1
|
Liang G, Gao C, Wu J, Hu G, Li X, Liu L. Enhancing electron transfer efficiency in microbial electrochemical systems for bioelectricity and chemical production. BIORESOURCE TECHNOLOGY 2025; 428:132445. [PMID: 40147568 DOI: 10.1016/j.biortech.2025.132445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 03/23/2025] [Accepted: 03/23/2025] [Indexed: 03/29/2025]
Abstract
Microbial electrochemical systems have emerged as promising platforms for chemical production and bioelectricity generation by utilizing cost-effective substrates. However, their performance is limited by the efficiency of both intracellular and extracellular electron transfer. This review systematically summarizes strategies to enhance electron transfer from a microbial perspective, including improvements in extracellular electron transfer, intracellular electron regeneration, and the establishment of electroactive microbial consortia. In addition, the working mechanisms and limitations of these strategies are analyzed. Furthermore, the potential applications of microbial electrochemical systems in bioelectricity production, chemical synthesis, and industrial-scale applications are explored. Finally, the current challenges of microbial electrochemical systems are discussed, and potential solutions are proposed to advance their practical applications.
Collapse
Affiliation(s)
- Guangjie Liang
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Cong Gao
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China.
| | - Jing Wu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China.
| | - Guipeng Hu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China.
| | - Xiaomin Li
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China.
| | - Liming Liu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
2
|
Zou R, Rezaei B, Keller SS, Zhang Y. Advancing Microbial Electrochemical H 2O 2 Synthesis by Tailoring the Surface Chemistry of Stereolithography-Derived 3D Pyrolytic Carbon Electrodes. ACS ENVIRONMENTAL AU 2024; 4:344-353. [PMID: 39582757 PMCID: PMC11583100 DOI: 10.1021/acsenvironau.4c00067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 11/26/2024]
Abstract
Microbial electrosynthesis of H2O2 offers an economical and eco-friendly alternative to the costly and environmentally detrimental anthraquinone process. Three-dimensional (3D) electrodes fabricated through additive manufacturing demonstrate significant advantages over carbon electrodes with two-dimensional (2D) surfaces in microbial electrosynthesis of H2O2. Nevertheless, the presence of oxygen-containing free acidic groups on the prototype electrode surface imparts hydrophilic properties to the electrode, which affects the efficiency of the two-electron oxygen reduction reaction for H2O2 generation. In this study, we elucidated that the efficiency of microbial H2O2 synthesis is markedly enhanced by utilizing oxygen-free 3D electrodes produced via additive manufacturing techniques followed by surface modifications to eradicate oxygen-containing functional groups. These oxygen-free 3D electrodes exhibit superior hydrophobicity compared to traditional carbon electrodes with 2D surfaces and their 3D printed analogues. The oxygen-free 3D electrode is capable of generating up to 130.2 mg L-1 of H2O2 within a 6-h time frame, which is 2.4 to 13.6 times more effective than conventional electrodes (such as graphite plates) and pristine 3D printed electrodes. Additionally, the reusability of the oxygen-free 3D electrode underscores its practical viability for large-scale applications. Furthermore, this investigation explored the role of the oxygen-free 3D electrode in the bioelectro-Fenton process, affirming its efficacy as a tertiary treatment technology for the elimination of micropollutants. This dual functionality accentuates the versatility of the oxygen-free 3D electrode in facilitating both the synthesis of valuable chemicals and advancing environmental remediation. This research introduces an innovative electrode design that fosters efficient and sustainable H2O2 synthesis while concurrently enabling subsequent environmental restoration.
Collapse
Affiliation(s)
- Rusen Zou
- Department
of Environmental & Resource Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Babak Rezaei
- National
Centre for Nano Fabrication and Characterization, DTU Nanolab, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Stephan Sylvest Keller
- National
Centre for Nano Fabrication and Characterization, DTU Nanolab, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Yifeng Zhang
- Department
of Environmental & Resource Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| |
Collapse
|
3
|
Olvera-Vargas H, Trellu C, Nidheesh PV, Mousset E, Ganiyu SO, Martínez-Huitle CA, Zhou M, Oturan MA. Challenges and opportunities for large-scale applications of the electro-Fenton process. WATER RESEARCH 2024; 266:122430. [PMID: 39278119 DOI: 10.1016/j.watres.2024.122430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 09/07/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024]
Abstract
As an electrochemical advanced oxidation process, the electro-Fenton (EF) process has gained significant importance in the treatment of wastewater and persistent organic pollutants in recent years. As recently reported in a bibliometric analysis, the number of scientific publications on EF have increased exponentially since 2002, reaching nearly 500 articles published in 2022 (Deng et al., 2022). The influence of the main operating parameters has been thoroughly investigated for optimization purposes, such as type of electrode materials, reactor design, current density, and type and concentration of catalyst. Even though most of the studies have been conducted at a laboratory scale, focusing on fundamental aspects and their applications to degrade specific pollutants and treat real wastewater, important large-scale attempts have also been made. This review presents and discusses the most recent advances of the EF process with special emphasis on the aspects more closely related to future implementations at the large scale, such as applications to treat real effluents (industrial and municipal wastewaters) and soil remediation, development of large-scale reactors, costs and effectiveness evaluation, and life cycle assessment. Opportunities and perspectives related to the heterogeneous EF process for real applications are also discussed. This review article aims to be a critical and exhaustive overview of the most recent developments for large-scale applications, which seeks to arouse the interest of a large scientific community and boost the development of EF systems in real environments.
Collapse
Affiliation(s)
- Hugo Olvera-Vargas
- Instituto de Energías Renovables, Universidad Nacional Autónoma de México (IER-UNAM), Morelos 62580, Mexico.
| | - Clément Trellu
- Laboratoire Géomatériaux et Environnement EA 4508, Université Gustave Eiffel, Cedex 2, Marne-la-Vallée 77454, France.
| | | | - Emmanuel Mousset
- Nantes Université, ONIRIS, CNRS, GEPEA, UMR 6144, F-85000 La Roche-sur-Yon, France
| | - Soliu O Ganiyu
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton AB, T6G 2W2, Canada
| | - Carlos A Martínez-Huitle
- Institute of Chemistry, Federal University of Rio Grande do Norte, Lagoa Nova, CEP, Natal, RN 59078-970, Brazil
| | - Minghua Zhou
- Nankai University, College of Environmental Science and Engineering, Tianjin 300350, China
| | - Mehmet A Oturan
- Laboratoire Géomatériaux et Environnement EA 4508, Université Gustave Eiffel, Cedex 2, Marne-la-Vallée 77454, France.
| |
Collapse
|
4
|
Zou R, Yang W, Rezaei B, Tang K, Zhang P, Andersen HR, Sylvest Keller S, Zhang Y. Sustainable bioelectric activation of periodate for highly efficient micropollutant abatement. WATER RESEARCH 2024; 254:121388. [PMID: 38430759 DOI: 10.1016/j.watres.2024.121388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/17/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024]
Abstract
The periodate (PI)-based advanced oxidation process is valued for environmental remediation, but current activation methods involve high costs, secondary contamination risks, and limited applicability due to external energy inputs (e.g., UV), catalyst incorporation (e.g., Fe2+), or environmental modifications (e.g., freezing). In this work, novel bioelectric activation of PI using the electrons generated by electroactive bacteria was developed and investigated for rapid removal of carbamazepine (CBZ), achieving 100 %, 100 %, and 76 % removal efficiency for 4.22 µM of CBZ in 20 min at pH 2, 120 min at pH 6.4, and HRT of 30 min at pH 8.5, respectively, with a 1 mM PI dose and without an input voltage. It was deduced that electrons derived from bacteria could directly activate PI using Ti mesh electrodes and generate •IO3 via single electron transfer under strongly acidic conditions (e.g., pH 2). Nevertheless, under weak alkaline conditions (e.g., pH 8.5), biogenic electrons indirectly activated PI by generating OH-via 4e-reduction at the Ti mesh cathode, resulting in the formation of •O2- and 1O2. In addition to the metal cathode, a carbon-based cathode finely modulates the 2e-reduction, yielding H2O2 and activating PI to mainly form •OH. Moreover, primarily non-toxic IO3- was produced during treatment, while no detectable reactive iodine species (HOI, I2, and I3-) were observed. Furthermore, the bioelectric activation of PI demonstrated its capability to remove various micropollutants present in secondary-treated municipal wastewater, showcasing its broad-spectrum degradation ability. This study introduces a novel, cost-effective, and environmentally friendly PI activation technique with promising applicability for micropollutant elimination in water treatment.
Collapse
Affiliation(s)
- Rusen Zou
- Department of Environmental & Resource Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Wenqiang Yang
- Department of Physics, Technical University of Denmark, Lyngby, DK 2800, Denmark
| | - Babak Rezaei
- National Centre for Nano Fabrication and Characterization, DTU Nanolab, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Kai Tang
- Department of Environmental & Resource Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Pingping Zhang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Henrik Rasmus Andersen
- Department of Environmental & Resource Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Stephan Sylvest Keller
- National Centre for Nano Fabrication and Characterization, DTU Nanolab, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Yifeng Zhang
- Department of Environmental & Resource Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark.
| |
Collapse
|
5
|
Zou R, Rezaei B, Keller SS, Zhang Y. Additive manufacturing-derived free-standing 3D pyrolytic carbon electrodes for sustainable microbial electrochemical production of H 2O 2. JOURNAL OF HAZARDOUS MATERIALS 2024; 467:133681. [PMID: 38341891 DOI: 10.1016/j.jhazmat.2024.133681] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/24/2024] [Accepted: 01/30/2024] [Indexed: 02/13/2024]
Abstract
Producing H2O2 via microbial electrosynthesis is a cost-effective and environmentally favorable alternative to the costly and environmentally hazardous anthraquinone method. However, most studies have relied on carbon electrodes with two-dimensional (2D) surfaces (e.g., graphite), which have limited surface area and active sites, resulting in suboptimal H2O2 production. In this study, we demonstrate the enhanced efficiency of microbial H2O2 synthesis using three-dimensional (3D) electrodes produced through additive manufacturing technology due to their larger surface area than conventional carbon electrodes with 2D surfaces. This work innovatively combines 3D printed pyrolytic carbon (3D PyrC) electrodes with highly defined outer geometry and internal mesh structures derived from additive manufacturing with high-temperature resin precursors followed by pyrolysis with microbial electrochemical platform technology to achieve efficient H2O2 synthesis. The 3D PyrC electrode produced a maximum of 129.2 mg L-1 of H2O2 in 12 h, which was 2.3-6.9 times greater than conventional electrodes (e.g., graphite and carbon felt). Furthermore, the scalability, reusability and mechanical properties of the 3D PyrC electrode were exemplary, showcasing its practical viability for large-scale applications. Beyond H2O2 synthesis, the study explored the application of the 3D PyrC electrode in the bio-electro-Fenton process, demonstrating its efficacy as a tertiary treatment technology for the removal of micropollutants. This dual functionality underscores the versatility of the 3D PyrC electrode in addressing both the synthesis of valuable chemicals and environmental remediation. This study shows a novel electrode design for efficient, sustainable synthesis of H2O2 and subsequent environmental remediation.
Collapse
Affiliation(s)
- Rusen Zou
- Department of Environmental & Resource Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Babak Rezaei
- National Centre for Nano Fabrication and Characterization, DTU Nanolab, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Stephan Sylvest Keller
- National Centre for Nano Fabrication and Characterization, DTU Nanolab, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Yifeng Zhang
- Department of Environmental & Resource Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
6
|
Fathima A, Ilankoon IMSK, Zhang Y, Chong MN. Scaling up of dual-chamber microbial electrochemical systems - An appraisal using systems design approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169186. [PMID: 38086487 DOI: 10.1016/j.scitotenv.2023.169186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 01/18/2024]
Abstract
Impetus to minimise the energy and carbon footprints of evolving wastewater resource recovery facilities has promoted the development of microbial electrochemical systems (MES) as an emerging energy-neutral and sustainable platform technology. Using separators in dual-chamber MES to isolate anodic and cathodic environments creates endless opportunities for its myriad applications. Nevertheless, the high internal resistance and the complex interdependencies among various system factors have challenged its scale-up. This critical review employed a systems approach to examine the complex interdependencies and practical issues surrounding the implementation and scalability of dual-chamber MES, where the anodic and cathodic reactions are mutually appraised to improve the overall system efficiency. The robustness and stability of anodic biofilms in large-volume MES is dependent on its inoculum source, antecedent history and enrichment strategies. The composition and anode-respiring activity of these biofilms are modulated by the anolyte composition, while their performance demands a delicate balance between the electrode size, macrostructure and the availability of substrates, buffers and nutrients when using real wastewater as anolyte. Additionally, the catholyte governed the reduction environment and associated energy consumption of MES with scalable electrocatalysts needed to enhance the sluggish reaction kinetics for energy-efficient resource recovery. A comprehensive assessment of the dual-chamber reactor configuration revealed that the tubular, spiral-wound, or plug-in modular MES configurations are suitable for pilot-scale, where it could be designed more effectively using efficient electrode macrostructure, suitable membranes and bespoke strategies for continuous operation to maximise their performance. It is anticipated that the critical and analytical understanding gained through this review will support the continuous development and scaling-up of dual-chamber MES for prospective energy-neutral treatment of wastewater and simultaneous circular management of highly relevant environmental resources.
Collapse
Affiliation(s)
- Arshia Fathima
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - I M S K Ilankoon
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Yifeng Zhang
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Meng Nan Chong
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
7
|
Ibrahim I, Salehmin MNI, Balachandran K, Hil Me MF, Loh KS, Abu Bakar MH, Jong BC, Lim SS. Role of microbial electrosynthesis system in CO 2 capture and conversion: a recent advancement toward cathode development. Front Microbiol 2023; 14:1192187. [PMID: 37520357 PMCID: PMC10379653 DOI: 10.3389/fmicb.2023.1192187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/26/2023] [Indexed: 08/01/2023] Open
Abstract
Microbial electrosynthesis (MES) is an emerging electrochemical technology currently being researched as a CO2 sequestration method to address climate change. MES can convert CO2 from pollution or waste materials into various carbon compounds with low energy requirements using electrogenic microbes as biocatalysts. However, the critical component in this technology, the cathode, still needs to perform more effectively than other conventional CO2 reduction methods because of poor selectivity, complex metabolism pathways of microbes, and high material cost. These characteristics lead to the weak interactions of microbes and cathode electrocatalytic activities. These approaches range from cathode modification using conventional engineering approaches to new fabrication methods. Aside from cathode development, the operating procedure also plays a critical function and strategy to optimize electrosynthesis production in reducing operating costs, such as hybridization and integration of MES. If this technology could be realized, it would offer a new way to utilize excess CO2 from industries and generate profitable commodities in the future to replace fossil fuel-derived products. In recent years, several potential approaches have been tested and studied to boost the capabilities of CO2-reducing bio-cathodes regarding surface morphology, current density, and biocompatibility, which would be further elaborated. This compilation aims to showcase that the achievements of MES have significantly improved and the future direction this is going with some recommendations. Highlights - MES approach in carbon sequestration using the biotic component.- The role of microbes as biocatalysts in MES and their metabolic pathways are discussed.- Methods and materials used to modify biocathode for enhancing CO2 reduction are presented.
Collapse
Affiliation(s)
- Irwan Ibrahim
- Fuel Cell Institute, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | - Mohd Nur Ikhmal Salehmin
- Institute of Sustainable Energy (ISE), Universiti Tenaga Nasional (UNITEN), Putrajaya Campus, Kajang, Malaysia
| | | | | | - Kee Shyuan Loh
- Fuel Cell Institute, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | | | - Bor Chyan Jong
- Agrotechnology and Bioscience Division, Malaysian Nuclear Agency, Kajang, Malaysia
| | - Swee Su Lim
- Fuel Cell Institute, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| |
Collapse
|
8
|
Deng F, Yang S, Jing B, Qiu S. Activated carbon filled in a microporous titanium-foam air diffusion electrode for boosting H 2O 2 accumulation. CHEMOSPHERE 2023; 321:138147. [PMID: 36796525 DOI: 10.1016/j.chemosphere.2023.138147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 01/05/2023] [Accepted: 02/12/2023] [Indexed: 06/18/2023]
Abstract
In the electro-Fenton process, there still suffers concern of low H2O2 generation caused by inadequate mass transfer of oxygen and low selectivity of oxygen reduction reaction (ORR). To solve it, in this study, various particle sizes (850 μm, 150 μm, and 75 μm) of granular activated carbon filled in a microporous titanium-foam substate was used to develop a gas diffusion electrode (AC@Ti-F GDE). This facile-prepared cathode has seen a 176.15% improvement in H2O2 formation compared to the conventional one. Aside from a much higher oxygen mass transfer by creating gas-liquid-solid three-phase interfaces coupled with much high dissolved oxygen, the filled AC played a significant role in H2O2 accumulation. Among these particle sizes of AC, the one in 850 μm has observed the highest H2O2 accumulation, reaching 1487 μM in 2 h electrolysis. Because there is a balance between chemical nature for H2O2 formation and micropore-dominant porous structure for H2O2 decomposition, resulting in an electron transfer of 2.12 and H2O2 selectivity of 96.79% during ORR. In a word, the facial AC@Ti-F GDE configuration is promising for H2O2 accumulation.
Collapse
Affiliation(s)
- Fengxia Deng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China.
| | - Shilin Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Baojian Jing
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Shan Qiu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China.
| |
Collapse
|
9
|
A hybrid subnano cluster electrocatalysis process for recalcitrant wastewater treatment. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
10
|
Jadhav DA, Chendake AD, Vinayak V, Atabani A, Ali Abdelkareem M, Chae KJ. Scale-up of the bioelectrochemical system: Strategic perspectives and normalization of performance indices. BIORESOURCE TECHNOLOGY 2022; 363:127935. [PMID: 36100187 DOI: 10.1016/j.biortech.2022.127935] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/03/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
Electrochemists and ecological engineers find environmental bioelectrochemistry appealing; however, there is a big gap between expectations and actual progress in bioelectrochemical system (BES). Implementing such technology opens new opportunities for novel electrochemical reactions for resource recovery and effective wastewater treatment. Loopholes of BES exist in its scaling-up applications, and numerous attempts toward practical applications (200, 1000, and 1500 L) are key successive indicators toward its commercialization. This review emphasized the critical rethinking of standardization of performance indices i.e. current generation (A/m2), net energy recovery (kWh/kg·COD), product/resource yield (mM), and economic feasibility ($/kWh) to make fair comparison with the existing treatment system. Therefore, directional perspectives, including modularity, energy-cost balance, energy and resource recovery, have been proposed for the sustainable market of BES. The current state of the art and up-gradation in resource recovery and contaminant removal warrants a systematic rethinking of functional worth and niches of BES for practical applications.
Collapse
Affiliation(s)
- Dipak A Jadhav
- Department of Environmental Engineering, College of Ocean Science and Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea
| | - Ashvini D Chendake
- Department of Agricultural Engineering, Maharashtra Institute of Technology, Aurangabad, Maharashtra 431010, India
| | - Vandana Vinayak
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar, Madhya Pradesh 470003, India
| | - Abdulaziz Atabani
- Alternative Fuels Research Laboratory (AFRL), Energy Division, Department of Mechanical Engineering, Erciyes University, Turkey
| | - Mohammad Ali Abdelkareem
- Department of Sustainable and Renewable Energy Engineering, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates; Center for Advanced Materials Research, University of Sharjah, 27272 Sharjah, United Arab Emirates; Chemical Engineering Department, Faculty of Engineering, Minia University, AlMinya, Egypt
| | - Kyu-Jung Chae
- Department of Environmental Engineering, College of Ocean Science and Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea; Interdisciplinary Major of Ocean Renewable Energy Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, Republic of Korea.
| |
Collapse
|
11
|
Wang G, Jiang Y, Tang K, Zhang Y, Andersen HR. Efficient recovery of dissolved Fe(II) from near neutral pH Fenton via microbial electrolysis. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129196. [PMID: 35739726 DOI: 10.1016/j.jhazmat.2022.129196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
Fe(II) regeneration from ferric sludge via a biocathode and citrate system has recently been proposed to avoid iron-sludge accumulation and iron consumption in homogeneous Fenton treatments. However, poor regeneration rate of Fe(II) from ferric sludge at a near-neutral pH, without an iron-complexing agent, limited its wider practical application. Here, a biocathode augmented with Geobacter sulfurreducens hosted by a microbial electrolysis cell was developed to efficiently regenerate dissolved Fe(II) from ferric sludge at near-neutral pH levels, without using iron-complexing agents. In the Geobacter sulfurreducens-rich biocathode without complexing agents, the regeneration rate of dissolved Fe(II) increased three-fold compared with the biocathode before inoculating Geobacter sulfurreducens. The highest concentration of dissolved Fe(II) increased from 45 mg Fe/L to 199 mg Fe/L at pH 6 when 0.5 V of voltage was applied. Furthermore, 84 mg Fe/L of dissolved Fe(II) was successfully regenerated from ferric sludge during the 123 days' operation of flow-through biocathode. Finally, the regenerated Fe(II) solution without organic matters was successfully applied in a near-neutral pH Fenton treatment to remove recalcitrant pollutants. This Geobacter sulfurreducens-rich biocathode, with its low chemical consumption, high regeneration rate and feasibility for continuous flow operation, offers a more efficient method to realize iron-free in homogeneous Fenton treatments.
Collapse
Affiliation(s)
- Guan Wang
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Yufeng Jiang
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Kai Tang
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Yifeng Zhang
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark.
| | - Henrik Rasmus Andersen
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| |
Collapse
|
12
|
Microbial Electrolysis Cell as a Diverse Technology: Overview of Prospective Applications, Advancements, and Challenges. ENERGIES 2022. [DOI: 10.3390/en15072611] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Microbial electrolysis cells (MECs) have been explored for various applications, including the removal of industrial pollutants, wastewater treatment chemical synthesis, and biosensing. On the other hand, MEC technology is still in its early stages and faces significant obstacles regarding practical large-scale implementations. MECs are used for energy generation and hydrogen peroxide, methane, hydrogen/biohydrogen production, and pollutant removal. This review aimed to investigate the aforementioned uses in order to better understand the different applications of MECs in the following scenarios: MECs for energy generation and recycling, such as hydrogen, methane, and hydrogen peroxide; contaminant removal, particularly complex organic and inorganic contaminants; and resource recovery. MEC technology was examined in terms of new concepts, configuration optimization, electron transfer pathways in biocathodes, and coupling with other technologies for value-added applications, such as MEC anaerobic digestion, combined MEC–MFC, and others. The goal of the review was to help researchers and engineers understand the most recent developments in MEC technologies and applications.
Collapse
|
13
|
Wu R, Yu YY, Wang Y, Wang YZ, Song H, Ma C, Qu G, You C, Sun Z, Zhang W, Li A, Li CM, Yong YC, Zhu Z. Wastewater-powered high-value chemical synthesis in a hybrid bioelectrochemical system. iScience 2021; 24:103401. [PMID: 34841233 PMCID: PMC8605441 DOI: 10.1016/j.isci.2021.103401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/22/2021] [Accepted: 11/02/2021] [Indexed: 11/25/2022] Open
Abstract
A microbial electrochemical system could potentially be applied as a biosynthesis platform by extracting wastewater energy while converting it to value-added chemicals. However, the unfavorable thermodynamics and sluggish kinetics of in vivo whole-cell cathodic catalysis largely limit product diversity and value. Herein, we convert the in vivo cathodic reaction to in vitro enzymatic catalysis and develop a microbe-enzyme hybrid bioelectrochemical system (BES), where microbes release the electricity from wastewater (anode) to power enzymatic catalysis (cathode). Three representative examples for the synthesis of pharmaceutically relevant compounds, including halofunctionalized oleic acid based on a cascade reaction, (4-chlorophenyl)-(pyridin-2-yl)-methanol based on electrochemical cofactor regeneration, and l-3,4-dihydroxyphenylalanine based on electrochemical reduction, were demonstrated. According to the techno-economic analysis, this system could deliver high system profit, opening an avenue to a potentially viable wastewater-to-profit process while shedding scientific light on hybrid BES mechanisms toward a sustainable reuse of wastewater.
Collapse
Affiliation(s)
- Ranran Wu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, P.R. China
| | - Yang-Yang Yu
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, P.R. China
| | - Yuanming Wang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, P.R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing, 100049, P.R. China
| | - Yan-Zhai Wang
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, P.R. China
| | - Haiyan Song
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, P.R. China
| | - Chunling Ma
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, P.R. China
| | - Ge Qu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, P.R. China
| | - Chun You
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, P.R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing, 100049, P.R. China
| | - Zhoutong Sun
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, P.R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing, 100049, P.R. China
| | - Wuyuan Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, P.R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing, 100049, P.R. China
| | - Aitao Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, P. R. China
| | - Chang Ming Li
- Institute for Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215011, P.R. China
- Institute of Advanced Cross-Field Science, College of Life Sciences, Qingdao University, Qingdao 266071, P.R. China
| | - Yang-Chun Yong
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, P.R. China
| | - Zhiguang Zhu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, P.R. China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing, 100049, P.R. China
| |
Collapse
|
14
|
Wang G, Yao Y, Tang K, Wang G, Zhang W, Zhang Y, Rasmus Andersen H. Cost-efficient microbial electrosynthesis of hydrogen peroxide on a facile-prepared floating electrode by entrapping oxygen. BIORESOURCE TECHNOLOGY 2021; 342:125995. [PMID: 34571331 DOI: 10.1016/j.biortech.2021.125995] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/14/2021] [Accepted: 09/19/2021] [Indexed: 06/13/2023]
Abstract
Microbial electrosynthesis of hydrogen peroxide is receiving growing interest for a green substitute for anthraquinone process.However, poor oxygen transmission of electrode remains an obstacle to enhance H2O2 production rate without aeration. Here, a superhydrophobic natural air diffusion floating electrode (NADFE), which naturally and efficiently entraps O2 in the air, was proposed for the first time to improve microbial electrosynthesis of H2O2. Furthermore, a one-step calcined electrode preparation method was developed to reduce energy consumption further. In the microbial electrolysis cell with the NADFE, a high H2O2 production rate of 39 mg/L/h and current efficiency of 86% were achieved without aeration. The production rate of H2O2 was 2.2 times that of a gas diffusion electrode. Importantly, the energy consumption was 34.3 times lower than an electrochemical system. Therefore, the high H2O2 production rate and current efficiency, and low energy consumption of the process provide a superior alternative for environmental remediation.
Collapse
Affiliation(s)
- Guan Wang
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Yuechao Yao
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Kai Tang
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Guochen Wang
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Wenjing Zhang
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Yifeng Zhang
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark.
| | - Henrik Rasmus Andersen
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| |
Collapse
|
15
|
|
16
|
Zou R, Tang K, Hambly AC, Chhetri RK, Yang X, Xu M, Su Y, Andersen HR, Angelidaki I, Zhang Y. A novel persulfate-photo-bioelectrochemical hybrid system promoting the degradation of refractory micropollutants at neutral pH. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125905. [PMID: 34492840 DOI: 10.1016/j.jhazmat.2021.125905] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 06/13/2023]
Abstract
Bio-electro-Fenton is emerging as an alternative technology for the efficient and cost-effective removal of refractory micropollutants. Though promising, there are still several challenges that limit its wide application, including acidic operating conditions (pH at 2-3), the addition of supporting electrolytes (e.g., Na2SO4), and the issue of iron sludge generation. To address these challenges, a novel hybrid persulfate-photo-bioelectrochemical (PPBEC) system is proposed to remove model micropollutants (carbamazepine and clorfibric acid), from secondary effluent at low persulfate (PS) dosage and neutral pH. The effect of crucial operating parameters on the process was studied, including input voltage, cathodic aeration velocity, and PS dose. Under optimal conditions (0.6 V, 0.005 mL min-1 mL-1 and 1 mM), the PPBEC system achieved approx. 0.56-1.71 times greater micropollutant removal with 93% lower energy consumption when compared to the individual processes (UV/PS and PBEC). The improved performance was attributed to a faster production of sulfate radicals by UV irradiation, hydrogen peroxide activation and single-electron reduction, and hydroxyl radicals generated by UV irradiation. Furthermore, the transformation products of carbamazepine and clorfibric acid were identified and the probable pathways are proposed. Finally, the ecotoxicity of the PPBEC treated effluent was assessed by using Vibrio Fischeri, which exhibited a non-toxic effect.
Collapse
Affiliation(s)
- Rusen Zou
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Kai Tang
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Adam C Hambly
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Ravi Kumar Chhetri
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Xiaoyong Yang
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Mingyi Xu
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Yanyan Su
- Carlsberg Research Laboratory, Bjerregaardsvej 5, 2500 Valby, Denmark
| | - Henrik Rasmus Andersen
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Irini Angelidaki
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Yifeng Zhang
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark.
| |
Collapse
|