1
|
Osetrov K, Uspenskaya M, Zaripova F, Olekhnovich R. Nanoarchitectonics of a Skin-Adhesive Hydrogel Based on the Gelatin Resuscitation Fluid Gelatinol®. Gels 2023; 9:gels9040330. [PMID: 37102942 PMCID: PMC10137424 DOI: 10.3390/gels9040330] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 03/28/2023] [Accepted: 04/07/2023] [Indexed: 04/28/2023] Open
Abstract
Hydrogel materials are one of the most versatile representatives of biomaterials. Their widespread use in medical practice is due to their similarity to native biostructures regarding relevant properties. This article discusses the synthesis of hydrogels based on a plasma-substituting Gelatinol® solution and modified tannin, carried out by direct mixing of the two solutions and brief heating. This approach makes it possible to obtain materials based on precursors that are safe for humans, while having antibacterial activity and high adhesion to human skin. Thanks to the synthesis scheme used, it is possible to obtain hydrogels with a complex shape before use, which is relevant in cases where industrial hydrogels do not fully satisfy the end use regarding their form factor. Using IR spectroscopy and thermal analysis, the distinctive aspects of mesh formation were shown in comparison with the hydrogels based on ordinary gelatin. A number of application properties, such as the physical and mechanical characteristics, permeability to oxygen/moisture, and antibacterial effect, were also considered. The sorption parameters of the material were characterized in a set of physiological buffers (pH 2-9) using Fick's first law and a pseudo-second order equation. The adhesive shear strength was determined in a model system. The synthesized hydrogels showed potential for the further development of materials based on plasma-substituting solutions.
Collapse
Affiliation(s)
- Konstantin Osetrov
- Bioengineering Institute, ITMO University, 197101 Saint-Petersburg, Russia
| | - Mayya Uspenskaya
- Bioengineering Institute, ITMO University, 197101 Saint-Petersburg, Russia
| | - Faliya Zaripova
- Bioengineering Institute, ITMO University, 197101 Saint-Petersburg, Russia
| | - Roman Olekhnovich
- Bioengineering Institute, ITMO University, 197101 Saint-Petersburg, Russia
| |
Collapse
|
2
|
Moon EC, Chang YH. Physicochemical, Structural, and In Vitro Gastrointestinal Tract Release Properties of Sodium Alginate-Based Cryogel Beads Filled with Hydroxypropyl Distarch Phosphate as a Curcumin Delivery System. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010031. [PMID: 36615227 PMCID: PMC9822046 DOI: 10.3390/molecules28010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/30/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022]
Abstract
The objectives of this study were to produce sodium alginate (SA)-based cryogel beads filled with different concentrations (0, 0.4, 1.0, and 2.5%, w/w) of hydroxypropyl distarch phosphate (HDP) as a curcumin delivery system and to investigate the physicochemical, structural, and in vitro gastrointestinal tract release properties of the cryogel beads. According to FT-IR analysis, the formation of ionic crosslinking between SA and Ca2+ and the presence of HDP were found. XRD analysis demonstrated the successful encapsulation of curcumin in the beads by observing the disappearance of the characteristic peaks of curcumin. SEM analysis results revelated that SA-based cryogel beads exhibited a denser internal structure as the HDP concentration was increased. The encapsulation efficiency of curcumin in SA cryogel beads filled with HDP concentration from 0% to 2.5% was increased from 31.95% to 76.66%, respectively, indicating that HDP can be a suitable filler for the encapsulation of curcumin in the production of SA-based cryogel beads. After exposure to simulated gastric fluid (SGF) and simulated intestinal fluid (SIF), the release rate of curcumin was decreased as HDP concentration was increased. Accordingly, SA-based cryogel beads filled with HDP can be utilized for the delivery system of curcumin in the food industry.
Collapse
|
3
|
Kudaibergen G, Zhunussova M, Mun EA, Ramankulov Y, Ogay V. Macroporous Cell-Laden Gelatin/Hyaluronic Acid/Chondroitin Sulfate Cryogels for Engineered Tissue Constructs. Gels 2022; 8:590. [PMID: 36135302 PMCID: PMC9498617 DOI: 10.3390/gels8090590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/13/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Cryogels are a unique macroporous material for tissue engineering. In this work, we study the effect of hyaluronic acid on the physicochemical properties of cryogel as well as on the proliferation of a 3D model of mesenchymal stem cells. The functional groups of the synthesized cryogels were identified using Fourier transform infrared spectroscopy. With an increase in the content of hyaluronic acid in the composition of the cryogel, an increase in porosity, gel content and swelling behavior was observed. As the hyaluronic acid content increased, the average pore size increased and more open pores were formed. Degradation studies have shown that all cryogels were resistant to PBS solution for 8 weeks. Cytotoxicity assays demonstrated no toxic effect on viability of rat adipose-derived mesenchymal stem cells (ADMSCs) cultured on cryogels. ADMSC spheroids were proliferated on scaffolds and showed the ability of the cryogels to orient cell differentiation into chondrogenic lineage even in the absence of inductive agents. Thus, our results demonstrate an effective resemblance to extracellular matrix structures specific to cartilage-like microenvironments by cryogels and their further perspective application as potential biomaterials.
Collapse
Affiliation(s)
| | - Madina Zhunussova
- Stem Cell Laboratory, National Center for Biotechnology, Nur-Sultan 010000, Kazakhstan
| | - Ellina A. Mun
- School of Science and Humanities, Nazarbayev University, Nur-Sultan 010000, Kazakhstan
| | - Yerlan Ramankulov
- Stem Cell Laboratory, National Center for Biotechnology, Nur-Sultan 010000, Kazakhstan
- School of Science and Humanities, Nazarbayev University, Nur-Sultan 010000, Kazakhstan
| | - Vyacheslav Ogay
- Stem Cell Laboratory, National Center for Biotechnology, Nur-Sultan 010000, Kazakhstan
| |
Collapse
|
4
|
Vernaya OI, Ryabev AN, Shabatina TI, Karlova DL, Shabatin AV, Bulatnikova LN, Semenov AM, Melnikov MY, Lozinsky VI. Cryostructuring of Polymeric Systems: 62 Preparation and Characterization of Alginate/Chondroitin Sulfate Cryostructurates Loaded with Antimicrobial Substances. Polymers (Basel) 2022; 14:polym14163271. [PMID: 36015528 PMCID: PMC9414213 DOI: 10.3390/polym14163271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/05/2022] [Accepted: 08/06/2022] [Indexed: 11/16/2022] Open
Abstract
Targeted drug release is a significant research focus in the development of drug delivery systems and involves a biocompatible polymeric carrier and certain medicines. Cryostructuring is a suitable approach for the preparation of efficient macroporous carriers for such drug delivery systems. In the current study, the cryogenically structured carriers based on alginate/chondroitin sulfate mixtures were prepared and their physicochemical properties and their ability to absorb/release the bactericides were evaluated. The swelling parameters of the polysaccharide matrix, the amount of the tightly bound water in the polymer and the sulfur content were measured. In addition, FTIR and UV spectroscopy, optical and scanning microscopy, as well as a standard disk diffusion method for determining antibacterial activity were used. It was shown that alginate/chondroitin sulfate concentration and their ratios were significant factors influencing the swelling properties and the porosity of the resultant cryostructurates. It was demonstrated that the presence of chondroitin sulfate in the composition of a polymeric matrix slowed down the release of the aminoglycoside antibiotic gentamicin. In the case of the NH2-free bactericide, dioxidine, the release was almost independent of the presence of chondroitin sulfate. This trend was also registered for the antibacterial activity tests against the Escherichia coli bacteria, when examining the drug-loaded biopolymeric carriers.
Collapse
Affiliation(s)
- Olga I. Vernaya
- Chemistry Department, M. V. Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Andrey N. Ryabev
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street 28, Bld. 1, 119334 Moscow, Russia
| | - Tatyana I. Shabatina
- Chemistry Department, M. V. Lomonosov Moscow State University, 119991 Moscow, Russia
- N. E. Bauman Moscow State Technical University, 2-nd Baumanskaya 5, 105005 Moscow, Russia
| | - Daria L. Karlova
- Chemistry Department, M. V. Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Andrey V. Shabatin
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky Ave. 31, Bld. 4, 119071 Moscow, Russia
| | - Lyudmila N. Bulatnikova
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street 28, Bld. 1, 119334 Moscow, Russia
| | - Alexander M. Semenov
- Biology Department, M. V. Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Mikhail Ya. Melnikov
- Chemistry Department, M. V. Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Vladimir I. Lozinsky
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street 28, Bld. 1, 119334 Moscow, Russia
- Correspondence: ; Tel.: +7-499-135-6492
| |
Collapse
|
5
|
Liu G, Wang M, Gao H, Cui C, Gao J. Spiropyran modified polyvinyl alcohol sponge as a light-responsive adsorbent for the removal of Pb(II) in aqueous solution. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
6
|
Okten Besli NS, Orakdogen N. Exploring the role of Muscovite in poly(alkyl methacrylate)-based ternary nanocomposite cryogels with selective functional groups: formation via cryogelling with the aid of inorganic clay. SOFT MATTER 2021; 17:9371-9386. [PMID: 34605525 DOI: 10.1039/d1sm00950h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Easy fabrication of inorganic clay muscovite (MUS) embedded poly(2-acrylamido-2-methyl-1-propane sulfonic acid-co-diethylaminoethyl methacrylate-co-hydroxyethyl methacrylate) (PADH) nanocomposite cryogels with dual temperature/pH dependent catalytic potential was reported. Nanocomposite cryogels were fabricated by a method involving cryogelation and free radical crosslinking of aqueous systems containing MUS ranging from 0% to 1.50% (w/v). The changes in the properties of polybasic PADH networks were investigated to explain how the network parameters and gel properties were affected by the addition of clay, with the formation of a single terpolymer-MUS structure. The potential of the addition of different amounts of MUS to strengthen the prepared terpolymer matrix was investigated by uniaxial compression tests. By lowering the polymerization temperature or increasing the MUS content, the PADH/MUS nanocomposite cryogels became more elastic and compressible with stronger entanglement of terpolymer chains between the clay layers. With the addition of 1.50% (w/v) MUS, the swelling capacity was reduced by 50%, resulting in a two-fold increase in compression elasticity. The nanocomposite gels showed a strong pH-dependence, and when the pH of the swelling medium decreased from 9.8 to 2.1, there was a significant increase in the degree of swelling with increasing protonation of tertiary amine groups. Under an acidic environment, the swelling capacity of the nanocomposite gel containing 1.10% (w/v) MUS increased by 49.5%. In temperature dependent swelling between 15 and 75 °C, all ternary PADH/MUS-Ngels showed a tendency to swell at low and high swelling temperatures, by the predominance of DEAEM units at low temperatures and HEMA monomers at high temperatures, respectively. As the temperature was increased to 55 °C, the swelling decreased and reached a minimum, and then the nanocomposite gels tended to swell again. The obtained results provide an insight into the effect of MUS addition on the properties of poly(alkyl methacrylate)-based ternary nanocomposite gels and demonstrate a simple and efficient way to produce multiple response systems with enhanced elasticity.
Collapse
Affiliation(s)
- Nur Sena Okten Besli
- Department of Chemistry, Soft Materials Research Laboratory, Istanbul Technical University, 34469, Istanbul, Maslak, Turkey.
| | - Nermin Orakdogen
- Department of Chemistry, Soft Materials Research Laboratory, Istanbul Technical University, 34469, Istanbul, Maslak, Turkey.
| |
Collapse
|
7
|
Savina IN, Zoughaib M, Yergeshov AA. Design and Assessment of Biodegradable Macroporous Cryogels as Advanced Tissue Engineering and Drug Carrying Materials. Gels 2021; 7:79. [PMID: 34203439 PMCID: PMC8293244 DOI: 10.3390/gels7030079] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/17/2021] [Accepted: 06/22/2021] [Indexed: 12/13/2022] Open
Abstract
Cryogels obtained by the cryotropic gelation process are macroporous hydrogels with a well-developed system of interconnected pores and shape memory. There have been significant recent advancements in our understanding of the cryotropic gelation process, and in the relationship between components, their structure and the application of the cryogels obtained. As cryogels are one of the most promising hydrogel-based biomaterials, and this field has been advancing rapidly, this review focuses on the design of biodegradable cryogels as advanced biomaterials for drug delivery and tissue engineering. The selection of a biodegradable polymer is key to the development of modern biomaterials that mimic the biological environment and the properties of artificial tissue, and are at the same time capable of being safely degraded/metabolized without any side effects. The range of biodegradable polymers utilized for cryogel formation is overviewed, including biopolymers, synthetic polymers, polymer blends, and composites. The paper discusses a cryotropic gelation method as a tool for synthesis of hydrogel materials with large, interconnected pores and mechanical, physical, chemical and biological properties, adapted for targeted biomedical applications. The effect of the composition, cross-linker, freezing conditions, and the nature of the polymer on the morphology, mechanical properties and biodegradation of cryogels is discussed. The biodegradation of cryogels and its dependence on their production and composition is overviewed. Selected representative biomedical applications demonstrate how cryogel-based materials have been used in drug delivery, tissue engineering, regenerative medicine, cancer research, and sensing.
Collapse
Affiliation(s)
- Irina N. Savina
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Huxley Building, Lewes Road, Brighton BN2 4GJ, UK
| | - Mohamed Zoughaib
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia; (M.Z.); (A.A.Y.)
| | - Abdulla A. Yergeshov
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia; (M.Z.); (A.A.Y.)
| |
Collapse
|
8
|
Cryostructuring of Polymeric Systems. 57. Spongy Wide-Porous Cryogels Based on the Proteins of Blood Serum: Preparation, Properties and Application as the Carriers of Peptide Bioregulators. Gels 2020; 6:gels6040050. [PMID: 33327554 PMCID: PMC7768461 DOI: 10.3390/gels6040050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/07/2020] [Accepted: 12/10/2020] [Indexed: 12/16/2022] Open
Abstract
Wide-pore proteinaceous freeze-thaw spongy gels were synthesized via the cryotropic gelation technique using the bovine blood serum or its diluted solutions as the protein-containing precursors. The feed systems also included the denaturant (urea) and the thiol-reductant (cysteine). The gel-fraction yield decreased and the swelling degree of the walls of macropores in such heterophase matrices increased with decreasing the initial protein concentration. The optimum freezing temperature was found to be within a rather narrow range from -15 to -20 °C. In this case, the average size of the macropores in the resultant cryogels was 90-110 μm. The suitability of such soft wide-pore gel materials for the application as the carriers of peptide bioregulators was demonstrated in the in vitro experiments, when the posterior segments of the Pleurodeles waltl adult newts' eyes were used as a model biological target. It was shown that a statistically reliable protective effect on the state of the sclera, vascular membrane and retinal pigment epithelium, as well as on the viability of fibroblasts, was inherent in the proteinaceous cryogels loaded with the peptide bioregulator (Viophtan-5™) isolated from the bovine eye sclera.
Collapse
|
9
|
Lozinsky VI. Cryostructuring of Polymeric Systems. 55. Retrospective View on the More than 40 Years of Studies Performed in the A.N.Nesmeyanov Institute of Organoelement Compounds with Respect of the Cryostructuring Processes in Polymeric Systems. Gels 2020; 6:E29. [PMID: 32927850 PMCID: PMC7559272 DOI: 10.3390/gels6030029] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 02/06/2023] Open
Abstract
The processes of cryostructuring in polymeric systems, the techniques of the preparation of diverse cryogels and cryostructurates, the physico-chemical mechanisms of their formation, and the applied potential of these advanced polymer materials are all of high scientific and practical interest in many countries. This review article describes and discusses the results of more than 40 years of studies in this field performed by the researchers from the A.N.Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences-one of the key centers, where such investigations are carried out. The review includes brief historical information, the description of the main effects and trends characteristic of the cryostructuring processes, the data on the morphological specifics inherent in the polymeric cryogels and cryostructurates, and examples of their implementation for solving certain applied tasks.
Collapse
Affiliation(s)
- Vladimir I Lozinsky
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street, 28, 119991 Moscow, Russia
| |
Collapse
|