j.ibmb.2015.02.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 02/09/2015] [Accepted: 02/21/2015] [Indexed: 06/04/2023]
Abstract
Olfaction is one of the main sensory modalities that allow insects to interpret their environment. Several proteins, including odorant-binding proteins (OBPs) and odorant receptors (ORs), are involved in this process. Odorant receptors are ion channels formed by a binding unit OR and an odorant receptor co-receptor (Orco). The main goal of this study was to characterize the Orco gene of Rhodnius prolixus (RproOrco) and to infer its biological functions using gene silencing. The full-length RproOrco gene sequence was downloaded from VectorBase. This gene has 7 introns and is located in the genome SuperContig GL563069: 1,017,713-1,023,165. RproOrco encodes a protein of 473 amino acids, with predicted 7 transmembrane domains, and is highly expressed in the antennae during all R. prolixus developmental stages. The RNAi technique effectively silenced RproOrco, reducing the gene's expression by approximately 73%. Interestingly, the effect of gene silencing persisted for more than 100 days, indicating a prolonged effect of dsRNA that was maintained even after molting. The phenotypic effects of silencing involved the following: (1) loss of the ability to find a vertebrate host in a timely manner, (2) decreased ingested blood volume, (3) delayed and decreased molt rate, (4) increased mortality rate, and (5) decreased egg laying. Our data strongly suggest that dsOrco disrupts R. prolixus host-finding behavior, which is further reflected in the blood ingestion, molting, mortality, and egg laying data. This study clearly demonstrates that Orco is an excellent target for controlling triatomine populations. Thus, the data presented here open new possibilities for the control of vector-borne diseases.
Collapse
Affiliation(s)
- Thiago A Franco
- Universidade Federal do Rio de Janeiro, Instituto de Química, 21941-909, Rio de Janeiro, RJ, Brazil
| | - Daniele S Oliveira
- Universidade Federal do Rio de Janeiro, Instituto de Química, 21941-909, Rio de Janeiro, RJ, Brazil
| | - Monica F Moreira
- Universidade Federal do Rio de Janeiro, Instituto de Química, 21941-909, Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| | - Walter S Leal
- Department of Molecular and Cellular Biology, University of California, 95616, Davis, CA, USA
| | - Ana C A Melo
- Universidade Federal do Rio de Janeiro, Instituto de Química, 21941-909, Rio de Janeiro, RJ, Brazil; Department of Molecular and Cellular Biology, University of California, 95616, Davis, CA, USA; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
14
|
Latorre-Estivalis JM, de Oliveira ES, Beiral Esteves B, Santos Guimarães L, Neves Ramos M, Lorenzo MG. Patterns of expression of odorant receptor genes in a Chagas disease vector. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 69:71-81. [PMID: 26003917 DOI: 10.1016/j.ibmb.2015.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 04/29/2015] [Accepted: 05/01/2015] [Indexed: 06/04/2023]
Abstract
Rhodnius prolixus is a triatomine bug acting as a relevant vector of Chagas disease for which the genome sequence has been recently made available. Based on this information, a set of olfactory (ORs) and ionotropic receptor (IRs) genes potentially related to olfactory processes was characterized, and the expression patterns along bug development and in different structures potentially involved in promoting chemosensory-mediated behaviors were studied. For this, diverse bioinformatic procedures were used to validate gene models analyzing their structural and functional features and designing specific primers. Evolutionary relationships among R. prolixus olfactory coreceptors (RproOrco, RproIR25a, RproIR8a and RproIR76b) and their orthologues from other insects were shown to have mostly good bootstrap support values in phylogenetic trees. Moreover, antennal expression was confirmed for most genes included in the study. Both ORs and IRs showed antennal expression along the whole development of bugs of this species, with few exceptional receptors showing gradually increasing expression or expression restricted to the antennae of adult bugs. Finally, the expression of most of the selected genes was confirmed in other structures, such as rostri, tarsi, tibial pads and genitalia, which are potentially involved in promoting chemosensory-mediated behaviors. These results are discussed in terms of their relevance to advance in the understanding of the molecular bases of triatomine behavior.
Collapse
Affiliation(s)
- Jose Manuel Latorre-Estivalis
- Vector Behavior and Pathogen Interaction Group, Centro de Pesquisas René Rachou (CPqRR) - FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil.
| | - Emerson Soares de Oliveira
- Vector Behavior and Pathogen Interaction Group, Centro de Pesquisas René Rachou (CPqRR) - FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil
| | - Barbara Beiral Esteves
- Vector Behavior and Pathogen Interaction Group, Centro de Pesquisas René Rachou (CPqRR) - FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil
| | - Letícia Santos Guimarães
- Vector Behavior and Pathogen Interaction Group, Centro de Pesquisas René Rachou (CPqRR) - FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil
| | - Marina Neves Ramos
- Vector Behavior and Pathogen Interaction Group, Centro de Pesquisas René Rachou (CPqRR) - FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil
| | - Marcelo Gustavo Lorenzo
- Vector Behavior and Pathogen Interaction Group, Centro de Pesquisas René Rachou (CPqRR) - FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
15
|
Chen XG, Jiang X, Gu J, Xu M, Wu Y, Deng Y, Zhang C, Bonizzoni M, Dermauw W, Vontas J, Armbruster P, Huang X, Yang Y, Zhang H, He W, Peng H, Liu Y, Wu K, Chen J, Lirakis M, Topalis P, Van Leeuwen T, Hall AB, Jiang X, Thorpe C, Mueller RL, Sun C, Waterhouse RM, Yan G, Tu ZJ, Fang X, James AA. Genome sequence of the Asian Tiger mosquito, Aedes albopictus, reveals insights into its biology, genetics, and evolution. Proc Natl Acad Sci U S A 2015; 112:E5907-15. [PMID: 26483478 PMCID: PMC4640774 DOI: 10.1073/pnas.1516410112] [Citation(s) in RCA: 193] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Asian tiger mosquito, Aedes albopictus, is a highly successful invasive species that transmits a number of human viral diseases, including dengue and Chikungunya fevers. This species has a large genome with significant population-based size variation. The complete genome sequence was determined for the Foshan strain, an established laboratory colony derived from wild mosquitoes from southeastern China, a region within the historical range of the origin of the species. The genome comprises 1,967 Mb, the largest mosquito genome sequenced to date, and its size results principally from an abundance of repetitive DNA classes. In addition, expansions of the numbers of members in gene families involved in insecticide-resistance mechanisms, diapause, sex determination, immunity, and olfaction also contribute to the larger size. Portions of integrated flavivirus-like genomes support a shared evolutionary history of association of these viruses with their vector. The large genome repertory may contribute to the adaptability and success of Ae. albopictus as an invasive species.
Collapse
Affiliation(s)
- Xiao-Guang Chen
- Department of Pathogen Biology, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou 510515, China;
| | - Xuanting Jiang
- Beijing Genomics Institute-Shenzhen, Shenzhen 518083, China
| | - Jinbao Gu
- Department of Pathogen Biology, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Meng Xu
- Beijing Genomics Institute-Shenzhen, Shenzhen 518083, China
| | - Yang Wu
- Department of Pathogen Biology, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Yuhua Deng
- Department of Pathogen Biology, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Chi Zhang
- Beijing Genomics Institute-Shenzhen, Shenzhen 518083, China
| | - Mariangela Bonizzoni
- Program in Public Health, University of California, Irvine, CA 92697; Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy
| | - Wannes Dermauw
- Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000 Ghent, Belgium
| | - John Vontas
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 73100 Heraklion, Greece; Faculty of Crop Science, Pesticide Science Lab, Agricultural University of Athens, 11855 Athens, Greece
| | - Peter Armbruster
- Department of Biology, Georgetown University, Washington, DC 20057
| | - Xin Huang
- Department of Biology, Georgetown University, Washington, DC 20057
| | - Yulan Yang
- Beijing Genomics Institute-Shenzhen, Shenzhen 518083, China
| | - Hao Zhang
- Department of Pathogen Biology, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Weiming He
- Beijing Genomics Institute-Shenzhen, Shenzhen 518083, China
| | - Hongjuan Peng
- Department of Pathogen Biology, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Yongfeng Liu
- Beijing Genomics Institute-Shenzhen, Shenzhen 518083, China
| | - Kun Wu
- Department of Pathogen Biology, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Jiahua Chen
- Beijing Genomics Institute-Shenzhen, Shenzhen 518083, China
| | - Manolis Lirakis
- Department of Biology, University of Crete, Heraklion, GR-74100, Crete, Greece
| | - Pantelis Topalis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 73100 Heraklion, Greece
| | - Thomas Van Leeuwen
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy; Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, 1090 GE Amsterdam, The Netherlands
| | - Andrew Brantley Hall
- Interdisciplinary PhD Program in Genetics, Bioinformatics, and Computational Biology, Virginia Tech University, Blacksburg, VA 24061; Department of Biochemistry, Fralin Life Science Institute, Virginia Tech University, Blacksburg, VA 24061
| | - Xiaofang Jiang
- Interdisciplinary PhD Program in Genetics, Bioinformatics, and Computational Biology, Virginia Tech University, Blacksburg, VA 24061; Department of Biochemistry, Fralin Life Science Institute, Virginia Tech University, Blacksburg, VA 24061
| | - Chevon Thorpe
- Cellular and Molecular Physiology, Edward Via College of Osteopathic Medicine, Blacksburg, VA 24060
| | | | - Cheng Sun
- Department of Biology, Colorado State University, Fort Collins, CO 80523
| | - Robert Michael Waterhouse
- Department of Genetic Medicine and Development, University of Geneva Medical School, 1211 Geneva, Switzerland; Swiss Institute of Bioinformatics, 1211 Geneva, Switzerland; Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139; The Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - Guiyun Yan
- Department of Pathogen Biology, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou 510515, China; Program in Public Health, University of California, Irvine, CA 92697
| | - Zhijian Jake Tu
- Interdisciplinary PhD Program in Genetics, Bioinformatics, and Computational Biology, Virginia Tech University, Blacksburg, VA 24061; Department of Biochemistry, Fralin Life Science Institute, Virginia Tech University, Blacksburg, VA 24061
| | - Xiaodong Fang
- Beijing Genomics Institute-Shenzhen, Shenzhen 518083, China;
| | - Anthony A James
- Departments of Microbiology & Molecular Genetics and Molecular Biology & Biochemistry, University of California, Irvine, CA 92697
| |
Collapse
|
16
|
Lin W, Yu Y, Zhou P, Zhang J, Dou L, Hao Q, Chen H, Zhu S. Identification and Knockdown of the Olfactory Receptor (OrCo) in Gypsy Moth, Lymantria dispar. Int J Biol Sci 2015; 11:772-80. [PMID: 26078719 PMCID: PMC4466458 DOI: 10.7150/ijbs.11898] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 04/08/2015] [Indexed: 11/05/2022] Open
Abstract
The gypsy moth, Lymantria dispar, is an important economic pest that causes large-scale damage to forests worldwide. Because of its important role in initiating and controlling insect behavior, olfaction-and olfaction-based pest management-has drawn increasing attention from entomologists. In this study, we identified the gene that encodes the olfactory receptor co-receptor (OrCo). Through amino acid sequence alignment, we found that LdisOrCo shares high identity with other OrCo proteins from different insect orders. Next, we performed RNA-interference (RNAi) to assess the role of OrCo in olfaction. Electroantennographic assays showed that after RNAi, the average value of males' response to sex pheromones was 0.636 mV, significantly lower than that of the positive control (average = 1.472 mV). Females showed no response to sex pheromones before or after RNAi. Finally, quantitative PCR showed a strong decrease in the expression of OrCo after RNAi, by ~74% in males and by 23% in females relative to the positive controls. These results indicate that OrCo is not only critical to odor recognition, but it may also represent a new target for development of semiochemicals that can influence insect behavior.
Collapse
Affiliation(s)
- Wei Lin
- 1. Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, China 100029; ; 2. College of Agriculture and Biotechnology, China Agricultural University, Beijing, China, 100193
| | - Yanxue Yu
- 1. Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, China 100029
| | - Ping Zhou
- 4. College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong Province, China, 271000
| | - Junhua Zhang
- 1. Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, China 100029
| | - Liduo Dou
- 1. Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, China 100029
| | - Qin Hao
- 1. Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, China 100029
| | - Hongjun Chen
- 3. Division of Animal and Plant Quarantine Supervision, General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Beijing, China, 100088
| | - Shuifang Zhu
- 1. Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, China 100029
| |
Collapse
|
17
|
Kenney JL, Brault AC. The role of environmental, virological and vector interactions in dictating biological transmission of arthropod-borne viruses by mosquitoes. Adv Virus Res 2014; 89:39-83. [PMID: 24751194 DOI: 10.1016/b978-0-12-800172-1.00002-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Arthropod-borne viruses (arboviruses) are transmitted between vertebrate hosts and arthropod vectors. An inherently complex interaction among virus, vector, and the environment determines successful transmission of the virus. Once believed to be "flying syringes," recent advances in the field have demonstrated that mosquito genetics, microbiota, salivary components, and mosquito innate immune responses all play important roles in modulating arbovirus transmissibility. The literature on the interaction among virus, mosquito, and environment has expanded dramatically in the preceding decade and the utilization of next-generation sequencing and transgenic vector methodologies assuredly will increase the pace of knowledge acquisition in this field. This chapter outlines the interplay among the three factors in both direct physical and biochemical manners as well as indirectly through superinfection barriers and altered induction of innate immune responses in mosquito vectors. The culmination of the aforementioned interactions and the arms race between the mosquito innate immune response and the capacity of arboviruses to antagonize such a response ultimately results in the subjugation of mosquito cells for viral replication and subsequent transmission.
Collapse
Affiliation(s)
- Joan L Kenney
- Arbovirus Research Branch, Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, U.S. Centers for Disease Control and Prevention, Fort Collins, Colorado, USA
| | - Aaron C Brault
- Arbovirus Research Branch, Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, U.S. Centers for Disease Control and Prevention, Fort Collins, Colorado, USA.
| |
Collapse
|
18
|
Rinker DC, Zhou X, Pitts RJ. Antennal transcriptome profiles of anopheline mosquitoes reveal human host olfactory specialization in Anopheles gambiae. BMC Genomics 2013; 14:749. [PMID: 24182346 PMCID: PMC3833343 DOI: 10.1186/1471-2164-14-749] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 10/22/2013] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Two sibling members of the Anopheles gambiae species complex display notable differences in female blood meal preferences. An. gambiae s.s. has a well-documented preference for feeding upon human hosts, whereas An. quadriannulatus feeds on vertebrate/mammalian hosts, with only opportunistic feeding upon humans. Because mosquito host-seeking behaviors are largely driven by the sensory modality of olfaction, we hypothesized that hallmarks of these divergent host seeking phenotypes will be in evidence within the transcriptome profiles of the antennae, the mosquito's principal chemosensory appendage. RESULTS To test this hypothesis, we have sequenced antennal mRNA of non-bloodfed females from each species and observed a number of distinct quantitative and qualitative differences in their chemosensory gene repertoires. In both species, these gene families show higher rates of sequence polymorphisms than the overall rates in their respective transcriptomes, with potentially important divergences between the two species. Moreover, quantitative differences in odorant receptor transcript abundances have been used to model potential distinctions in volatile odor receptivity between the two sibling species of anophelines. CONCLUSION This analysis suggests that the anthropophagic behavior of An. gambiae s.s. reflects the differential distribution of olfactory receptors in the antenna, likely resulting from a co-option and refinement of molecular components common to both species. This study improves our understanding of the molecular evolution of chemoreceptors in closely related anophelines and suggests possible mechanisms that underlie the behavioral distinctions in host seeking that, in part, account for the differential vectorial capacity of these mosquitoes.
Collapse
Affiliation(s)
- David C Rinker
- Center for Human Genetics Research, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Xiaofan Zhou
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Ronald Jason Pitts
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
19
|
Zhu F, Xu P, Barbosa RMR, Choo YM, Leal WS. RNAi-based demonstration of direct link between specific odorant receptors and mosquito oviposition behavior. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2013; 43:916-23. [PMID: 23911547 PMCID: PMC3800558 DOI: 10.1016/j.ibmb.2013.07.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 07/19/2013] [Accepted: 07/25/2013] [Indexed: 05/03/2023]
Abstract
The Southern house mosquito, Culex quinquefasciatus--a vector of West Nile virus--is equipped with 130 odorant receptors (ORs), which enable young females to locate plants and blood-meal sources and older females to find suitable sites for oviposition. In our attempts to de-orphanize ORs expressed in female antennae, we identified CquiOR37 and CquiOR99, which were narrowly tuned to two phenolic compounds, 4-methylphenol and 4-ethylphenol. When tested in the Xenopus oocyte recording system the observed EC50s for 4-methylphenol and 4-ethylphenol were 6.4 and 18.2 μM for CquiOR37 and 14.4 and 0.74 μM for CquiOR99 (goodness of fit, R² = 0.88-0.99), respectively. Indoor behavioral assays demonstrated that gravid female mosquitoes laid significantly more eggs in water trays spiked with these compounds than in control water trays. Field studies with gravid traps corroborated that 4-ethylphenol is active in a wide range of doses from 0.1 to 10 μg/l, as required for practical applications. A dsRNA construct based on the two genes, CquiOR37/99-dsRNA was stable in pupa hemolymph for up to 3 h. Pupae injected with CquiOR37/99-dsRNA, β-galactosidase-dsRNA or water had more than 40% survival rate at the peak of oviposition (day-9). qPCR analysis showed individual variation, but significant mean reduction in CquiOR37 and CquiOR99 transcript levels in CquiOR37/99-dsRNA-treated mosquitoes. Water-injected females and those treated with the control gene laid significantly more eggs in trays containing 4-ethylphenol than in water trays, whereas CquiOR37/99-dsRNA-treated mosquitoes laid normal number of eggs, but could not discriminate treatment from control. This study linked for the first time specific receptors for 4-ethylphenol with increased oviposition in the important vector Cx. quinquefasciatus.
Collapse
Affiliation(s)
- Fen Zhu
- Department of Molecular and Cellular Biology, University of California-Davis Davis, CA 95616, USA
| | - Pingxi Xu
- Department of Molecular and Cellular Biology, University of California-Davis Davis, CA 95616, USA
| | | | - Young-Moo Choo
- Department of Molecular and Cellular Biology, University of California-Davis Davis, CA 95616, USA
| | - Walter S. Leal
- Department of Molecular and Cellular Biology, University of California-Davis Davis, CA 95616, USA
- Corresponding author: Walter S. Leal, Department of Molecular and Cellular Biology, University of California-Davis, Davis CA 95616 USA, Tel: (530)-752-7755,
| |
Collapse
|
20
|
The role of the coreceptor Orco in insect olfactory transduction. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2013; 199:897-909. [PMID: 23824225 DOI: 10.1007/s00359-013-0837-3] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 06/19/2013] [Accepted: 06/21/2013] [Indexed: 10/26/2022]
Abstract
Insects sense odorants with specialized odorant receptors (ORs). Each antennal olfactory receptor neuron expresses one OR with an odorant binding site together with a conserved coreceptor called Orco which does not bind odorants. Orco is necessary for localization of ORs to dendritic membranes and, thus, is essential for odorant detection. It forms a spontaneously opening cation channel, activated via phosphorylation by protein kinase C. Thereafter, Orco is also activated via cyclic adenosine monophosphate (cAMP). Orco forms homo-as well as heteromers with ORs with unknown stoichiometry. Contradictory publications suggest different mechanisms of olfactory transduction. On the one hand, evidence accumulates for the employment of more than one G protein-coupled olfactory transduction cascade in different insects. On the other hand, results from other studies suggest that the OR-Orco complex functions as an odorant-gated cation channel mediating ionotropic signal transduction. This review analyzes conflicting hypotheses concerning the role of Orco in insect olfactory transduction. In conclusion, in situ studies in hawkmoths falsify the hypothesis that Orco underlies odorant-induced ionotropic signal transduction in all insect species. Instead, Orco forms a metabotropically gated, slow cation channel which controls odorant response threshold and kinetics of the sensory neuron.
Collapse
|
21
|
Wu ZN, Chen X, Du YJ, Zhou JJ, ZhuGe QC. Molecular identification and characterization of the Orco orthologue of Spodoptera litura. INSECT SCIENCE 2013; 20:175-182. [PMID: 23955858 DOI: 10.1111/j.1744-7917.2011.01483.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
A highly conserved and broadly expressed receptor protein Orco (olfactory coreceptor) is crucial for insect olfaction, and an orthologue of Orco has been identified in several insect species. Here we report the identification and characterization of Orco from Spodoptera litura. The protein displays high primary amino acid sequence conservation with other previously identified Orco orthologues. Bioinformatic analysis revealed that it has common features with other members of the Orco subfamily: seven-transmembrane domains with intracellular N-terminus and extracellular C-terminus. The transcript was detected in abundance in the chemosensory organs of the antennae of both male and female adults by real-time polymerase chain reaction analysis, and was localized at the bases of all categories of olfactory sensilla through in situ hybridization.
Collapse
Affiliation(s)
- Zhong-Nan Wu
- Institute of Health & Environmental Ecology, Wenzhou Medical College, Wenzhou, Zhejiang 325035, China
| | | | | | | | | |
Collapse
|
22
|
Olafson PU. Molecular characterization and immunolocalization of the olfactory co-receptor Orco from two blood-feeding muscid flies, the stable fly (Stomoxys calcitrans, L.) and the horn fly (Haematobia irritans irritans, L.). INSECT MOLECULAR BIOLOGY 2013; 22:131-142. [PMID: 23278866 PMCID: PMC3594380 DOI: 10.1111/imb.12009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Biting flies are economically important blood-feeding pests of medical and veterinary significance. Chemosensory-based biting fly behaviours, such as host/nutrient source localization and ovipositional site selection, are intriguing targets for the development of supplemental control strategies. In an effort to expand our understanding of biting fly chemosensory pathways, transcripts encoding the highly conserved insect odorant co-receptor (Orco) were isolated from two representative biting fly species, the stable fly (Scal\Orco) and the horn fly (Hirr\Orco). Orco forms a complex with an odour-specific odorant receptor to form an odour-gated ion channel. The biting fly transcripts were predicted to encode proteins with 87-94% amino acid similarity to published insect Orco sequences and were detected in various immature stages as well as in adult structures associated with olfaction, i.e. the antennae and maxillary palps, and gustation, i.e. the proboscis. Further, the relevant proteins were immunolocalized to specific antennal sensilla using anti-serum raised against a peptide sequence conserved between the two fly species. Results from the present study provide a basis for functional evaluation of repellent/attractant effects on as yet uncharacterized stable fly and horn fly conventional odorant receptors.
Collapse
Affiliation(s)
- P U Olafson
- USDA-ARS, Knipling-Bushland US Livestock Insects Research Laboratory, Kerrville, TX 78028, USA.
| |
Collapse
|
23
|
Zhao H, Gao P, Zhang C, Ma W, Jiang Y. Molecular identification and expressive characterization of an olfactory co-receptor gene in the Asian honeybee, Apis cerana cerana. JOURNAL OF INSECT SCIENCE (ONLINE) 2013; 13:80. [PMID: 24224665 PMCID: PMC3835050 DOI: 10.1673/031.013.8001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 01/22/2013] [Indexed: 06/02/2023]
Abstract
Olfaction recognition process is extraordinarily complex in insects, and the olfactory receptors play an important function in the process. In this paper, a highly conserved olfactory co-receptor gene, AcerOr2 (ortholog to the Drosophila melanogaster Or83b), cloned from the antennae of the Asian honeybee, Apis cerana cerana Fabricius (Hymenoptera: Apidae), using reverse transcriptase PCR and rapid amplification of cDNA ends. The full-length sequence of the gene was 1763 bp long, and the cDNA open reading frame encoded 478 amino acid residues, including 7 putative transmembrane domains. Alignment analysis revealed that AcerOr2 shares high homology (> 74%) with similar olfactory receptors found in other Hymenoptera species. The amino acid identity with the closely related species Apis mellifera reached 99.8%. The developmental expression analysis using quantitative real-time reverse transcriptase PCR suggested that the AcerOr2 transcript was expressed at a relatively low level in the larval stage, whereas it was expressed broadly in the pupal and adult stages, with a significantly high level on the days just before and after eclosion. In situ hybridization showed that AcerOr2 mRNA was expressed in sensilla placodea and on the basal region of the worker antennal cuticle, in accordance with the previous conclusions that the conserved genes are expressed in most olfactory receptor neurons.
Collapse
Affiliation(s)
- Huiting Zhao
- College of Animal Science and Technology, Shanxi Agricultural University, Taigu Shanxi, 030801, China
| | - Pengfei Gao
- College of Animal Science and Technology, Shanxi Agricultural University, Taigu Shanxi, 030801, China
| | - Chunxiang Zhang
- College of Animal Science and Technology, Shanxi Agricultural University, Taigu Shanxi, 030801, China
| | - Weihua Ma
- College of Animal Science and Technology, Shanxi Agricultural University, Taigu Shanxi, 030801, China
- Institute of Horticulture, Shanxi Academy of Agricultural Sciences, Taiyuan Shanxi, 030031, China
| | - Yusuo Jiang
- College of Animal Science and Technology, Shanxi Agricultural University, Taigu Shanxi, 030801, China
| |
Collapse
|
24
|
Hull JJ, Hoffmann EJ, Perera OP, Snodgrass GL. Identification of the western tarnished plant bug (Lygus hesperus) olfactory co-receptor Orco: expression profile and confirmation of atypical membrane topology. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2012; 81:179-198. [PMID: 22836832 DOI: 10.1002/arch.21042] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Lygus hesperus (western tarnished plant bug) is an agronomically important pest species of numerous cropping systems. Similar to other insects, a critical component underlying behaviors is the perception and discrimination of olfactory cues. Consequently, the molecular basis of olfaction in this species is of interest. To begin to address this issue, we utilized homology-based PCR as a commonly accepted abbreviation but if necessary it is polymerase chain reaction methods to identify the L. hesperus olfactory receptor co-receptor (Orco) ortholog, a receptor that has been shown to be essential for olfaction. The L. hesperus Orco (LhOrco) shares significant sequence homology with known Orco proteins in other insects. Parallel experiments using the sympatric sister species, Lygus lineolaris (tarnished plant bug), revealed that the Lygus Orco gene was completely conserved. Surprisingly, a majority of the membrane topology prediction algorithms used in the study predicted LhOrco to have both the N and C terminus intracellular. In vitro immunofluorescent microscopy experiments designed to probe the membrane topology of transiently expressed LhOrco, however, refuted those predictions and confirmed that the protein adopts the inverted topology (intracellular N terminus and an extracellular C terminus) characteristic of Orco proteins. RT-PCR analyses indicated that LhOrco transcripts are predominantly expressed in adult antennae and to a lesser degree in traditionally nonolfactory chemosensory tissues of the proboscis and legs. Expression is not developmentally regulated because transcripts were detected in all nymphal stages as well as eggs. Taken together, the results suggest that LhOrco likely plays a critical role in mediating L. hesperus odorant perception and discrimination.
Collapse
Affiliation(s)
- J Joe Hull
- USDA-ARS Arid Land Agricultural Research Center, Maricopa, AZ, USA.
| | | | | | | |
Collapse
|
25
|
Zheng W, Zhu C, Peng T, Zhang H. Odorant receptor co-receptor Orco is upregulated by methyl eugenol in male Bactrocera dorsalis (Diptera: Tephritidae). JOURNAL OF INSECT PHYSIOLOGY 2012; 58:1122-7. [PMID: 22634470 DOI: 10.1016/j.jinsphys.2012.05.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 05/15/2012] [Accepted: 05/16/2012] [Indexed: 05/12/2023]
Abstract
Bactrocera dorsalis is a destructive fruit-eating pest that causes severe economic damage to the fruit and vegetable industry. Methyl eugenol (ME) has been widely used as an effective sexual attractant for male fruit flies through olfactory perception. However, the molecular mechanism underlying the olfactory perception of ME remains unknown. Here, we report the characterization and functional analysis of a newly discovered cDNA that encodes a Drosophila melanogaster odorant receptor co-receptor Orco ortholog in B. dorsalis. qRT-PCR analysis revealed that it was abundantly expressed in the antenna of adult B. dorsalis. Notably, Orco was upregulated by ME in the antenna of male flies. Mature males of B. dorsalis showed significant taxis toward ME within 0.5h, and Orco was significantly upregulated in the attracted adults within the same period. Silencing Orco through the ingestion of dsRNA reduced the attractive effects of ME. These data suggest that Orco may play an essential role in ME attraction in the olfactory signal transduction pathway.
Collapse
Affiliation(s)
- Weiwei Zheng
- State Key Laboratory of Agricultural Microbiology, Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control and Institute of Urban and Horticultural Pests, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | | | | | | |
Collapse
|
26
|
Rinker DC, Jones PL, Pitts RJ, Rutzler M, Camp G, Sun L, Xu P, Weaver D, Zwiebel LJ. Novel high-throughput screens of Anopheles gambiae odorant receptors reveal candidate behaviour-modifying chemicals for mosquitoes. PHYSIOLOGICAL ENTOMOLOGY 2012; 37:33-41. [PMID: 32255891 PMCID: PMC7123412 DOI: 10.1111/j.1365-3032.2011.00821.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Despite many decades of multilateral global efforts, a significant portion of the world population continues to be plagued with one or more mosquito-vectored diseases. These include malaria and filariasis as well as numerous arboviral-associated illnesses including Dengue and Yellow fevers. The dynamics of disease transmission by mosquitoes is complex, and involves both vector competence and vectorial capacity. One area of intensive effort is the study of chemosensory-driven behaviours in the malaria vector mosquito Anopheles gambiae Giles, the modulation of which are likely to provide opportunities for disease reduction. In this context recent studies have characterized a large divergent family of An. gambiae odorant receptors (AgORs) that play critical roles in olfactory signal transduction. This work has facilitated high-throughput, cell-based calcium mobilization screens of AgOR-expressing HEK cells that have identified a large number of conventional AgOR ligands, as well as the first non-conventional Orco (olfactory receptor co-receptor) family agonist. As such, ligand-mediated modulation serves as a proof-of-concept demonstration that AgORs represent viable targets for high-throughput screening and for the eventual development of behaviour-modifying olfactory compounds. Such attractants or repellents could foster malaria reduction programmes.
Collapse
Affiliation(s)
- David C. Rinker
- Center for Human Genetics Training Program, Vanderbilt University Medical Centre, Nashville, U.S.A
| | - Patrick L. Jones
- Department of Biological Sciences, Vanderbilt University, Nashville, U.S.A
| | - R. Jason Pitts
- Department of Biological Sciences, Vanderbilt University, Nashville, U.S.A
| | - Michael Rutzler
- Department of Biological Sciences, Vanderbilt University, Nashville, U.S.A
| | - Gray Camp
- Department of Biological Sciences, Vanderbilt University, Nashville, U.S.A
| | - Lujuan Sun
- Department of Biological Sciences, Vanderbilt University, Nashville, U.S.A
| | - Pingxi Xu
- Department of Biological Sciences, Vanderbilt University, Nashville, U.S.A
| | - David Weaver
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, U.S.A
| | - Laurence J Zwiebel
- Department of Biological Sciences, Vanderbilt University, Nashville, U.S.A
- Department of Pharmacology, Vanderbilt University Medical Centre, Nashville, U.S.A
- Center for Molecular Neuroscience, Institute of Global Health and Program in Developmental Biology, Vanderbilt University Medical Centre, Nashville, U.S.A
- Center for Human Genetics Training Program, Vanderbilt University Medical Centre, Nashville, U.S.A
| |
Collapse
|
27
|
Abstract
Dengue virus is an arthropod-borne virus transmitted by Aedes mosquitoes. Dengue virus causes fever and hemorrhagic disorders in humans and non-human primates. Direct interaction of the virus introduced by a mosquito bite with host receptor molecule(s) is crucial for virus propagation and the pathological progression of dengue diseases. Therefore, elucidation of the molecular mechanisms underlying the interaction between dengue virus and its receptor(s) in both humans and mosquitoes is essential for an understanding of dengue pathology. In addition, understanding the molecular mechanism(s) of virus entry is crucial for the development of effective new therapies to treat dengue patients. Binding of dengue virus to its receptor molecules is mediated through a viral envelope glycoprotein, termed E protein. We present a summary and describe the structures, binding properties, and pathological relevance of dengue virus receptor molecules proposed to date. In mammalian cells, there are many candidate molecules that may act as receptors, such as sulfated glycosaminoglycans (GAGs), lectins that recognize carbohydrates, glycosphingolipid (GSL), proteins with chaperone activity, laminin-binding proteins, and other uncharacterized proteins. There are also several lines of evidence for receptor molecules such as GSLs, proteins with chaperone activity, laminin-binding proteins, and other uncharacterized proteins in mosquito cells and organs. This review focuses on several molecules involved in carbohydrate-dependent binding of the virus.
Collapse
Affiliation(s)
- Kazuya I P J Hidari
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, and Global COE Program for Innovation in Human Health Sciences, 52-1 Yada, Suruga-ku, Shizuoka-shi, Shizuoka 422-8526, Japan
| | | |
Collapse
|
28
|
Molecular characterization and expression pattern of an odorant receptor from the myiasis-causing blowfly, Lucilia sericata (Diptera: Calliphoridae). Parasitol Res 2011; 110:843-51. [DOI: 10.1007/s00436-011-2563-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Accepted: 07/13/2011] [Indexed: 10/18/2022]
|
29
|
Abstract
Great progress has been made in the field of insect olfaction in recent years. Receptors, neurons, and circuits have been defined in considerable detail, and the mechanisms by which they detect, encode, and process sensory stimuli are being unraveled. We provide a guide to recent progress in the field, with special attention to advances made in the genetic model organism Drosophila. We highlight key questions that merit additional investigation. We then present our view of how recent advances may be applied to the control of disease-carrying insects such as mosquitoes, which transmit disease to hundreds of millions of people each year. We suggest how progress in defining the basic mechanisms of insect olfaction may lead to means of disrupting host-seeking and other olfactory behaviors, thereby reducing the transmission of deadly diseases.
Collapse
|
30
|
Pelletier J, Leal WS. Characterization of olfactory genes in the antennae of the Southern house mosquito, Culex quinquefasciatus. JOURNAL OF INSECT PHYSIOLOGY 2011; 57:915-929. [PMID: 21504749 DOI: 10.1016/j.jinsphys.2011.04.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 03/25/2011] [Accepted: 04/01/2011] [Indexed: 05/30/2023]
Abstract
Odorant reception in insects is mediated by different families of olfactory proteins. Here we focus on the characterization of odorant-binding proteins (OBPs), "plus-C" odorant-binding proteins ("plus-C" OBPs), chemosensory proteins (CSPs) and sensory neuron membrane proteins (SNMPs) families from the Southern house mosquito, Culex quinquefasciatus, a vector of pathogens implicated in multiple human diseases. Using bioinformatics and molecular approaches, we have identified a diversity of genes in the genome of Culex quinquefasciatus and examined their expression profiles by RT-PCR and real-time quantitative PCR. Based on their high transcript enrichment in female antennae compared to non-olfactory tissues, we have identified twelve OBPs, two "plus-C" OBPs and two SNMPs that likely play important roles in odorant reception. Transcripts of two genes were clearly enriched in female antennae compared to male antennae, whereas other genes displayed relatively equivalent transcript levels in antennae of both sexes. Additionally, eight genes were found to be transcribed at very high levels in female antennae compared to CquiOR7, suggesting they might encode highly abundant olfactory proteins. Comparative analysis across different mosquito species revealed that olfactory genes of Culex quinquefasciatus are related to putative orthologs in other species, indicating that they might perform similar functions. Understanding how mosquitoes are able to detect ecologically relevant odorant cues might help designing better control strategies. We have identified olfactory genes from different families which are likely important in Culex quinquefasciatus behaviors, thus paving the way towards a better understanding of the diversity of proteins involved in the reception of semiochemicals in this species.
Collapse
Affiliation(s)
- Julien Pelletier
- Honorary Maeda-Duffey Laboratory, Department of Entomology, University of California Davis, Davis, CA, USA.
| | | |
Collapse
|
31
|
Grant AJ, Dickens JC. Functional characterization of the octenol receptor neuron on the maxillary palps of the yellow fever mosquito, Aedes aegypti. PLoS One 2011; 6:e21785. [PMID: 21738794 PMCID: PMC3128099 DOI: 10.1371/journal.pone.0021785] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Accepted: 06/08/2011] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND 1-Octen-3-ol (octenol) is a common attractant released by vertebrates which in combination with carbon dioxide (CO(2)) attracts hematophagous arthropods including mosquitoes. A receptor neuron contained within basiconic sensilla on the maxillary palps of adult mosquitoes responds selectively to 1-octen-3-ol. Recently, an odorant receptor (AaegOR8) known to occur on the maxillary palps was expressed in a heterologous system and demonstrated to be selectively sensitive to (R)-(-)-1-octen-3-ol, one of two enantiomeric forms. Lesser responses were elicited by stimulation with the (S)-enantiomer and various structural analogs. METHODOLOGY/PRINCIPAL FINDINGS Here we characterize the specificity of the octenol receptor neuron in the yellow fever mosquito, Aedes aegypti (L.), in vivo using single cell recordings. The octenol neuron is exquisitely sensitive to (R)-(-)-1-octen-3-ol; comparable responses to (S)-(+)-1-octen-3-ol were elicited only at stimulus doses over 100× that required for the (R)-enantiomer. An intermediate response closer to that elicited by the (R)-(-)-enantiomer was elicited by racemic 1-octen-3-ol. Small structural changes in (R)-(-)-1-octen-3-ol resulted in large decreases in responses. Increases in spike activity were also elicited in the octenol neuron by 2-undecanone, a known repellent; other repellents (DEET, IR3535 and picaridin) were inactive. CONCLUSIONS/SIGNIFICANCE The results of our electrophysiological studies of the octenol receptor neuron in vivo approximates results of a previous study of the octenol receptor (AaegOR8 with its obligate partner Aaeg\ORco) expressed heterologously in Xenopus oocytes. By comparison of our current results with those of the heterologous expression study, we conclude that specificity of the octenol receptor neuron can be explained largely by characteristics of the OR alone without other associated proteins present in vivo. Our findings show that repellents may have specific stimulatory effects on receptor neurons and support the notion of repellents as modulators of mosquito odorant receptor activity.
Collapse
Affiliation(s)
- Alan J. Grant
- Invasive Insect Biocontrol and Behavior Laboratory, Henry A. Wallace Beltsville Agricultural Research Center, Plant Sciences Institute, Agricultural Research Service, United States Department of Agriculture, Beltsville, Maryland, United States of America
| | - Joseph C. Dickens
- Invasive Insect Biocontrol and Behavior Laboratory, Henry A. Wallace Beltsville Agricultural Research Center, Plant Sciences Institute, Agricultural Research Service, United States Department of Agriculture, Beltsville, Maryland, United States of America
| |
Collapse
|
32
|
Bohbot JD, Jones PL, Wang G, Pitts RJ, Pask GM, Zwiebel LJ. Conservation of indole responsive odorant receptors in mosquitoes reveals an ancient olfactory trait. Chem Senses 2011; 36:149-60. [PMID: 20956733 PMCID: PMC3020388 DOI: 10.1093/chemse/bjq105] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2010] [Indexed: 01/17/2023] Open
Abstract
Aedes aegypti and Anopheles gambiae are among the best-characterized mosquito species within the Culicinae and Anophelinae mosquito clades which diverged ∼150 million years ago. Despite this evolutionary distance, the olfactory systems of these mosquitoes exhibit similar morphological and physiological adaptations. Paradoxically, mosquito odorant receptors, which lie at the heart of chemosensory signal transduction pathways, belong to a large and highly divergent gene family. We have used 2 heterologous expression systems to investigate the functional characteristics of a highly conserved subset of Ors between Ae. aegypti and An. gambiae to investigate whether protein homology correlates with odorant-induced activation. We find that these receptors share similar odorant response profiles and that indole, a common and ecologically relevant olfactory cue, elicits strong responses from these homologous receptors. The identification of other highly conserved members of this Or clade from mosquito species of varying phylogenetic relatedness supports a model in which high sensitivity to indole represents an ancient ecological adaptation that has been preserved as a result of its life cycle importance. These results provide an understanding of how similarities and disparities among homologous OR proteins relate to olfactory function, which can lead to greater insights into the design of successful strategies for the control of mosquito-borne diseases.
Collapse
Affiliation(s)
- Jonathan D. Bohbot
- Departments of Biological Sciences and Pharmacology, Center for Molecular Neuroscience, Institutes of Chemical Biology and Global Health and Program in Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37235, USA
- Henry A. Wallace Beltsville Agricultural Research Center, Plant Sciences Institute, Invasive Insect Biocontrol and Behavior Laboratory, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
| | - Patrick L. Jones
- Departments of Biological Sciences and Pharmacology, Center for Molecular Neuroscience, Institutes of Chemical Biology and Global Health and Program in Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37235, USA
| | - Guirong Wang
- Departments of Biological Sciences and Pharmacology, Center for Molecular Neuroscience, Institutes of Chemical Biology and Global Health and Program in Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37235, USA
| | - R. Jason Pitts
- Departments of Biological Sciences and Pharmacology, Center for Molecular Neuroscience, Institutes of Chemical Biology and Global Health and Program in Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37235, USA
| | - Gregory M. Pask
- Departments of Biological Sciences and Pharmacology, Center for Molecular Neuroscience, Institutes of Chemical Biology and Global Health and Program in Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37235, USA
| | - Laurence J. Zwiebel
- Departments of Biological Sciences and Pharmacology, Center for Molecular Neuroscience, Institutes of Chemical Biology and Global Health and Program in Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37235, USA
| |
Collapse
|
33
|
Crespo JG. A review of chemosensation and related behavior in aquatic insects. JOURNAL OF INSECT SCIENCE (ONLINE) 2011; 11:62. [PMID: 21864156 PMCID: PMC3281456 DOI: 10.1673/031.011.6201] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Accepted: 09/13/2010] [Indexed: 05/31/2023]
Abstract
Insects that are secondarily adapted to aquatic environments are able to sense odors from a diverse array of sources. The antenna of these insects, as in all insects, is the main chemosensory structure and its input to the brain allows for integration of sensory information that ultimately ends in behavioral responses. Only a fraction of the aquatic insect orders have been studied with respect to their sensory biology and most of the work has centered either on the description of the different types of sensilla, or on the behavior of the insect as a whole. In this paper, the literature is exhaustively reviewed and ways in which antennal morphology, brain structure, and associated behavior can advance better understanding of the neurobiology involved in processing of chemosensory information are discussed. Moreover, the importance of studying such group of insects is stated, and at the same time it is shown that many interesting questions regarding olfactory processing can be addressed by looking into the changes that aquatic insects undergo when leaving their aquatic environment.
Collapse
Affiliation(s)
- José G Crespo
- Department of Biology, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
34
|
Molecular Cloning and cDNA Sequence Analysis of Two New Lepidopteran OR83b Orthologue Chemoreceptors. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/s1671-2927(09)60203-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
35
|
Pelletier J, Hughes DT, Luetje CW, Leal WS. An odorant receptor from the southern house mosquito Culex pipiens quinquefasciatus sensitive to oviposition attractants. PLoS One 2010; 5:e10090. [PMID: 20386699 PMCID: PMC2851645 DOI: 10.1371/journal.pone.0010090] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Accepted: 03/18/2010] [Indexed: 12/01/2022] Open
Abstract
Background Insect odorant receptors (ORs) are heteromers comprised of highly variable odorant-binding subunits associated with one conserved co-receptor. They are potential molecular targets for the development of novel mosquito attractants and repellents. ORs have been identified in the malaria mosquito, Anopheles gambiae, and in the yellow fever mosquito, Aedes aegypti. However, they are still unknown in the Southern house mosquito, Culex quinquefasciatus, which transmits pathogens that cause human diseases throughout the world, including West Nile Virus in the United States. Methodology We have employed a combination of bioinformatics, molecular cloning and electrophysiology approaches to identify and characterize the response profile of an OR in Cx. quinquefasciatus. First, we have unveiled a large multigenic family of one-hundred-fifty-eight putative ORs in this species, including a subgroup of conserved ORs in three mosquito species. Using the Xenopus oocytes expression system, we have determined the response profile of CquiOR2, an antennae-specific OR, which shares high identity with putative orthologs in Anopheles gambiae (AgamOR2) and Aedes aegypti (AaegOR2). Conclusion We show that CquiOR2 is highly sensitive to indole, an oviposition attractant for Cx. quinquefasciatus. The response profile of CquiOR2 expressed in Xenopus oocytes resembles that of an olfactory receptor neuron housed in the antennal short blunt-tipped sensilla (A2) of Cx. quinquefasciatus, which are natural detectors for oviposition attractants. This first Culex OR de-orphanized is, therefore, a potential molecular target for screening oviposition attractants.
Collapse
Affiliation(s)
- Julien Pelletier
- Department of Entomology, University of California Davis, Davis, California, United States of America
| | | | | | | |
Collapse
|
36
|
Brigaud I, Montagné N, Monsempes C, François MC, Jacquin-Joly E. Identification of an atypical insect olfactory receptor subtype highly conserved within noctuids. FEBS J 2009; 276:6537-47. [DOI: 10.1111/j.1742-4658.2009.07351.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
37
|
Characterization of an enantioselective odorant receptor in the yellow fever mosquito Aedes aegypti. PLoS One 2009; 4:e7032. [PMID: 19753115 PMCID: PMC2737144 DOI: 10.1371/journal.pone.0007032] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Accepted: 08/17/2009] [Indexed: 11/19/2022] Open
Abstract
Enantiomers differ only in the left or right handedness (chirality) of their orientations and exhibit identical chemical and physical properties. In chemical communication systems, enantiomers can be differentially active at the physiological and behavioral levels. Only recently were enantioselective odorant receptors demonstrated in mammals while their existence in insects has remained hypothetical. Using the two-microelectrode voltage clamp of Xenopus oocytes, we show that the yellow fever mosquito, Aedes aegypti, odorant receptor 8 (AaOR8) acts as a chiral selective receptor for the (R)-(-)-enantiomer of 1-octen-3-ol, which in the presence of other kairomones is an attractant used by blood-sucking insects to locate their hosts. In addition to steric constraints, chain length and degree of unsaturation play important roles in this recognition process. This is the first characterization of an enantioselective odorant receptor in insects and the results demonstrate that an OR alone, without helper proteins, can account for chiral specificity exhibited by olfactory sensory neurons (OSNs).
Collapse
|
38
|
Pelletier J, Leal WS. Genome analysis and expression patterns of odorant-binding proteins from the Southern House mosquito Culex pipiens quinquefasciatus. PLoS One 2009; 4:e6237. [PMID: 19606229 PMCID: PMC2707629 DOI: 10.1371/journal.pone.0006237] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Accepted: 06/16/2009] [Indexed: 12/03/2022] Open
Abstract
Olfactory-based behaviors in mosquitoes are mediated by odorant-binding proteins (OBPs). They form a multigenic family involved in the peripheral events in insect olfaction, specifically the transport of odorants to membrane-bound odorant receptors. OBPs contribute to the remarkable sensitivity of the insect's olfactory system and may be involved in the selective transport of odorants.We have employed a combination of bioinformatics and molecular approaches to identify and characterize members of the "classic" OBP family in the Southern House mosquito Culex pipiens quinquefasciatus ( = Cx. quinquefasciatus), a vector of pathogens causing several human diseases. By taking advantage of the recently released genome sequences, we have identified fifty-three putative Cx. quinquefasciatus OBP genes by Blast searches. As a first step towards their molecular characterization, expression patterns by RT-PCR revealed thirteen genes that were detected exclusively and abundantly in chemosensory tissues. No clear differences were observed in the transcripts levels of olfactory-specific OBPs between antennae of both sexes using semi-quantitative RT-PCR. Phylogenetic and comparative analysis revealed orthologous of Cx. quinquefasciatus OBPs in Anopheles gambiae and Aedes aegypti. The identification of fifty-three putative OBP genes in Cx. quinquefasciatus highlights the diversity of this family. Tissue-specificity study suggests the existence of different functional classes within the mosquito OBP family. Most genes were detected in chemosensory as well as non chemosensory tissues indicating that they might be encapsulins, but not necessarily olfactory proteins. On the other hand, thirteen "true" OBP genes were detected exclusively in olfactory tissues and might be involved specifically in the detection of "key" semiochemicals. Interestingly, in Cx. quinquefasciatus olfactory-specific OBPs belong exclusively to four distinct phylogenetic groups which are particularly well conserved among three mosquito species.
Collapse
Affiliation(s)
- Julien Pelletier
- Honorary Maeda-Duffey Laboratory, Department of Entomology, University of California Davis, Davis, California, United States of America
| | - Walter S. Leal
- Honorary Maeda-Duffey Laboratory, Department of Entomology, University of California Davis, Davis, California, United States of America
| |
Collapse
|
39
|
Miura N, Nakagawa T, Tatsuki S, Touhara K, Ishikawa Y. A male-specific odorant receptor conserved through the evolution of sex pheromones in Ostrinia moth species. Int J Biol Sci 2009; 5:319-30. [PMID: 19421342 PMCID: PMC2677733 DOI: 10.7150/ijbs.5.319] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Accepted: 04/27/2009] [Indexed: 11/25/2022] Open
Abstract
In many moths, mate-finding communication is mediated by the female sex pheromones. Since differentiation of sex pheromones is often associated with speciation, it is intriguing to know how the changes in female sex pheromone have been tracked by the pheromone recognition system of the males. A male-specific odorant receptor was found to have been conserved through the evolution of sex pheromone communication systems in the genus Ostrinia (Lepidoptera: Crambidae). In an effort to characterize pheromone receptors of O. scapulalis, which uses a mixture of (E)-11- and (Z)-11-tetradecenyl acetates as a sex pheromone, we cloned a gene (OscaOR1) encoding a male-specific odorant receptor. In addition, we cloned a gene of the Or83b family (OscaOR2). Functional assays using Xenopus oocytes co-expressing OscaOR1 and OscaOR2 have shown that OscaOR1 is, unexpectedly, a receptor of (E)-11-tetradecenol (E11-14:OH), a single pheromone component of a congener O. latipennis. Subsequent studies on O. latipennis showed that this species indeed has a gene orthologous to OscaOR1 (OlatOR1), a functional assay of which confirmed it to be a gene encoding the receptor of E11-14:OH. Furthermore, investigations of six other Ostrinia species have revealed that all of them have a gene orthologous to OscaOR1, although none of these species, except O. ovalipennis, a species most closely related to O. latipennis, uses E11-14:OH as the pheromone component. The present findings suggest that the male-specific receptor of E11-14:OH was acquired before the divergence of the genus Ostrinia, and functionally retained through the evolution of this genus.
Collapse
Affiliation(s)
- Nami Miura
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | | | | | | | | |
Collapse
|
40
|
Lu B, Wang N, Xiao J, Xu Y, Murphy RW, Huang D. Expression and evolutionary divergence of the non-conventional olfactory receptor in four species of fig wasp associated with one species of fig. BMC Evol Biol 2009; 9:43. [PMID: 19232102 PMCID: PMC2661049 DOI: 10.1186/1471-2148-9-43] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Accepted: 02/20/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The interactions of fig wasps and their host figs provide a model for investigating co-evolution. Fig wasps have specialized morphological characters and lifestyles thought to be adaptations to living in the fig's syconium. Although these aspects of natural history are well documented, the genetic mechanism(s) underlying these changes remain(s) unknown. Fig wasp olfaction is the key to host-specificity. The Or83b gene class, an unusual member of olfactory receptor family, plays a critical role in enabling the function of conventional olfactory receptors. Four Or83b orthologous genes from one pollinator (PFW) (Ceratosolen solmsi) and three non-pollinator fig wasps (NPFWs) (Apocrypta bakeri, Philotrypesis pilosa and Philotrypesis sp.) associated with one species of fig (Ficus hispida) can be used to better understand the molecular mechanism underlying the fig wasp's adaptation to its host. We made a comparison of spatial tissue-specific expression patterns and substitution rates of one orthologous gene in these fig wasps and sought evidence for selection pressures. RESULTS A newly identified Or83b orthologous gene was named Or2. Expressions of Or2 were restricted to the heads of all wingless male fig wasps, which usually live in the dark cavity of a fig throughout their life cycle. However, expressions were widely detected in the antennae, legs and abdomens of all female fig wasps that fly from one fig to another for oviposition, and secondarily pollination. Weak expression was also observed in the thorax of PFWs. Compared with NPFWs, the Or2 gene in C. solmsi had an elevated rate of substitutions and lower codon usage. Analyses using Tajima's D, Fu and Li's D* and F* tests indicated a non-neutral pattern of nucleotide variation in all fig wasps. Unlike in NPFWs, this non-neutral pattern was also observed for synonymous sites of Or2 within PFWs. CONCLUSION The sex- and species-specific expression patterns of Or2 genes detected beyond the known primary olfactory tissues indicates the location of cryptic olfactory inputs. The specialized ecological niche of these wasps explains the unique habits and adaptive evolution of Or2 genes. The Or2 gene in C. solmsi is evolving very rapidly. Negative deviation from the neutral model of evolution reflects possible selection pressures acting on Or2 sequences of fig wasp, particularly on PFWs who are more host-specific to figs.
Collapse
Affiliation(s)
- Bin Lu
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, PR China.
| | | | | | | | | | | |
Collapse
|
41
|
Hill SR, Hansson BS, Ignell R. Characterization of antennal trichoid sensilla from female southern house mosquito, Culex quinquefasciatus Say. Chem Senses 2009; 34:231-52. [PMID: 19153252 DOI: 10.1093/chemse/bjn080] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Culex quinquefasciatus, the southern house mosquito, is highly dependent on its olfactory system for vector-related activities such as host seeking and oviposition. The antennae are the primary olfactory organs in mosquitoes. We describe 5 morphological types of sensilla on the antenna of C. quinquefasciatus: 1) a pair of sensilla coeloconica located at the distal tip, 2) long and short sensilla chaetica present on all 13 antennal flagella, 3) sensilla ampullacea found on the 2 proximal-most flagella, 4) 2 morphological types of grooved pegs dispersed throughout the flagella, and 5) 5 morphological subtypes of sensilla trichodea distributed among all flagella. Antennal trichoid and grooved peg sensilla of mosquitoes have been demonstrated to house the olfactory receptor neurons (ORNs) that detect many of the odors involved in eliciting vector-related behaviors. In order to initiate the functional characterization of the peripheral olfactory system in female C. quinquefasciatus, we mapped the physiological responses of all 5 morphological subtypes of sensilla trichodea to an odor panel of 44 behaviorally relevant odor compounds. We identified 17 functional classes of sensilla trichodea: 3 short sharp-tipped, 9 short blunt-tipped type I, and 5 short blunt-tipped type II sensilla. One morphological subtype remains unclassified as the long sharp-tipped sensilla did not respond to any of the volatiles tested. The functional classes of the ORNs were analyzed with respect to stimulus response profiles, stimuli sensitivity, and temporal coding patterns. Comparisons with other functionally classified mosquito antennal sensilla trichodea are discussed.
Collapse
Affiliation(s)
- Sharon R Hill
- Division of Chemical Ecology, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Box 102, SE-23053 Alnarp, Sweden.
| | | | | |
Collapse
|
42
|
Miller R, Tu Z. Odorant Receptor C-Terminal Motifs in Divergent Insect Species. JOURNAL OF INSECT SCIENCE 2008; 8:53. [PMCID: PMC3127413 DOI: 10.1673/031.008.5301] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2007] [Accepted: 10/01/2007] [Indexed: 05/31/2023]
Abstract
Insect odorant receptors are a large family of seven transmembrane proteins believed to be G-protein coupled receptors. The peptide sequences of two odorant receptors within a given species may share as little as 17% identity, and there is limited similarity between receptors of divergent species. One exception is DmOr83b, which is found in Drosophila melanogaster and is highly conserved in at least ten other insect species. DmOr83b is broadly expressed in most of the olfactory sensory neurons of D. melanogaster at most developmental stages, while other odorant receptors tend to have more restricted and specific expression patterns. DmOr83b is critical for D. melanogaster olfaction, and it is involved in properly localizing other odorant receptors possibly by forming heterodimers with these receptors. The C-terminal region has been implicated as sites for such heterodimer formation. Multiple em for motif elicitation (MEME), a hidden markov model based program, was used to uncover three conserved motifs in the C-termini of a vast majority of the odorant receptor peptides from Anopheles gambiae, D. melanogaster, and Apis mellifera. These motifs are also found in DmOr83b and its orthologs and the order of these motifs is conserved as well. The conservation of these motifs among divergent odorant receptors in divergent species suggests functional importance. We propose that these motifs are involved in receptor- receptor protein interactions, contributing to the heterodimer formation between DmOr83b (or its orthologs) and other odorant receptors.
Collapse
Affiliation(s)
- Raymond Miller
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
| | - Zhijian Tu
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
| |
Collapse
|
43
|
Malpel S, Merlin C, François MC, Jacquin-Joly E. Molecular identification and characterization of two new Lepidoptera chemoreceptors belonging to the Drosophila melanogaster OR83b family. INSECT MOLECULAR BIOLOGY 2008; 17:587-596. [PMID: 18828844 DOI: 10.1111/j.1365-2583.2008.00830.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
In insect antennae, olfaction depends on olfactory receptors (ORs) that function through heterodimerization with an unusually highly conserved partner orthologue to the Drosophila melanogaster DOR83b. Here, we report the identification of two cDNAs encoding new DOR83b orthologues that represent the first members, although nonconventional, of the OR families of two noctuid crop pests, the cotton leafworm Spodoptera littoralis and the cabbage armyworm Mamestra brassicae. They both displayed high protein sequence conservation with previously identified DOR83b orthologues. Transcripts were abundantly detected in adult chemosensory organs as well as in fifth instar larvae heads. In adult antennae, the expression patterns of both genes revealed common features with other members of the OR83b subfamily: they appeared to be expressed at the bases of numerous olfactory sensilla belonging to different functional categories, suggesting that both receptors may be co-expressed with yet unidentified conventional ORs. Bioinformatic analyses predicted the occurrence of seven transmembrane domains and an unusual topology with intracellular N-termini and extracellular C-termini, extending to Lepidoptera the hypothesis of an inverted topology for DOR83b orthologues, demonstrated to date only in D. melanogaster.
Collapse
Affiliation(s)
- S Malpel
- INRA-UPMC-AgroParisTech UMR 1272 PISC Physiologie de l'Insecte: Signalisation et Communication, Versailles, France
| | | | | | | |
Collapse
|
44
|
Bohbot J, Pitts RJ, Kwon HW, Rützler M, Robertson HM, Zwiebel LJ. Molecular characterization of the Aedes aegypti odorant receptor gene family. INSECT MOLECULAR BIOLOGY 2007; 16:525-37. [PMID: 17635615 PMCID: PMC3100214 DOI: 10.1111/j.1365-2583.2007.00748.x] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The olfactory-driven blood-feeding behaviour of female Aedes aegypti mosquitoes is the primary transmission mechanism by which the arboviruses causing dengue and yellow fevers affect over 40 million individuals worldwide. Bioinformatics analysis has been used to identify 131 putative odourant receptors from the A. aegypti genome that are likely to function in chemosensory perception in this mosquito. Comparison with the Anopheles gambiae olfactory subgenome demonstrates significant divergence of the odourant receptors that reflects a high degree of evolutionary activity potentially resulting from their critical roles during the mosquito life cycle. Expression analyses in the larval and adult olfactory chemosensory organs reveal that the ratio of odourant receptors to antennal glomeruli is not necessarily one to one in mosquitoes.
Collapse
Affiliation(s)
- J Bohbot
- Department of Biological Sciences, Programs in Developmental Biology and Genetics, Centers for Chemical Biology and Molecular Neuroscience, The Institute for Global Health, Vanderbilt University, Nashville, TN 37235, USA
| | | | | | | | | | | |
Collapse
|
45
|
Syed Z, Leal WS. Maxillary Palps Are Broad Spectrum Odorant Detectors in Culex quinquefasciatus. Chem Senses 2007; 32:727-38. [PMID: 17569743 DOI: 10.1093/chemse/bjm040] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A single type of olfactory sensilla on maxillary palps in many species of mosquitoes houses a very sensitive olfactory receptor neuron (ORN) for carbon dioxide reception. We performed extensive single sensillum recordings from this peg sensillum in Culex quinquefasciatus and have characterized the response threshold and kinetics for CO(2) reception, with a detection threshold less than the CO(2) concentration in the atmosphere. This ORN responded in a tonic mode to lower concentrations of CO(2), whereas higher concentrations generated a phasic-tonic mode of action potential firing. Sensillum potentials accurately represented the response magnitude and kinetics of carbon dioxide-elicited excitatory responses. Stimulation of these ORNs with human breath, a complex mixture of mosquito kairomones and up to 4.5% CO(2), elicited excitatory responses that were reliably detected by CO(2)-sensitive ORNs. Another ORN housed in these sensilla responded to 1-octen-3-ol and to various plant-derived compounds, particularly floral and green leaf volatiles. This ORN showed remarkable sensitivity to the natural enantiomer, (R)-(-)-1-octen-3-ol, rivaling pheromone-detecting ORNs in moths. Maximum neuronal response was elicited with a 10 ng dose. A biological, ecological role of maxillary palps in detection of plant- and nectar-related sources is proposed.
Collapse
Affiliation(s)
- Zainulabeuddin Syed
- Honorary Maeda-Duffey Lab, Department of Entomology, University of California-Davis, Davis, CA 95616, USA
| | | |
Collapse
|