1
|
Colombi S, Alemán C, García-Torres J. Free-standing, flexible and conformable bilayered polymeric nanomembranes modified with gold nanomaterials as electronic skin sensors. Colloids Surf B Biointerfaces 2025; 250:114558. [PMID: 39947097 DOI: 10.1016/j.colsurfb.2025.114558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 02/06/2025] [Accepted: 02/06/2025] [Indexed: 03/15/2025]
Abstract
Skin is a barrier that protects us against physical, chemical and biological agents. However, any damage to the skin can disrupt this barrier and therefore compromise its function leading to sometimes catastrophic consequences like sepsis. Thus, methods to detect early signs of infection are necessary. In this work, we have developed a straightforward method for producing 2D nanomembranes with regularly spaced 1D metallic nanostructures integrating sensing capabilities to pH and NADH (nicotinamide adenine dinucleotide), which are critical analytes revealing infection. To achieve this, we have successfully fabricated a bilayered nanomembrane combining a pH-responsive polyaniline (PANI) layer and a nanoperforated poly(lactic acid) (PLA) layer containing gold nanowires (Au NWs) as NADH sensing element. SEM, FTIR, Raman and AFM techniques revealed the formation of the bilayered PANI/PLA nanomembrane and the successful incorporation of the Au NWs inside the nanoperforations. The resulting bilayered nanomembrane showed significant flexibility and conformability onto different substrates due to the softness of the polymers and the ultrathin thickness with stiffness values similar to human skin. These nanomembranes also exhibited remarkable electrochemical sensing performance towards pH and NADH detection. Thus, the nanomembrane displayed linearity with good sensitivity (47 mV pH-1) in the critical pH range 4-10 and fast response time (10 s). On the other hand, PANI/PLA-Au nanomembranes also allowed the quantitative sensing of NADH with a limit of detection of 0.39 mM and a sensitivity of 1 µA cm-2 mM-1 in the concentration range 0-5 mM.
Collapse
Affiliation(s)
- Samuele Colombi
- IMEM-BRT Group, Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya-BarcelonaTech, C/ Eduard Maristany, 10-14, Barcelona 08019, Spain; Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya-Barcelona Tech, Barcelona 08019, Spain
| | - Carlos Alemán
- IMEM-BRT Group, Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya-BarcelonaTech, C/ Eduard Maristany, 10-14, Barcelona 08019, Spain; Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya-Barcelona Tech, Barcelona 08019, Spain; Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10-12, Barcelona 08028, Spain.
| | - Jose García-Torres
- Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya-Barcelona Tech, Barcelona 08019, Spain; Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya-BarcelonaTech, Barcelona 08019, Spain; CIBER en Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Zaragoza 50018, Spain.
| |
Collapse
|
2
|
Coquart P, El Haddad A, Koutsouras DA, Bolander J. Organic Bioelectronics in Microphysiological Systems: Bridging the Gap Between Biological Systems and Electronic Technologies. BIOSENSORS 2025; 15:253. [PMID: 40277566 PMCID: PMC12025328 DOI: 10.3390/bios15040253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/28/2025] [Accepted: 04/05/2025] [Indexed: 04/26/2025]
Abstract
The growing burden of degenerative, cardiovascular, neurodegenerative, and cancerous diseases necessitates innovative approaches to improve our pathophysiological understanding and ability to modulate biological processes. Organic bioelectronics has emerged as a powerful tool in this pursuit, offering a unique ability to interact with biology due to the mixed ionic-electronic conduction and tissue-mimetic mechanical properties of conducting polymers (CPs). These materials enable seamless integration with biological systems across different levels of complexity, from monolayers to complex 3D models, microfluidic chips, and even clinical applications. CPs can be processed into diverse formats, including thin films, hydrogels, 3D scaffolds, and electrospun fibers, allowing the fabrication of advanced bioelectronic devices such as multi-electrode arrays, transistors (EGOFETs, OECTs), ion pumps, and photoactuators. This review examines the integration of CP-based bioelectronics in vivo and in in vitro microphysiological systems, focusing on their ability to monitor key biological events, including electrical activity, metabolic changes, and biomarker concentrations, as well as their potential for electrical, mechanical, and chemical stimulation. We highlight the versatility and biocompatibility of CPs and their role in advancing personalized medicine and regenerative therapies and discuss future directions for organic bioelectronics to bridge the gap between biological systems and electronic technologies.
Collapse
Affiliation(s)
- Pauline Coquart
- Research Unit ‘Soft Matter and Biophysics’, Department ‘Physics and Astronomy’, KU Leuven, B-3000 Leuven, Belgium;
- IMEC, Kapeldreef 75, B-3001 Leuven, Belgium;
| | - Andrea El Haddad
- IMEC, Kapeldreef 75, B-3001 Leuven, Belgium;
- Research Unit ’Assiocated Division ESAT-INSYS (INSYS), Integrated Systems’, Department ‘Electrical Engineering (ESAT)’, KU Leuven, B-3000 Leuven, Belgium
| | - Dimitrios A. Koutsouras
- IMEC NL, 5656 AE Eindhoven, The Netherlands
- Department of Electronic & Electrical Engineering, University of Bath, Claverton Down, Bath BA2 7AY, UK
- Centre for Bioengineering & Biomedical Technologies (CBio), University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Johanna Bolander
- IMEC, Kapeldreef 75, B-3001 Leuven, Belgium;
- Berlin Institute of Health Center for Regenerative Therapied (BCRT), Berlin Institute of Health at Charité—Universitätmedizin Berlin, 13353 Berlin, Germany
- Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Berlin Institute of Health at Charité—Universitätmedizin Berlin, 13353 Berlin, Germany
| |
Collapse
|
3
|
Uzokboev S, Akhmadbekov K, Nuritdinova R, Tawfik SM, Lee YI. Unveiling the potential of alginate-based nanomaterials in sensing technology and smart delivery applications. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2024; 15:1077-1104. [PMID: 39188756 PMCID: PMC11346306 DOI: 10.3762/bjnano.15.88] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 08/07/2024] [Indexed: 08/28/2024]
Abstract
Sensors are applied to many fields nowadays because of their high sensitivity, low cost, time-saving, user-friendly, and excellent selectivity. Current biomedical and pharmaceutical science has one focus on developing nanoparticle-based sensors, especially biopolymeric nanoparticles. Alginate is a widely used biopolymer in a variety of applications. The hydrogel-forming characteristic, the chemical structure with hydroxy and carboxylate moieties, biocompatibility, biodegradability, and water solubility of alginate have expanded opportunities in material and biomedical sciences. Recently, research on alginate-based nanoparticles and their applications has begun. These materials are gaining popularity because of their wide usage potential in the biomedical and pharmaceutical fields. Many review papers describe applications of alginate in the drug delivery field. The current study covers the structural and physicochemical properties of alginate-based nanoparticles. The prospective applications of alginate-based nanomaterials in various domains are discussed, including drug delivery and environmental sensing applications for humidity, heavy metals, and hydrogen peroxide. Moreover, biomedical sensing applications of alginate-based nanoparticles regarding various analytes such as glucose, cancer cells, pharmaceutical drugs, and human motion will also be reviewed in this paper. Future research scopes highlight existing challenges and solutions.
Collapse
Affiliation(s)
- Shakhzodjon Uzokboev
- Department of Pharmaceutical Sciences, Pharmaceutical Technical University, Tashkent 100084, Republic of Uzbekistan
| | - Khojimukhammad Akhmadbekov
- Department of Pharmaceutical Sciences, Pharmaceutical Technical University, Tashkent 100084, Republic of Uzbekistan
| | - Ra’no Nuritdinova
- Department of Pharmaceutical Sciences, Pharmaceutical Technical University, Tashkent 100084, Republic of Uzbekistan
| | - Salah M Tawfik
- Department of Petrochemicals, Egyptian Petroleum Research Institute (EPRI), Nasr City, Cairo 11727, Egypt
| | - Yong-Ill Lee
- Department of Pharmaceutical Sciences, Pharmaceutical Technical University, Tashkent 100084, Republic of Uzbekistan
- Anastro Laboratory, Institute of Basic Science, Changwon National University, Changwon 51140, Republic of Korea
| |
Collapse
|
4
|
Colombi S, Sáez I, Borras N, Estrany F, Pérez-Madrigal MM, García-Torres J, Morgado J, Alemán C. Glyoxal crosslinking of electro-responsive alginate-based hydrogels: Effects on the properties. Carbohydr Polym 2024; 337:122170. [PMID: 38710559 DOI: 10.1016/j.carbpol.2024.122170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/08/2024] [Accepted: 04/14/2024] [Indexed: 05/08/2024]
Abstract
To improve the features of alginate-based hydrogels in physiological conditions, Ca2+-crosslinked semi-interpenetrated hydrogels formed by poly(3,4-ethylenedioxythiophene):polystyrene sulfonic acid and alginate (PEDOT/Alg) were subjected to a treatment with glyoxal to form a dual ionic/covalent network. The covalent network density was systematically varied by considering different glyoxalization times (tG). The content of Ca2+ was significantly higher for the untreated hydrogel than for the glyoxalized ones, while the properties of the hydrogels were found to largely depend on tG. The porosity and swelling capacity decreased with increasing tG, while the stiffness and electrical conductance retention capacity increased with tG. The potentiodynamic response of the hydrogels notably depended on the amount of conformational restraints introduced by the glyoxal, which is a very short crosslinker. Thus, the re-accommodation of the polymer chains during the cyclic potential scans became more difficult with increasing number of covalent crosslinks. This information was used to improve the performance of untreated PEDOT/Alg as electrochemical sensor of hydrogen peroxide by simply applying a tG of 5 min. Overall, the control of the properties of glyoxalized hydrogels through tG is very advantageous and can be used as an on-demand strategy to improve the performance of such materials depending on the application.
Collapse
Affiliation(s)
- Samuele Colombi
- IMEM-BRT Group, Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya - BarcelonaTech, C/ Eduard Maristany 10-14, 08019 Barcelona, Spain; Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya - BarcelonaTech, C/ Eduard Maristany 10-14, 08019 Barcelona, Spain
| | - Isabel Sáez
- IMEM-BRT Group, Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya - BarcelonaTech, C/ Eduard Maristany 10-14, 08019 Barcelona, Spain
| | - Nuria Borras
- IMEM-BRT Group, Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya - BarcelonaTech, C/ Eduard Maristany 10-14, 08019 Barcelona, Spain
| | - Francesc Estrany
- IMEM-BRT Group, Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya - BarcelonaTech, C/ Eduard Maristany 10-14, 08019 Barcelona, Spain; Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya - BarcelonaTech, C/ Eduard Maristany 10-14, 08019 Barcelona, Spain
| | - Maria M Pérez-Madrigal
- IMEM-BRT Group, Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya - BarcelonaTech, C/ Eduard Maristany 10-14, 08019 Barcelona, Spain; Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya - BarcelonaTech, C/ Eduard Maristany 10-14, 08019 Barcelona, Spain
| | - José García-Torres
- Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya - BarcelonaTech, C/ Eduard Maristany 10-14, 08019 Barcelona, Spain; Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya - BarcelonaTech, C/ Eduard Maristany 10-14, 08019 Barcelona, Spain.
| | - Jorge Morgado
- Department of Bioengineering, Instituto de Telecomunicações, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Carlos Alemán
- IMEM-BRT Group, Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya - BarcelonaTech, C/ Eduard Maristany 10-14, 08019 Barcelona, Spain; Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya - BarcelonaTech, C/ Eduard Maristany 10-14, 08019 Barcelona, Spain; Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain.
| |
Collapse
|
5
|
Thirumalai D, Santhamoorthy M, Kim SC, Lim HR. Conductive Polymer-Based Hydrogels for Wearable Electrochemical Biosensors. Gels 2024; 10:459. [PMID: 39057482 PMCID: PMC11275512 DOI: 10.3390/gels10070459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Hydrogels are gaining popularity for use in wearable electronics owing to their inherent biomimetic characteristics, flexible physicochemical properties, and excellent biocompatibility. Among various hydrogels, conductive polymer-based hydrogels (CP HGs) have emerged as excellent candidates for future wearable sensor designs. These hydrogels can attain desired properties through various tuning strategies extending from molecular design to microstructural configuration. However, significant challenges remain, such as the limited strain-sensing range, significant hysteresis of sensing signals, dehydration-induced functional failure, and surface/interfacial malfunction during manufacturing/processing. This review summarizes the recent developments in polymer-hydrogel-based wearable electrochemical biosensors over the past five years. Initially serving as carriers for biomolecules, polymer-hydrogel-based sensors have advanced to encompass a wider range of applications, including the development of non-enzymatic sensors facilitated by the integration of nanomaterials such as metals, metal oxides, and carbon-based materials. Beyond the numerous existing reports that primarily focus on biomolecule detection, we extend the scope to include the fabrication of nanocomposite conductive polymer hydrogels and explore their varied conductivity mechanisms in electrochemical sensing applications. This comprehensive evaluation is instrumental in determining the readiness of these polymer hydrogels for point-of-care translation and state-of-the-art applications in wearable electrochemical sensing technology.
Collapse
Affiliation(s)
- Dinakaran Thirumalai
- Digital Healthcare Research Center, Pukyong National University, Busan 48513, Republic of Korea;
| | - Madhappan Santhamoorthy
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38544, Republic of Korea; (M.S.); (S.-C.K.)
| | - Seong-Cheol Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38544, Republic of Korea; (M.S.); (S.-C.K.)
| | - Hyo-Ryoung Lim
- Digital Healthcare Research Center, Pukyong National University, Busan 48513, Republic of Korea;
- Major of Human Bioconvergence, Division of Smart Healthcare, College of Information Technology and Convergence, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
6
|
Multitasking smart hydrogels based on the combination of alginate and poly(3,4-ethylenedioxythiophene) properties: A review. Int J Biol Macromol 2022; 219:312-332. [PMID: 35934076 DOI: 10.1016/j.ijbiomac.2022.08.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/28/2022] [Accepted: 08/02/2022] [Indexed: 11/05/2022]
Abstract
Poly(3,4-ethylenedioxythiophene) (PEDOT), a very stable and biocompatible conducting polymer, and alginate (Alg), a natural water-soluble polysaccharide mainly found in the cell wall of various species of brown algae, exhibit very different but at the same complementary properties. In the last few years, the remarkable capacity of Alg to form hydrogels and the electro-responsive properties of PEDOT have been combined to form not only layered composites (PEDOT-Alg) but also interpenetrated multi-responsive PEDOT/Alg hydrogels. These materials have been found to display outstanding properties, such as electrical conductivity, piezoelectricity, biocompatibility, self-healing and re-usability properties, pH and thermoelectric responsiveness, among others. Consequently, a wide number of applications are being proposed for PEDOT-Alg composites and, especially, PEDOT/Alg hydrogels, which should be considered as a new kind of hybrid material because of the very different chemical nature of the two polymeric components. This review summarizes the applications of PEDOT-Alg and PEDOT/Alg in tissue interfaces and regeneration, drug delivery, sensors, microfluidics, energy storage and evaporators for desalination. Special attention has been given to the discussion of multi-tasking applications, while the new challenges to be tackled based on aspects not yet considered in either of the two polymers have also been highlighted.
Collapse
|