1
|
Wang N, Lu Y, Zheng J, Liu X. Of mice and men: Laboratory murine models for recapitulating the immunosuppression of human sepsis. Front Immunol 2022; 13:956448. [PMID: 35990662 PMCID: PMC9388785 DOI: 10.3389/fimmu.2022.956448] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/12/2022] [Indexed: 11/13/2022] Open
Abstract
Prolonged immunosuppression is increasingly recognized as the major cause of late phase and long-term mortality in sepsis. Numerous murine models with different paradigms, such as lipopolysaccharide injection, bacterial inoculation, and barrier disruption, have been used to explore the pathogenesis of immunosuppression in sepsis or to test the efficacy of potential therapeutic agents. Nonetheless, the reproducibility and translational value of such models are often questioned, owing to a highly heterogeneric, complex, and dynamic nature of immunopathology in human sepsis, which cannot be consistently and stably recapitulated in mice. Despite of the inherent discrepancies that exist between mice and humans, we can increase the feasibility of murine models by minimizing inconsistency and increasing their clinical relevance. In this mini review, we summarize the current knowledge of murine models that are most commonly used to investigate sepsis-induced immunopathology, highlighting their strengths and limitations in mimicking the dysregulated immune response encountered in human sepsis. We also propose potential directions for refining murine sepsis models, such as reducing experimental inconsistencies, increasing the clinical relevance, and enhancing immunological similarities between mice and humans; such modifications may optimize the value of murine models in meeting research and translational demands when applied in studies of sepsis-induced immunosuppression.
Collapse
Affiliation(s)
- Ning Wang
- West China Biopharm Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Yongling Lu
- Medical Research Center, Southwest Hospital, Army Military Medical University, Chongqing, China
| | - Jiang Zheng
- Medical Research Center, Southwest Hospital, Army Military Medical University, Chongqing, China
- *Correspondence: Jiang Zheng, ; Xin Liu,
| | - Xin Liu
- Medical Research Center, Southwest Hospital, Army Military Medical University, Chongqing, China
- *Correspondence: Jiang Zheng, ; Xin Liu,
| |
Collapse
|
2
|
Chen H, Huang N, Tian H, Li J, Li B, Sun J, Zhang S, Zhang C, Zhao Y, Kong G, Li Z. Splenectomy provides protective effects against CLP-induced sepsis by reducing TRegs and PD-1/PD-L1 expression. Int J Biochem Cell Biol 2021; 136:105970. [PMID: 33774183 DOI: 10.1016/j.biocel.2021.105970] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 11/24/2022]
Abstract
The role of the spleen in sepsis is still controversial. Therefore, we investigated the effect of the spleen on sepsis-induced immune dysfunction in C57BL/6 mice subjected to caecal ligation and puncture (CLP). Changes in different immune cells and apoptotic cells in the spleen and peripheral blood were observed 4, 24 and 48 h after CLP. Then, we determined that 48 h following CLP was the most significant period of immunosuppression. Next, we divided the mice into four groups: control, CLP, CLP + spx (splenectomy 48 h after CLP) and spx + CLP (splenectomy surgery two weeks before CLP). Compared with the CLP mice, the CLP + spx and spx + CLP mice had improved survival rates and organ injuries, increased expression of inflammatory factors, a decreased proportion of regulatory T cells (Tregs), and reduced expression of the genes involved in the programmed cell death 1 and its ligand 1 (PD1-PDL1) pathway in immune cells and T-cell immunoglobulin-mucin domain 3 (Tim 3) and Galectin9 in the liver and lungs after 72 h in late-phase sepsis. In addition, the expression of PD-1 was significantly reduced in T cells in spx + CLP mice, and the expression of PD-L1 in myeloid-derived suppressor cells (MDSCs) was reduced in the CLP + spx group, especially in macrophages. These findings suggested that splenectomy could protect septic mice from exhaustion of immune cells by reducing the proliferation of Treg cells and expression of the PD-1/PD-L1 axis in immune cells during the immunosuppressive stage of sepsis. Splenectomy could also reduce liver and lung injuries possibly via the Tim 3 and/or Galectin-9 axis. The spleen is an important regulator of the occurrence and development of sepsis, which provides a new perspective to improve the prognosis of sepsis by regulating the spleen.
Collapse
Affiliation(s)
- Haiyan Chen
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China; Core Research Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China
| | - Na Huang
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China; Core Research Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China
| | - Hongwei Tian
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China
| | - Jun Li
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China
| | - Baohua Li
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China; Core Research Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China
| | - Jin Sun
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China
| | - Shaoying Zhang
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China
| | - Chen Zhang
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China
| | - Yang Zhao
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China
| | - Guangyao Kong
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China; Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China
| | - Zongfang Li
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China; Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China.
| |
Collapse
|
3
|
Córneo EDS, Michels M, Dal-Pizzol F. Sepsis, immunosuppression and the role of epigenetic mechanisms. Expert Rev Clin Immunol 2021; 17:169-176. [PMID: 33596148 DOI: 10.1080/1744666x.2021.1875820] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Introduction: Sepsis has pro- and anti-inflammatory processes caused by infectious agents. Sepsis survivors have impaired immune response due to immunosuppression. Gene expression during the inflammatory process is guided by transcriptional access to chromatin, with post-translational changes made in histones that determine whether the loci of the inflammatory gene are active, balanced, or suppressed. For this, a review literature was performed in PubMed included 'sepsis' and 'epigenetic' and 'immunosuppression' terms until May 2020.Areas covered: This review article explores the relationship between epigenetic mechanisms and the pathophysiology of sepsis. Epigenetic changes, vulnerable gene expression, and immunosuppression are related to inflammatory insults that can modify the dynamics of the central nervous system. Therefore, it is important to investigate the timing of these changes and their dynamics during the disease progression.Expert opinion: Epigenetic changes are associated with the main stages of sepsis, from the pathogen-host interaction to inflammation and immunosuppression. These changes are key regulators of gene expression during physiological and pathological conditions. Thus, epigenetic markers have significant prognostic and diagnostic potential in sepsis, and epigenetic changes can be explored in combination with therapeutic strategies in experimental models of the disease.
Collapse
Affiliation(s)
- Emily da Silva Córneo
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Monique Michels
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Felipe Dal-Pizzol
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| |
Collapse
|
4
|
Gui Q, Jiang Z, Zhang L. Insights into the modulatory role of cyclosporine A and its research advances in acute inflammation. Int Immunopharmacol 2021; 93:107420. [PMID: 33540245 DOI: 10.1016/j.intimp.2021.107420] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/06/2021] [Accepted: 01/18/2021] [Indexed: 12/12/2022]
Abstract
Cyclosporine A(CsA), a classic immunosuppressant, is mainly applied for solid organ transplantation and some autoimmune diseases by suppressing T lymphocytes. Early studies showed that the application of CsA is primarily focused on chronic but not acute inflammation, nevertheless, increasing evidence supporting a role for CsA in acute inflammation, although most of proofs come from experimental models. It has long been known to us that the nuclear factor of activated T cells (NFAT) is the target of CsA to regulate T lymphocytes. However, NFAT also contributes to the regulation of innate immune cells, thus, CsA can not only target lymphocytes but also innate immune cells such as monocytes/macrophages, dendritic cells and neutrophils, which provides a basis for CsA to act on acute inflammation. Moreover, some other pathophysiological events in acute inflammation such as decreased vascular activity, mitochondrial dysfunction and endogenous cell apoptosis can also be alleviated by CsA. There being a moderate successes in the application of CsA for experimental acute inflammation such as sepsis, trauma/hemorrhagic shock and ischemic/reperfusion injury, yet data of the clinical treatment is not clear. In this review, we will critically analyze the existing hypotheses, summarize the application of CsA and its possible mechanisms in various acute inflammation over the past few decades, hope to provide some clues for the clinical treatment of acute inflammation.
Collapse
Affiliation(s)
- Qiuyi Gui
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Zhenzhou Jiang
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China.
| | - Luyong Zhang
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China; Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
5
|
Jin Z, Zhu Z, Liu S, Hou Y, Tang M, Zhu P, Tian Y, Li D, Yan D, Zhu X. TRIM59 Protects Mice From Sepsis by Regulating Inflammation and Phagocytosis in Macrophages. Front Immunol 2020; 11:263. [PMID: 32133014 PMCID: PMC7041419 DOI: 10.3389/fimmu.2020.00263] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 01/31/2020] [Indexed: 01/23/2023] Open
Abstract
Sepsis is associated with bacterial invasion and inflammation and has a high mortality rate. Previous studies have demonstrated that tripartite motif 59 (TRIM59) was involved in NF-κB signaling and could promote phagocytosis of macrophages, but the role of TRIM59 in sepsis is still unknown. In our study, we found that TRIM59 was downregulated in lipopolysaccharide (LPS)-stimulated bone marrow-derived macrophages (BMDMs). In the cecal ligation and puncture (CLP) sepsis mice model, the mortality of Trim59flox/floxLyz-Cre (Trim59-cKO) mice was higher, the immune cell infiltration and damage of liver and lung were more severe, and bacteria burden was increased. We also found that TRIM59 altered the production of pro-inflammation cytokines, as well as macrophage phagocytosis ability. Further analysis indicated that NF-κB signal pathway and Fcγ receptors might be involved in these regulations. Our study demonstrated for the first time that TRIM59 protects mice from sepsis by regulating inflammation and phagocytosis in macrophages.
Collapse
Affiliation(s)
- Zheng Jin
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Zhenhua Zhu
- Department of Orthopaedic Trauma, The First Hospital of Jilin University, Changchun, China
| | - Shanshan Liu
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Yuyang Hou
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Mengyan Tang
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Pei Zhu
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Yuan Tian
- Key Laboratory for Molecular Enzymology and Engineering, Ministry of Education, Jilin University, Changchun, China
| | - Dong Li
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Dongmei Yan
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Xun Zhu
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| |
Collapse
|
6
|
Meneses G, Cárdenas G, Espinosa A, Rassy D, Pérez-Osorio IN, Bárcena B, Fleury A, Besedovsky H, Fragoso G, Sciutto E. Sepsis: developing new alternatives to reduce neuroinflammation and attenuate brain injury. Ann N Y Acad Sci 2018; 1437:43-56. [DOI: 10.1111/nyas.13985] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/02/2018] [Accepted: 10/09/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Gabriela Meneses
- Instituto de Investigaciones Biomédicas; Universidad Nacional Autónoma de México; Mexico City Mexico
| | - Graciela Cárdenas
- Instituto Nacional de Neurología y Neurocirugía; SSA; Mexico City Mexico
| | - Alejandro Espinosa
- Instituto de Investigaciones Biomédicas; Universidad Nacional Autónoma de México; Mexico City Mexico
| | - Dunia Rassy
- Instituto de Investigaciones Biomédicas; Universidad Nacional Autónoma de México; Mexico City Mexico
| | - Ivan Nicolás Pérez-Osorio
- Instituto de Investigaciones Biomédicas; Universidad Nacional Autónoma de México; Mexico City Mexico
| | - Brandon Bárcena
- Instituto de Investigaciones Biomédicas; Universidad Nacional Autónoma de México; Mexico City Mexico
| | - Agnes Fleury
- Instituto Nacional de Neurología y Neurocirugía; SSA; Mexico City Mexico
| | - Hugo Besedovsky
- The Institute of Physiology and Pathophysiology, Medical Faculty; Philipps University; Marburg Germany
| | - Gladis Fragoso
- Instituto de Investigaciones Biomédicas; Universidad Nacional Autónoma de México; Mexico City Mexico
| | - Edda Sciutto
- Instituto de Investigaciones Biomédicas; Universidad Nacional Autónoma de México; Mexico City Mexico
| |
Collapse
|