1
|
Wang Y, Qu F, Wu Y, Lan K, Shen Y, Wu Z, Zhong Q, Cao X, Fan Z, Xu C. Peripheral nerves modulate the peri-implant osteogenesis under type 2 diabetes through exosomes derived from schwann cells via miR-15b-5p/Txnip signaling axis. J Nanobiotechnology 2025; 23:51. [PMID: 39875954 PMCID: PMC11773925 DOI: 10.1186/s12951-025-03160-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 01/22/2025] [Indexed: 01/30/2025] Open
Abstract
Studies have shown that the prognosis of dental implant treatment in patients with diabetes is not as good as that in the non-diabetes population. The nerve plays a crucial role in bone metabolism, but the role and the mechanism of peripheral nerves in regulating peri-implant osteogenesis under Type 2 diabetes mellitus (T2DM) situation remains unclear. In this study, it was shown that high glucose-stimulated Schwann cells (SCs) inhibited peri-implant osteogenesis via their exosomes. SCs-derived exosomes were analyzed for their miRNA cargo, identifying miR-15b-5p as significantly downregulated in high glucose conditions. T2DM rats and patients exhibited decreased miR-15b-5p expression, correlating with impaired bone microarchitecture. Luciferase assays and Western blotting confirmed TXNIP as a direct miR-15b-5p target, implicating its involvement in ROS signaling and inflammation-related osteogenesis suppression. Furthermore, normal SCs exosomes improved bone parameters around dental implants in T2DM rats. These findings underscore the therapeutic potential of miR-15b-5p and normal SCs exosomes in mitigating poor peri-implant bone regeneration of T2DM patients, offering insights into the molecular mechanisms of peripheral nerves governing bone regeneration in diabetic conditions.
Collapse
Affiliation(s)
- Yingying Wang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No.639 Zhizaoju Road, Shanghai, 200011, China
- College of Stomatology, Shanghai Jiao Tong University, No.639 Zhizaoju Road, Shanghai, 200011, China
- National Center for Stomatology and National Clinical Research Center for Oral Diseases, No.639 Zhizaoju Road, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, No.639 Zhizaoju Road, Shanghai, 200011, China
| | - Fang Qu
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No.639 Zhizaoju Road, Shanghai, 200011, China
- College of Stomatology, Shanghai Jiao Tong University, No.639 Zhizaoju Road, Shanghai, 200011, China
- National Center for Stomatology and National Clinical Research Center for Oral Diseases, No.639 Zhizaoju Road, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, No.639 Zhizaoju Road, Shanghai, 200011, China
| | - Yaqin Wu
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No.639 Zhizaoju Road, Shanghai, 200011, China
- College of Stomatology, Shanghai Jiao Tong University, No.639 Zhizaoju Road, Shanghai, 200011, China
- National Center for Stomatology and National Clinical Research Center for Oral Diseases, No.639 Zhizaoju Road, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, No.639 Zhizaoju Road, Shanghai, 200011, China
| | - Kengliang Lan
- College of Stomatology, Shanghai Jiao Tong University, No.639 Zhizaoju Road, Shanghai, 200011, China
- National Center for Stomatology and National Clinical Research Center for Oral Diseases, No.639 Zhizaoju Road, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, No.639 Zhizaoju Road, Shanghai, 200011, China
| | - Yingyi Shen
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No.639 Zhizaoju Road, Shanghai, 200011, China
- College of Stomatology, Shanghai Jiao Tong University, No.639 Zhizaoju Road, Shanghai, 200011, China
- National Center for Stomatology and National Clinical Research Center for Oral Diseases, No.639 Zhizaoju Road, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, No.639 Zhizaoju Road, Shanghai, 200011, China
| | - Ziang Wu
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No.639 Zhizaoju Road, Shanghai, 200011, China
- College of Stomatology, Shanghai Jiao Tong University, No.639 Zhizaoju Road, Shanghai, 200011, China
- National Center for Stomatology and National Clinical Research Center for Oral Diseases, No.639 Zhizaoju Road, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, No.639 Zhizaoju Road, Shanghai, 200011, China
| | - Qi Zhong
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No.639 Zhizaoju Road, Shanghai, 200011, China
- College of Stomatology, Shanghai Jiao Tong University, No.639 Zhizaoju Road, Shanghai, 200011, China
- National Center for Stomatology and National Clinical Research Center for Oral Diseases, No.639 Zhizaoju Road, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, No.639 Zhizaoju Road, Shanghai, 200011, China
| | - Ximeng Cao
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No.639 Zhizaoju Road, Shanghai, 200011, China
- College of Stomatology, Shanghai Jiao Tong University, No.639 Zhizaoju Road, Shanghai, 200011, China
- National Center for Stomatology and National Clinical Research Center for Oral Diseases, No.639 Zhizaoju Road, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, No.639 Zhizaoju Road, Shanghai, 200011, China
| | - Zhen Fan
- Department of Implantology, School & Hospital of Stomatology, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Tongji University, No.399 Middle Yanchang Road, Shanghai, 200072, China.
| | - Chun Xu
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No.639 Zhizaoju Road, Shanghai, 200011, China.
- College of Stomatology, Shanghai Jiao Tong University, No.639 Zhizaoju Road, Shanghai, 200011, China.
- National Center for Stomatology and National Clinical Research Center for Oral Diseases, No.639 Zhizaoju Road, Shanghai, 200011, China.
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, No.639 Zhizaoju Road, Shanghai, 200011, China.
| |
Collapse
|
2
|
Zhu B, Xu S, Zhang J, Xiang S, Hu Y. Rosmarinic acid mitigates intestinal inflammation and oxidative stress in bullfrogs (Lithobates catesbeiana) fed high soybean meal diets. FISH & SHELLFISH IMMUNOLOGY 2024; 150:109655. [PMID: 38796044 DOI: 10.1016/j.fsi.2024.109655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/05/2024] [Accepted: 05/23/2024] [Indexed: 05/28/2024]
Abstract
High proportions of soybean meal in aquafeed have been confirmed to induce various intestinal pathologies. This study aims to investigate the regulatory effects of rosmarinic acid (RA), an antioxidant with anti-inflammatory and antimicrobial properties, when added to high soybean meal feeds in different doses, (0, 0.5, 1, and 4 g/kg). During the 56-day feeding trial, results indicated that, compared to the control group without RA (0 g/kg), the 1 g/kg and 4 g/kg RA groups increased bullfrog survival rates and total weight gain while reducing feed coefficient. Additionally, these doses markedly suppressed the expression of key intestinal inflammatory markers (tlr5, myd88, tnfα, il1β, cxcl8, cxcl12) and the activity and content of intestinal antioxidants (CAT, MDA, GSH, GPX). Concurrently, RA significantly downregulated the transcription levels of antioxidant-related genes (cat, gpx5, cyba, cybb, mgst, gclc, gsta, gstp), suggesting RA's potential to alleviate intestinal inflammation and oxidative stress induced by high soybean meal and to help downregulate and restore normal expression of antioxidant enzyme genes. However, the 0.5 g/kg RA group did not show a significant improvement in survival rates; instead, it upregulated the transcription of some antioxidant genes (cat, gpx5, cyba, cybb), revealing the complexity and dose-dependency of RA's antioxidant action. Furthermore, RA supplementation significantly reshaped the intestinal microbial community structure and relative abundance in bullfrogs, particularly affecting the genera Hafnia, Phascolarctobacterium, and Lactococcus. Notably, high doses of RA (1 g/kg, 4 g/kg) were able to downregulate pathways associated with the enrichment of gut microbiota in diseases such as Parkinson's, Staphylococcus aureus infection, and Systemic lupus erythematosus, suggesting its potential in anti-inflammatory action and health maintenance to prevent potential diseases.
Collapse
Affiliation(s)
- Bo Zhu
- Fisheries College, Hunan Agricultural University, Changsha, Hunan, 410128, China; Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, Hunan, 410128, China.
| | - Shude Xu
- Fisheries College, Hunan Agricultural University, Changsha, Hunan, 410128, China; Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Junzhi Zhang
- Fisheries College, Hunan Agricultural University, Changsha, Hunan, 410128, China; Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Shuhui Xiang
- Fisheries College, Hunan Agricultural University, Changsha, Hunan, 410128, China; Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Yi Hu
- Fisheries College, Hunan Agricultural University, Changsha, Hunan, 410128, China; Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, Hunan, 410128, China.
| |
Collapse
|
3
|
Jin BR, Kim HJ, Na JH, Lee WK, An HJ. Targeting benign prostate hyperplasia treatments: AR/TGF-β/NOX4 inhibition by apocynin suppresses inflammation and proliferation. J Adv Res 2024; 57:135-147. [PMID: 37061215 PMCID: PMC10918329 DOI: 10.1016/j.jare.2023.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/19/2023] [Accepted: 04/10/2023] [Indexed: 04/17/2023] Open
Abstract
INTRODUCTION Apocynin (Apo), an NADPH oxidase (NOX) inhibitor, has been widely used to treat various inflammatory diseases. However, the therapeutic effects of Apo on benign prostatic hyperplasia (BPH), a multifactorial disease associated with chronic inflammation and hormone imbalance, remain unknown. OBJECTIVES The link between androgen signaling, reactive oxygen species (ROS), and prostate cell proliferation may contribute to the pathogenesis of BPH; therefore, the aim of this study was to identify the specific signaling pathway involved and to demonstrate whether the anti-oxidant Apo plays a role in the prevention and treatment of BPH. METHODS Ingenuity pathway analysis and si-RNA transfection were conducted to demonstrate the androgen receptor (AR) and NOX4 linkage in BPH. Pathological markers of BPH were measured by H&E staining, immunoblotting, ELISA, qRT-PCR, and immunofluorescence to examine the effect of Apo. Rats stimulated with testosterone and BPH-1 cells were used as BPH models. RESULTS AR and NOX4 network-mediated oxidative stress was upregulated in the BPH model. Next, we examined the effects of Apo on oxidative stress and chronic prostatic inflammation in BPH mouse models. In a testosterone-induced BPH rat model, Apo alleviated pathological prostate enlargement and suppressed androgen/AR signaling. Apo suppressed the upregulation of proinflammatory markers and promoted the expression of anti-oxidant factors. Furthermore, Apo regulated the TGF-β/Glut9/activin pathway and macrophage programming. In BPH-1 cells, Apo suppressed AR-mediated proliferation and upregulation of TGFB and NOX4 expression by alleviating oxidative stress. Apo activated anti-oxidant and anti-inflammatory systems and regulated macrophage polarization in BPH-1 cells. AR knockdown partially abolished the beneficial effects of Apo in prostate cells, indicating AR-dependent effects of Apo. CONCLUSION In contrast with existing BPH therapies, Apo may provide a new application for prostatic disease treatment, especially for BPH, by targeting the AR/TGF-β/NOX4 signaling pathway.
Collapse
Affiliation(s)
- Bo-Ram Jin
- Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea.
| | - Hyo-Jung Kim
- Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea.
| | - Jung-Hyun Na
- School of Biopharmaceutical and Medical Sciences, Sungshin Women's University, Seoul, Republic of Korea.
| | - Won-Kyu Lee
- New Drug Development Center, Osong Medical Innovation Foundation, Cheongju, Chungcheongbuk-do, 28160, Republic of Korea.
| | - Hyo-Jin An
- Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea; Department of Integrated Drug Development and Natural Products, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea.
| |
Collapse
|
4
|
Liu X, Hou Y, Yang M, Xin X, Deng Y, Fu R, Xiang X, Cao N, Liu X, Yu W, Yang B, Zhou Y. N-Acetyl-l-cysteine-Derived Carbonized Polymer Dots with ROS Scavenging via Keap1-Nrf2 Pathway Regulate Alveolar Bone Homeostasis in Periodontitis. Adv Healthc Mater 2023; 12:e2300890. [PMID: 37279380 DOI: 10.1002/adhm.202300890] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/30/2023] [Indexed: 06/08/2023]
Abstract
Periodontitis is a type of chronic inflammatory oral disease characterized by the destruction of periodontal connective tissue and progressive alveolar bone resorption. As oxidative stress is the key cause of periodontitis in the early periodontal microenvironment, antioxidative therapy has been considered a viable treatment for periodontitis. However, more stable and effective reactive oxygen species (ROS)-scavenging nanomedicines are still highly needed due to the instability of traditional antioxidants. Herein, a new type of N-acetyl-l-cysteine (NAC)-derived red fluorescent carbonized polymer dots (CPDs) has been synthesized with excellent biocompatibility, which can serve as an extracellular antioxidant to scavenge ROS effectively. Moreover, NAC-CPDs can promote osteogenic differentiation in human periodontal ligament cells (hPDLCs) under H2 O2 stimulation. In addition, NAC-CPDs are capable of targeted accumulation in alveolar bone in vivo, reducing the level of alveolar bone resorption in periodontitis mice, as well as performing fluorescence imaging in vitro and in vivo. In terms of mechanism, NAC-CPDs may regulate redox homeostasis and promote bone formation in the periodontitis microenvironment by modulating the kelch-like ECH-associated protein l (Keap1)/nuclear factor erythroid 2-related factor 2 (Nrf2) pathway. This study provides a new strategy for the application of CPDs theranostic nanoplatform for periodontitis.
Collapse
Affiliation(s)
- Xinchan Liu
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, P. R. China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, P. R. China
| | - Yubo Hou
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, P. R. China
- Department of Periodontology, Hospital of Stomatology, Jilin University, Changchun, 130021, P. R. China
| | - Mingxi Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun, 130021, P. R. China
| | - Xirui Xin
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, P. R. China
- Department of Periodontology, Hospital of Stomatology, Jilin University, Changchun, 130021, P. R. China
| | - Yu Deng
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, P. R. China
| | - Ruobing Fu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, P. R. China
| | - Xingchen Xiang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, P. R. China
- Department of Periodontology, Hospital of Stomatology, Jilin University, Changchun, 130021, P. R. China
| | - Niuben Cao
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, P. R. China
| | - Xiaomeng Liu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, P. R. China
| | - Weixian Yu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, P. R. China
- Department of Periodontology, Hospital of Stomatology, Jilin University, Changchun, 130021, P. R. China
| | - Bai Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun, 130021, P. R. China
| | - Yanmin Zhou
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, P. R. China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, P. R. China
| |
Collapse
|
5
|
Zhang Z, Cui S, Fu Y, Wang J, Liu J, Wei F. Mechanical force induces mitophagy-mediated anaerobic oxidation in periodontal ligament stem cells. Cell Mol Biol Lett 2023; 28:57. [PMID: 37480044 PMCID: PMC10362665 DOI: 10.1186/s11658-023-00453-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/18/2023] [Indexed: 07/23/2023] Open
Abstract
BACKGROUND The preference for glucose oxidative mode has crucial impacts on various physiological activities, including determining stem cell fate. External mechanical factors can play a decisive role in regulating critical metabolic enzymes and pathways of stem cells. Periodontal ligament stem cells (PDLSCs) are momentous effector cells that transform mechanical force into biological signals during the reconstruction of alveolar bone. However, mechanical stimuli-induced alteration of oxidative characteristics in PDLSCs and the underlying mechanisms have not been fully elucidated. METHODS Herein, we examined the expression of LDH and COX4 by qRT-PCR, western blot, immunohistochemistry and immunofluorescence. We detected metabolites of lactic acid and reactive oxygen species for functional tests. We used tetramethylrhodamine methyl ester (TMRM) staining and a transmission electron microscope to clarify the mitochondrial status. After using western blot and immunofluorescence to clarify the change of DRP1, we further examined MFF, PINK1, and PARKIN by western blot. We used cyclosporin A (CsA) to confirm the regulation of mitophagy and ceased the stretching as a rescue experiment. RESULTS Herein, we ascertained that mechanical force could increase the level of LDH and decrease the expression of COX4 in PDLSCs. Simultaneously, the yield of reactive oxygen species (ROS) in PDLSC reduced after stretching, while lactate acid augmented significantly. Furthermore, mitochondrial function in PDLSCs was negatively affected by impaired mitochondrial membrane potential (MMP) under mechanical force, and the augment of mitochondrial fission further induced PRKN-dependent mitophagy, which was confirmed by the rescue experiments via blocking mitophagy. As a reversible physiological stimulation, the anaerobic preference of PDLSCs altered by mechanical force could restore after the cessation of force stimulation. CONCLUSIONS Altogether, our study demonstrates that PDLSCs under mechanical force preferred anaerobic oxidation induced by the affected mitochondrial dynamics, especially mitophagy. Our findings support an association between mechanical stimulation and the oxidative profile of stem cells, which may shed light on the mechanical guidance of stem cell maintenance and commitment, and lay a molecular foundation for periodontal tissue regeneration.
Collapse
Affiliation(s)
- Zijie Zhang
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Shandong University Cheeloo College of Medicine, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China
| | - Shuyue Cui
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Shandong University Cheeloo College of Medicine, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China
| | - Yajing Fu
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Shandong University Cheeloo College of Medicine, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China
| | - Jixiao Wang
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Shandong University Cheeloo College of Medicine, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China
| | - Jiani Liu
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Shandong University Cheeloo College of Medicine, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China
| | - Fulan Wei
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Shandong University Cheeloo College of Medicine, No.44-1 Wenhua Road West, Jinan, 250012, Shandong, China.
| |
Collapse
|
6
|
Wu Y, Qu F, Zhang Y, Song Y, Zhong Q, Huang Y, Wang Y, Cao X, Fan Z, Xu C. Exosomes from Cyclic Stretched Periodontal Ligament Cells Induced Periodontal Inflammation through miR-9-5p/SIRT1/NF-κB Signaling Pathway. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:2001-2015. [PMID: 37154707 DOI: 10.4049/jimmunol.2300074] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/10/2023] [Indexed: 05/10/2023]
Abstract
Abundant evidence demonstrates that mechanical stress could induce an inflammatory response in periodontal tissue, but the precise mechanism remains unclear. In the past few years, periodontal ligament cells (PDLCs), as the most force-sensitive cells, have been investigated in depth as local immune cells, associated with activation of inflammasomes and secretion of inflammatory cytokines in response to mechanical stimuli. However, this study innovatively inspected the effect of PDLCs on the other immune cells after stretch loading to reveal the detailed mechanism by which mechanical stimuli initiate immunoreaction in periodontium. In the present study, we found that cyclic stretch could stimulate human PDLCs to secret exosomes and that these exosomes could further induce the increase of phagocytic cells in the periodontium in Sprague-Dawley rats and the M1 polarization of the cultured macrophages (including the mouse macrophage cell line RAW264.7 and the bone marrow-derived macrophages from C57BL/6 mice). Furthermore, the exosomal miR-9-5p was detected to be overexpressed after mechanical stimuli in both in vivo and in vitro experiments and could trigger M1 polarization via the SIRT1/NF-κB signaling pathway in the cultured macrophages. In summary, this study revealed that PDLCs could transmit the mechanobiological signals to immune cells by releasing exosomes and simultaneously enhance periodontal inflammation through the miR-9-5p/SIRT1/NF-κB pathway. We hope that our research can improve understanding of force-related periodontal inflammatory diseases and lead to new targets for treatment.
Collapse
Affiliation(s)
- Yaqin Wu
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology and National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Fang Qu
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology and National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Yifan Zhang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology and National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Yingshuang Song
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology and National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Qi Zhong
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology and National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Yujie Huang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology and National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Yingying Wang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology and National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Ximeng Cao
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology and National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Zhen Fan
- Department of Implantology, School & Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Chun Xu
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology and National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| |
Collapse
|
7
|
Huang YY, Wu JM, Wu WT, Lin JW, Liang YT, Hong ZZ, Jia XZ, Liu DM. Structural, antioxidant, and immunomodulatory activities of an acidic exopolysaccharide from Lactiplantibacillus plantarum DMDL 9010. Front Nutr 2022; 9:1073071. [PMID: 36570157 PMCID: PMC9779943 DOI: 10.3389/fnut.2022.1073071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/24/2022] [Indexed: 12/13/2022] Open
Abstract
This study investigated the structural, antioxidant, and immunomodulatory activities of acidic exopolysaccharide (EPS-LP2) isolated from Lactiplantibacillus plantarum DMDL 9010. EPS-LP2 is composed of fucose (Fuc), arabinose (Ara), galactose (Gal), glucose (Glc), mannose (Man), and D-fructose (Fru) with a molar ratio of 0.13: 0.69: 8.32: 27.57: 62.07: 0.58: 0.46, respectively. Structural analysis of EPS-LP2 exhibited a smooth irregular lamellar surface, rod-like structure with swollen ends and slippery surfaces, and good thermal stability. Based on the methylation and NMR analysis, sugar residues including t-Manp, t-Glcp, 2-Manp, 6-Galp, 6-Glcp, and 4-Glcp were found to exist in EPS-LP2. In the 50∼400 μg/ml range, EPS-LP2 showed negligible neurotoxicity to RAW264.7 cells. Moreover, EPS-LP2 could protect RAW264.7 cells from oxidative injury by lowering the generation of reactive oxygen species (ROS), malondialdehyde (MDA), and the secretion of lactate dehydrogenase (LDH). In contrast, an increase in superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), and the concentrations of glutathione (GSH) were observed. Immunoreactivity assays showed that EPS-LP2 could suppress the expression of NO, tumor necrosis factor-α (TNF-α), and interleukin 6 (IL-6) and inhibit the activation of the mitogen-activated protein kinase (MAPK)/nuclear factor-κB-gene binding (NF-κB) cell pathway. Conclusively, EPS-LP2 could be a potential natural antioxidant and immunomodulatory agent in functional foods and medicines.
Collapse
Affiliation(s)
- Yan-yan Huang
- College of Food Science and Engineering, Foshan University, Foshan, Guangdong, China,Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan, Guangdong, China
| | - Jia-min Wu
- College of Food Science and Engineering, Foshan University, Foshan, Guangdong, China,Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan, Guangdong, China
| | - Wei-tong Wu
- College of Food Science and Engineering, Foshan University, Foshan, Guangdong, China,Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan, Guangdong, China
| | - Jia-wei Lin
- College of Food Science and Engineering, Foshan University, Foshan, Guangdong, China,Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan, Guangdong, China
| | - Yan-tong Liang
- College of Food Science and Engineering, Foshan University, Foshan, Guangdong, China,Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan, Guangdong, China
| | - Zhen-zhen Hong
- College of Food Science and Engineering, Foshan University, Foshan, Guangdong, China,Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan, Guangdong, China
| | - Xiang-ze Jia
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong, China
| | - Dong-mei Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong, China,*Correspondence: Dong-mei Liu,
| |
Collapse
|
8
|
Zheng Q, Chen J, Yuan Y, Zhang X, Li L, Zhai Y, Gong X, Li B. Structural characterization, antioxidant, and anti-inflammatory activity of polysaccharides from Plumula Nelumbinis. Int J Biol Macromol 2022; 212:111-122. [PMID: 35594937 DOI: 10.1016/j.ijbiomac.2022.05.097] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/06/2022] [Accepted: 05/11/2022] [Indexed: 12/18/2022]
Abstract
A polysaccharide from Plumula Nelumbinis (PNP), was isolated and purified. PNP had a molecular weight of 450 kDa and consisted five monosaccharides, including rhamnose, galacturonic acid, xylose, galactose, and arabinose. The methylation and nuclear magnetic resonance (NMR) analysis revealed that the main glycosidic linkage types of PNP were →5)-α-L-Araf-(1→, →3)-β-D-Galp-(1→, β-D-Xylp-(→1, →3,4)-β-D-Rhap-(1→, →4)-β-D-GalpA-(1→. In the range of 25-1200 μg/mL, PNP had no cytotoxicity to RAW264.7 cells. PNP could protect RAW264.7 cell from oxidative damage by reducing the production of ROS and MDA and the secretion of LDH, enhancing the activity of SOD, CAT, and GSH-Px, and increasing the content of GSH. Anti-inflammatory activity experiments showed that PNP inhibited the expression of NO, TNF-α, INF-γ, IL-1β, and IL-6. PNP could inhibit the activation of MAPK/NF-κB cell pathways. PNP could be used as a potential natural antioxidant and anti-inflammatory substance in functional foods and pharmaceuticals.
Collapse
Affiliation(s)
- Qingsong Zheng
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Ministry of Education Engineering Research Center of Starch & Protein Processing, South China University of Technology, Guangzhou 510640, China
| | - Juncheng Chen
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Ministry of Education Engineering Research Center of Starch & Protein Processing, South China University of Technology, Guangzhou 510640, China
| | - Yi Yuan
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Ministry of Education Engineering Research Center of Starch & Protein Processing, South China University of Technology, Guangzhou 510640, China
| | - Xia Zhang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Ministry of Education Engineering Research Center of Starch & Protein Processing, South China University of Technology, Guangzhou 510640, China
| | - Lin Li
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Ministry of Education Engineering Research Center of Starch & Protein Processing, South China University of Technology, Guangzhou 510640, China; School of Chemical Engineering and Energy Technology, Dongguan University of Technology, College Road 1, Dongguan, 523808, China
| | - Yongzhen Zhai
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Ministry of Education Engineering Research Center of Starch & Protein Processing, South China University of Technology, Guangzhou 510640, China
| | - Xiao Gong
- Agricultural Product Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China.
| | - Bing Li
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Ministry of Education Engineering Research Center of Starch & Protein Processing, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
9
|
Lee JH, Lee YY, Lee J, Jang YJ, Jang HW. Chemical Composition, Antioxidant, and Anti-Inflammatory Activity of Essential Oil from Omija ( Schisandra chinensis (Turcz.) Baill.) Produced by Supercritical Fluid Extraction Using CO 2. Foods 2021; 10:foods10071619. [PMID: 34359489 PMCID: PMC8304754 DOI: 10.3390/foods10071619] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 12/18/2022] Open
Abstract
Schisandra chinensis (Turcz.) Baill., which is known as omija in South Korea, is mainly cultivated in East Asia. The present study aimed to investigate the chemical composition of essential oil from the omija (OMEO) fruit obtained by supercritical fluid extraction using CO2 and to confirm the antioxidant and anti-inflammatory activity of OMEO using HaCaT human keratinocyte and RAW 264.7 murine macrophages. As a result of the chemical composition analysis of OMEO using gas chromatography-mass spectrometry, a total of 41 compounds were identified. The detailed analysis results are sesquiterpenoids (16), monoterpenoids (14), ketones (4), alcohols (3), aldehydes (2), acids (1), and aromatic hydrocarbons (1). OMEO significantly reduced the increased ROS levels in HaCaT keratinocytes induced by UV-B irradiation (p < 0.05). It was confirmed that 5 compounds (α-pinene, camphene, β-myrcene, 2-nonanone, and nerolidol) present in OMEO exhibited inhibitory activity on ROS production. Furthermore, OMEO showed excellent anti-inflammatory activity in RAW 264.7 macrophages induced by lipopolysaccharide. OMEO effectively inhibited NO production (p < 0.05) by suppressing the expression of the iNOS protein. Finally, OMEO was investigated for exhibition of anti-inflammatory activity by inhibiting the activation of NF-κB pathway. Taken together, OMEO could be used as a functional food ingredient with excellent antioxidant and anti-inflammatory activity.
Collapse
Affiliation(s)
- Jae-Hoon Lee
- Korea Food Research Institute, 245 Nongsaengmyeong-ro, Iseo-myeon, Wanju-Gun, Jeollabuk-do 55365, Korea
| | - Yun-Yeol Lee
- Korea Food Research Institute, 245 Nongsaengmyeong-ro, Iseo-myeon, Wanju-Gun, Jeollabuk-do 55365, Korea
| | - Jangho Lee
- Korea Food Research Institute, 245 Nongsaengmyeong-ro, Iseo-myeon, Wanju-Gun, Jeollabuk-do 55365, Korea
| | - Young-Jin Jang
- Major of Food Science & Technology, Seoul Women's University, Seoul 01797, Korea
| | - Hae-Won Jang
- Department of Food Science and Biotechnology, Sungshin Women's University, Seoul 01133, Korea
| |
Collapse
|