1
|
Sheppard DI, Espinoza-Corral R, Lechno-Yossef S, Sutter M, Arcidiacono A, Cignoni E, Cupellini L, Mennucci B, Kerfeld CA. N-Terminal domain homologs of the orange carotenoid protein increase quenching of cyanobacterial phycobilisomes. PLANT PHYSIOLOGY 2025; 198:kiae531. [PMID: 39365917 PMCID: PMC12059629 DOI: 10.1093/plphys/kiae531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 10/06/2024]
Abstract
Stress exerted by excess captured light energy in cyanobacteria is prevented by the photoprotective activity of the orange carotenoid protein (OCP). Under high light, the OCP converts from an orange, inactive form (OCPO) into the red form (OCPR) that binds to and quenches the phycobilisome (PBS). Structurally, the OCP consists of 2 domains: the N-terminal effector domain and a C-terminal regulatory domain. Structural analysis of the OCP-PBS complex showed that the N-terminal domains of an OCP dimer interact with the PBS core. These N-terminal OCP domains have single-domain protein paralogs known as helical carotenoid proteins (HCPs). Using PBS quenching assays, we show that the HCP4 and HCP5 homologs efficiently quench PBS fluorescence in vitro, surpassing the quenching ability of the OCP. This is consistent with computational quantum mechanics/molecular mechanics results. Interestingly, when using a maximum quenching concentration of OCP with PBSs, HCP5 addition further increases PBS quenching. Our results provide mechanistic insight into the quenching capacity and roles of HCP4 and HCP5 in cyanobacteria, suggesting that they are more than simply functionally redundant to the OCP.
Collapse
Affiliation(s)
- Damien I Sheppard
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Roberto Espinoza-Corral
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Sigal Lechno-Yossef
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Markus Sutter
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Amanda Arcidiacono
- Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa 56124, Italy
| | - Edoardo Cignoni
- Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa 56124, Italy
| | - Lorenzo Cupellini
- Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa 56124, Italy
| | - Benedetta Mennucci
- Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa 56124, Italy
| | - Cheryl A Kerfeld
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
2
|
Koczula AM, Cremer N, Moldenhauer M, Sluchanko NN, Maksimov EG, Friedrich T. Mutational interference with oligomerization properties of OCP-related apo- and holoproteins studied by analytical ultracentrifugation. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2025; 1866:149538. [PMID: 39814218 DOI: 10.1016/j.bbabio.2025.149538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/19/2024] [Accepted: 01/09/2025] [Indexed: 01/18/2025]
Abstract
In this study, the oligomerization pattern of apo- and holoforms of the Orange Carotenoid Protein (OCP) was examined under different conditions such as photoactivation state, concentration, and carotenoid embedment using analytical ultracentrifugation. Furthermore, studies were conducted on OCP constructs carrying point mutations of amino acid residues affecting OCP oligomerization. Our findings reveal that the concentration-dependent dimerization of dark-adapted OCP holoprotein from Synechocystis sp. PCC 6803 can be effectively prevented by the R27L mutation in the OCP-NTD. By introducing the E258R mutation (also in conjunction with R27L) into the OCP-CTD, monomeric OCP apoprotein can be obtained. Additionally, the holoprotein of the dark-adapted OCP-R27L/E258R variant was monomeric, and, supported by size-exclusion chromatography experiments, the photoactivated form of the OCP-R27L/E258R variant was monomeric as well. This variant, which does not oligomerize in either photocycle state, returns from the photoactivated to the dark-adapted state at a significantly faster rate than the OCP wild-type and the R27L mutant thereof. These observations also highlight the crucial interdependence between OCP dimerization in both photocycle states, the lifetime of the photoactive state of OCP, and the kinetics of the OCP photocycle.
Collapse
Affiliation(s)
- Anna Marta Koczula
- Technische Universität Berlin, Institute of Chemistry PC 14, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Nils Cremer
- Leibniz Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Marcus Moldenhauer
- Technische Universität Berlin, Institute of Chemistry PC 14, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Nikolai N Sluchanko
- Federal Research Center of Biotechnology of the Russian Academy of Sciences, A.N. Bach Institute of Biochemistry, Leninsky Prospect 33-1, Moscow 119071, Russian Federation
| | - Eugene G Maksimov
- Lomonosov Moscow State University, Faculty of Biology, Leninskie Gory 1-12, Moscow 119991, Russian Federation
| | - Thomas Friedrich
- Technische Universität Berlin, Institute of Chemistry PC 14, Straße des 17. Juni 135, 10623 Berlin, Germany.
| |
Collapse
|
3
|
Tsoraev GV, Bukhanko AY, Mamchur AA, Surkov MM, Sidorenko SV, Moldenhauer M, Tseng HW, Petrovskaya LE, Cherepanov DA, Shelaev IV, Gostev FE, Blinova AR, Grigorenko BL, Yaroshevich IA, Nadtochenko VA, Budisa N, Kamenski P, Friedrich T, Maksimov EG. Engineering hydrogen bonding at tyrosine-201 in the orange carotenoid protein using halogenated analogues. PHOTOSYNTHESIS RESEARCH 2025; 163:10. [PMID: 39832061 DOI: 10.1007/s11120-024-01133-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/28/2024] [Indexed: 01/22/2025]
Abstract
The Orange Carotenoid Protein (OCP) is a unique water-soluble photoactive protein that plays a critical role in regulating the balance between light harvesting and photoprotective responses in cyanobacteria. The challenge in understanding OCP´s photoactivation mechanism stems from the heterogeneity of the initial configurations of its embedded ketocarotenoid, which in the dark-adapted state can form up to two hydrogen bonds to critical amino acids in the protein's C-terminal domain, and the extremely low quantum yield of primary photoproduct formation. While a series of experiments involving point mutations within these contacts helped us to identify these challenges, they did not resolve them. To overcome this, we shifted from classical mutagenesis to the translational introduction of non-canonical amino acid residues into the OCP structure. In this work, we demonstrate that replacing a single meta-hydrogen in tyrosine-201 with a halogen atom (chlorine, bromine, or iodine) leads to targeted modifications in the keto-carotenoid-protein matrix interaction network, both in the dark-adapted state and upon photoactivation. We found that such atomic substitutions allow us to effectively weaken key hydrogen bonds without disrupting protein folding, thereby increasing the yield of OCP photoactivation products. Such genetically encoded chemical modification of individual atoms and their systematic in situ variation in complex protein structures establishes a foundation for transforming OCP into a practical tool for optogenetics and other applications.
Collapse
Affiliation(s)
- Georgy V Tsoraev
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | | | | | - Makar M Surkov
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | | | - Marcus Moldenhauer
- Institute of Chemistry PC 14, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Hsueh-Wei Tseng
- Institute of Chemistry PC 14, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Lada E Petrovskaya
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, ul. Miklukho-Maklaya, 16/10, Moscow, 117997, Russia
| | - Dmitry A Cherepanov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia
- A.N. Belozersky Institute of Physical-Chemical Biology, Moscow State University, Moscow, Russia
| | - Ivan V Shelaev
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Fedor E Gostev
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Anastasia R Blinova
- Chemistry Department, Lomonosov State University, Moscow, Russia
- N.M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Moscow, Russia
| | - Bella L Grigorenko
- Chemistry Department, Lomonosov State University, Moscow, Russia
- N.M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Moscow, Russia
| | | | - Victor A Nadtochenko
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Nediljko Budisa
- Department of Chemistry, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Piotr Kamenski
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
- National Research Center "Kurchatov Institute", Moscow, Russia
| | - Thomas Friedrich
- Institute of Chemistry PC 14, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Eugene G Maksimov
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia.
| |
Collapse
|
4
|
Kerfeld CA, Sutter M. Orange carotenoid proteins: structural understanding of evolution and function. Trends Biochem Sci 2024; 49:819-828. [PMID: 38789305 DOI: 10.1016/j.tibs.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/15/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024]
Abstract
Cyanobacteria uniquely contain a primitive water-soluble carotenoprotein, the orange carotenoid protein (OCP). Nearly all extant cyanobacterial genomes contain genes for the OCP or its homologs, implying an evolutionary constraint for cyanobacteria to conserve its function. Genes encoding the OCP and its two constituent structural domains, the N-terminal domain, helical carotenoid proteins (HCPs), and its C-terminal domain, are found in the most basal lineages of extant cyanobacteria. These three carotenoproteins exemplify the importance of the protein for carotenoid properties, including protein dynamics, in response to environmental changes in facilitating a photoresponse and energy quenching. Here, we review new structural insights for these carotenoproteins and situate the role of the protein in what is currently understood about their functions.
Collapse
Affiliation(s)
- Cheryl A Kerfeld
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | - Markus Sutter
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
5
|
Chrupková P, van Stokkum IHM, Friedrich T, Moldenhauer M, Budisa N, Tseng HW, Polívka T, Cherepanov DA, Maksimov EG, Kloz M. Raman Vibrational Signatures of Excited States of Echinenone in the Orange Carotenoid Protein (OCP) and Implications for its Photoactivation Mechanism. J Mol Biol 2024; 436:168625. [PMID: 38797429 DOI: 10.1016/j.jmb.2024.168625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 05/09/2024] [Accepted: 05/17/2024] [Indexed: 05/29/2024]
Abstract
In this study, the vibrational characteristics of optically excited echinenone in various solvents and the Orange Carotenoid Protein (OCP) in red and orange states are systematically investigated through steady-state and time-resolved spectroscopy techniques. Time-resolved experiments, employing both Transient Absorption (TA) and Femtosecond Stimulated Raman Spectroscopy (FSRS), reveal different states in the OCP photoactivation process. The time-resolved studies indicate vibrational signatures of exited states positioned above the S1 state during the initial 140 fs of carotenoid evolution in OCP, an absence of a vibrational signature for the relaxed S1 state of echinenone in OCP, and more robust signatures of a highly excited ground state (GS) in OCP. Differences in S1 state vibration population signatures between OCP and solvents are attributed to distinct conformations of echinenone in OCP and hydrogen bonds at the keto group forming a short-lived intramolecular charge transfer (ICT) state. The vibrational dynamics of the hot GS in OCP show a more pronounced red shift of ground state CC vibration compared to echinenone in solvents, thus suggesting an unusually hot form of GS. The study proposes a hypothesis for the photoactivation mechanism of OCP, emphasizing the high level of vibrational excitation in longitudinal stretching modes as a driving force. In conclusion, the comparison of vibrational signatures reveals unique dynamics of energy dissipation in OCP, providing insights into the photoactivation mechanism and highlighting the impact of the protein environment on carotenoid behavior. The study underscores the importance of vibrational analysis in understanding the intricate processes involved in early phase OCP photoactivation.
Collapse
Affiliation(s)
- Petra Chrupková
- The Extreme Light Infrastructure ERIC, ELI Beamlines Facility, Za Radnicí 835, Dolní Břežany, Czech Republic; University of South Bohemia in České Budějovice, Faculty of Science, Branišovská 1760, 370 05 České Budějovice, Czech Republic
| | - Ivo H M van Stokkum
- Vrije Universiteit, Department of Physics and Astronomy, Faculty of Sciences, De Boelelaan 1081, 1081HV Amsterdam, the Netherlands
| | - Thomas Friedrich
- Technische Universität Berlin, Institute of Chemistry PC 14, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Marcus Moldenhauer
- Technische Universität Berlin, Institute of Chemistry PC 14, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Nediljko Budisa
- University of Manitoba, Department of Chemistry, 144 Dysart Rd, 360 Parker Building, Winnipeg, MB R3T 2N2, Canada
| | - Hsueh-Wei Tseng
- University of Manitoba, Department of Chemistry, 144 Dysart Rd, 360 Parker Building, Winnipeg, MB R3T 2N2, Canada
| | - Tomáš Polívka
- University of South Bohemia in České Budějovice, Faculty of Science, Branišovská 1760, 370 05 České Budějovice, Czech Republic
| | - Dmitry A Cherepanov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 142432 Moscow, Russian Federation; Lomonosov Moscow State University, A.N. Belozersky Institute of Physical-Chemical Biology, 119991 Moscow, Russian Federation
| | - Eugene G Maksimov
- Lomonosov Moscow State University, Faculty of Biology, Vorobyovy Gory 1-12, Moscow 119991, Russian Federation
| | - Miroslav Kloz
- The Extreme Light Infrastructure ERIC, ELI Beamlines Facility, Za Radnicí 835, Dolní Břežany, Czech Republic.
| |
Collapse
|
6
|
García-Oneto TM, Moyano-Bellido C, Domínguez-Martín MA. Structure and function of the light-protective orange carotenoid protein families. Curr Res Struct Biol 2024; 7:100141. [PMID: 38736459 PMCID: PMC11087925 DOI: 10.1016/j.crstbi.2024.100141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/21/2024] [Accepted: 03/29/2024] [Indexed: 05/14/2024] Open
Abstract
Orange carotenoid proteins (OCPs) are unique photoreceptors that are critical for cyanobacterial photoprotection. Upon exposure to blue-green light, OCPs are activated from a stable orange form, OCPO, to an active red form, OCPR, which binds to phycobilisomes (PBSs) and performs photoprotective non-photochemical quenching (NPQ). OCPs can be divided into three main families: the most abundant and best studied OCP1, and two others, OCP2 and OCP3, which have different activation and quenching properties and are yet underexplored. Crystal structures have been acquired for the three OCP clades, providing a glimpse into the conformational underpinnings of their light-absorption and energy dissipation attributes. Recently, the structure of the PBS-OCPR complex has been obtained allowing for an unprecedented insight into the photoprotective action of OCPs. Here, we review the latest findings in the field that have substantially improved our understanding of how cyanobacteria protect themselves from the toxic consequences of excess light absorption. Furthermore, current research is applying the structure of OCPs to bio-inspired optogenetic tools, to function as carotenoid delivery devices, as well as engineering the NPQ mechanism of cyanobacteria to enhance their photosynthetic biomass production.
Collapse
Affiliation(s)
| | | | - M. Agustina Domínguez-Martín
- Departamento de Bioquímica y Biología Molecular, Campus de Excelencia Internacional Agroalimentario CeiA3, Universidad de Córdoba, Córdoba, Spain
| |
Collapse
|
7
|
Egorkin NA, Dominnik EE, Maksimov EG, Sluchanko NN. Insights into the molecular mechanism of yellow cuticle coloration by a chitin-binding carotenoprotein in gregarious locusts. Commun Biol 2024; 7:448. [PMID: 38605243 PMCID: PMC11009388 DOI: 10.1038/s42003-024-06149-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/05/2024] [Indexed: 04/13/2024] Open
Abstract
Carotenoids are hydrophobic pigments binding to diverse carotenoproteins, many of which remain unexplored. Focusing on yellow gregarious locusts accumulating cuticular carotenoids, here we use engineered Escherichia coli cells to reconstitute a functional water-soluble β-carotene-binding protein, BBP. HPLC and Raman spectroscopy confirmed that recombinant BBP avidly binds β-carotene, inducing the unusual vibronic structure of its absorbance spectrum, just like native BBP extracted from the locust cuticles. Bound to recombinant BBP, β-carotene exhibits pronounced circular dichroism and allows BBP to withstand heating (T0.5 = 68 °C), detergents and pH variations. Using bacteria producing distinct xanthophylls we demonstrate that, while β-carotene is the preferred carotenoid, BBP can also extract from membranes ketocarotenoids and, very poorly, hydroxycarotenoids. We show that BBP-carotenoid complex reversibly binds to chitin, but not to chitosan, implying the role for chitin acetyl groups in cuticular BBP deposition. Reconstructing such locust coloration mechanism in vitro paves the way for structural studies and BBP applications.
Collapse
Affiliation(s)
- Nikita A Egorkin
- A.N. Bach Institute of Biochemistry, Federal Research Centre of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
- M.V. Lomonosov Moscow State University, Faculty of Biology, Moscow, Russia
| | - Eva E Dominnik
- A.N. Bach Institute of Biochemistry, Federal Research Centre of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
- M.V. Lomonosov Moscow State University, Faculty of Chemistry, Moscow, Russia
| | - Eugene G Maksimov
- M.V. Lomonosov Moscow State University, Faculty of Biology, Moscow, Russia
| | - Nikolai N Sluchanko
- A.N. Bach Institute of Biochemistry, Federal Research Centre of Biotechnology of the Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
8
|
Sklyar J, Wilson A, Kirilovsky D, Adir N. Insights into energy quenching mechanisms and carotenoid uptake by orange carotenoid protein homologs: HCP4 and CTDH. Int J Biol Macromol 2024; 265:131028. [PMID: 38521321 DOI: 10.1016/j.ijbiomac.2024.131028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/09/2024] [Accepted: 03/19/2024] [Indexed: 03/25/2024]
Abstract
Photodamage to the photosynthetic apparatus by excessive light radiation has led to the evolution of a variety of energy dissipation mechanisms. A mechanism that exists in some cyanobacterial species, enables non-photochemical quenching of excitation energy within the phycobilisome (PBS) antenna complex by the Orange Carotenoid Protein (OCP). The OCP contains an active N-terminal domain (NTD) and a regulatory C-terminal domain (CTD). Some cyanobacteria also have genes encoding for homologs to both the CTD (CTDH) and the NTD (referred to as helical carotenoid proteins, HCP). The CTDH facilitates uptake of carotenoids from the thylakoid membranes to be transferred to the HCPs. Holo-HCPs exhibit diverse functionalities such as carotenoid carriers, singlet oxygen quenchers, and in the case of HCP4, constitutive OCP-like energy quenching. Here, we present the first crystal structure of the holo-HCP4 binding canthaxanthin molecule and an improved structure of the apo-CTDH from Anabaena sp. PCC 7120. We propose here models of the binding of the HCP4 to the PBS and the associated energy quenching mechanism. Our results show that the presence of the carotenoid is essential for fluorescence quenching. We also examined interactions within OCP-like species, including HCP4 and CTDH, providing the basis for mechanisms of carotenoid transfer from CTDH to HCPs.
Collapse
Affiliation(s)
- Jenia Sklyar
- Schulich Faculty of Chemistry, Technion, Haifa 3200003, Israel
| | - Adjélé Wilson
- Université Paris-Saclay, CNRS, CEA, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif sur Yvette, France
| | - Diana Kirilovsky
- Université Paris-Saclay, CNRS, CEA, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif sur Yvette, France.
| | - Noam Adir
- Schulich Faculty of Chemistry, Technion, Haifa 3200003, Israel.
| |
Collapse
|