1
|
DeMeis J, Roberts J, Delcher H, Godang N, Coley A, Brown C, Shaw M, Naaz S, Dahal A, Alqudah S, Nguyen K, Nguyen A, Paudel S, Shell J, Patil S, Dang H, O’Neal W, Knowles M, Houserova D, Gillespie M, Borchert G. Long G4-rich enhancers target promoters via a G4 DNA-based mechanism. Nucleic Acids Res 2025; 53:gkae1180. [PMID: 39658038 PMCID: PMC11754661 DOI: 10.1093/nar/gkae1180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 10/11/2024] [Accepted: 11/12/2024] [Indexed: 12/12/2024] Open
Abstract
Several studies have now described instances where G-rich sequences in promoters and enhancers regulate gene expression through forming G-quadruplex (G4) structures. Relatedly, our group recently identified 301 long genomic stretches significantly enriched for minimal G4 motifs (LG4s) in humans and found the majority of these overlap annotated enhancers, and furthermore, that the promoters regulated by these LG4 enhancers are similarly enriched with G4-capable sequences. While the generally accepted model for enhancer:promoter specificity maintains that interactions are dictated by enhancer- and promoter-bound transcriptional activator proteins, the current study tested an alternative hypothesis: that LG4 enhancers interact with cognate promoters via a direct G4:G4 DNA-based mechanism. This work establishes the nuclear proximity of LG4 enhancer:promoter pairs, biochemically demonstrates the ability of individual LG4 single-stranded DNAs (ssDNAs) to directly interact target promoter ssDNAs, and confirms that these interactions, as well as the ability of LG4 enhancers to activate target promoters in culture, are mediated by G4 DNA.
Collapse
Affiliation(s)
- Jeffrey D DeMeis
- Department of Pharmacology, University of South Alabama, 5795 USA Drive North, Mobile, AL 36688, USA
| | - Justin T Roberts
- Department of Pharmacology, University of South Alabama, 5795 USA Drive North, Mobile, AL 36688, USA
| | - Haley A Delcher
- Department of Pharmacology, University of South Alabama, 5795 USA Drive North, Mobile, AL 36688, USA
| | - Noel L Godang
- Department of Pharmacology, University of South Alabama, 5795 USA Drive North, Mobile, AL 36688, USA
| | - Alexander B Coley
- Department of Pharmacology, University of South Alabama, 5795 USA Drive North, Mobile, AL 36688, USA
| | - Cana L Brown
- Department of Pharmacology, University of South Alabama, 5795 USA Drive North, Mobile, AL 36688, USA
| | - Michael H Shaw
- Department of Pharmacology, University of South Alabama, 5795 USA Drive North, Mobile, AL 36688, USA
| | - Sayema Naaz
- Department of Pharmacology, University of South Alabama, 5795 USA Drive North, Mobile, AL 36688, USA
| | - Ayush Dahal
- Department of Engineering, University of South Alabama, 150 Student Services Drive, Mobile, AL 36688, USA
| | - Shahem Y Alqudah
- Department of Biomedical Sciences, University of South Alabama, 5721 USA Drive North, Mobile, AL 36688, USA
| | - Kevin N Nguyen
- Department of Biomedical Sciences, University of South Alabama, 5721 USA Drive North, Mobile, AL 36688, USA
| | - Anita D Nguyen
- Department of Biomedical Sciences, University of South Alabama, 5721 USA Drive North, Mobile, AL 36688, USA
| | - Sunita S Paudel
- Department of Pharmacology, University of South Alabama, 5795 USA Drive North, Mobile, AL 36688, USA
| | - John E Shell
- Department of Pharmacology, University of South Alabama, 5795 USA Drive North, Mobile, AL 36688, USA
| | - Suhas S Patil
- Department of Pharmacology, University of South Alabama, 5795 USA Drive North, Mobile, AL 36688, USA
| | - Hong Dang
- Marsico Lung Institute, University of North Carolina at Chapel Hill School of Medicine Cystic Fibrosis/Pulmonary Research & Treatment Center, 125 Mason Farm Road, Chapel Hill, NC 27599-7248, USA
| | - Wanda K O’Neal
- Marsico Lung Institute, University of North Carolina at Chapel Hill School of Medicine Cystic Fibrosis/Pulmonary Research & Treatment Center, 125 Mason Farm Road, Chapel Hill, NC 27599-7248, USA
| | - Michael R Knowles
- Marsico Lung Institute, University of North Carolina at Chapel Hill School of Medicine Cystic Fibrosis/Pulmonary Research & Treatment Center, 125 Mason Farm Road, Chapel Hill, NC 27599-7248, USA
| | - Dominika Houserova
- Center for Cellular and Molecular Therapeutics at Children’s Hospital of Philadelphia, 3501 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Mark N Gillespie
- Department of Pharmacology, University of South Alabama, 5795 USA Drive North, Mobile, AL 36688, USA
| | - Glen M Borchert
- Department of Pharmacology, University of South Alabama, 5795 USA Drive North, Mobile, AL 36688, USA
| |
Collapse
|
2
|
Qian WJ, Yan JS, Gang XY, Xu L, Shi S, Li X, Na FJ, Cai LT, Li HM, Zhao MF. Intercellular adhesion molecule-1 (ICAM-1): From molecular functions to clinical applications in cancer investigation. Biochim Biophys Acta Rev Cancer 2024; 1879:189187. [PMID: 39317271 DOI: 10.1016/j.bbcan.2024.189187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 09/26/2024]
Abstract
Intercellular adhesion molecule-1 (ICAM-1) is a versatile molecule that plays a critical role in various physiological and pathological processes, particularly in tumor development where its impact is bidirectional. On the one hand, it augments the immune response by promoting immune cell migration, infiltration, and the formation of immunological synapses, thus facilitating potent antitumor effects. Simultaneously, it contributes to tumor immune evasion and influences metastasis by mediating transendothelial migration (TEM), epithelial-to-mesenchymal transition (EMT), and epigenetic modification of tumor cells. Despite its significant potential, the full clinical utility of ICAM-1 has yet to be fully realized. In this review, we thoroughly examine recent advancements in understanding the role of ICAM-1 in tumor development, its relevance in predicting therapeutic efficacy and prognosis, as well as the progress in clinical translational research on anti-ICAM-1-based therapies, encompassing including monoclonal antibodies, immunotherapy, antibody-drug conjugate (ADC), and conventional treatments. By shedding light on these innovative strategies, we aim to underscore ICAM-1's significance as a valuable and multifaceted target for cancer treatment, igniting enthusiasm for further research and facilitating translation into clinical applications.
Collapse
Affiliation(s)
- Wen-Jing Qian
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jin-Shan Yan
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang 110001, China
| | - Xiao-Yu Gang
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang 110001, China
| | - Lu Xu
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang 110001, China
| | - Sha Shi
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang 110001, China
| | - Xin Li
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang 110001, China
| | - Fang-Jian Na
- Network Information Center, China Medical University, Shenyang, China
| | - Lu-Tong Cai
- Psychological Medicine, Shenyang Medical College, Shenyang, China
| | - He-Ming Li
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang 110001, China; Guangdong Association of Clinical Trials (GACT)/Chinese Thoracic Oncology Group (CTONG) and Guangdong Provincial Key Lab of Translational Medicine in Lung Cancer, Guangzhou, China.
| | - Ming-Fang Zhao
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang 110001, China.
| |
Collapse
|
3
|
Rajaiah R, Pandey K, Acharya A, Ambikan A, Kumar N, Guda R, Avedissian SN, Montaner LJ, Cohen SM, Neogi U, Byrareddy SN. Differential immunometabolic responses to Delta and Omicron SARS-CoV-2 variants in golden syrian hamsters. iScience 2024; 27:110501. [PMID: 39171289 PMCID: PMC11338146 DOI: 10.1016/j.isci.2024.110501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 02/07/2024] [Accepted: 07/10/2024] [Indexed: 08/23/2024] Open
Abstract
Delta (B.1.617.2) and Omicron (B.1.1.529) variants of SARS-CoV-2 represents unique clinical characteristics. However, their role in altering immunometabolic regulations during acute infection remains convoluted. Here, we evaluated the differential immunopathogenesis of Delta vs. Omicron variants in Golden Syrian hamsters (GSH). The Delta variant resulted in higher virus titers in throat swabs and the lungs and exhibited higher lung damage with immune cell infiltration than the Omicron variant. The gene expression levels of immune mediators and metabolic enzymes, Arg-1 and IDO1 in the Delta-infected lungs were significantly higher compared to Omicron. Further, Delta/Omicron infection perturbed carbohydrates, amino acids, nucleotides, and TCA cycle metabolites and was differentially regulated compared to uninfected lungs. Collectively, our data provide a novel insight into immunometabolic/pathogenic outcomes for Delta vs. Omicron infection in the GSH displaying concordance with COVID-19 patients associated with inflammation and tissue injury during acute infection that offered possible new targets to develop potential therapeutics.
Collapse
Affiliation(s)
- Rajesh Rajaiah
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Kabita Pandey
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Arpan Acharya
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Anoop Ambikan
- The Systems Virology Lab, Department of Laboratory Medicine, Division of Clinical Microbiology, ANA Futura, Karolinska Institutet, 141 52 Stockholm, Sweden
| | - Narendra Kumar
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Reema Guda
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sean N. Avedissian
- Antiviral Pharmacology Laboratory, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Luis J. Montaner
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Samuel M. Cohen
- Havlik Wall Professor of Oncology, Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ujjwal Neogi
- The Systems Virology Lab, Department of Laboratory Medicine, Division of Clinical Microbiology, ANA Futura, Karolinska Institutet, 141 52 Stockholm, Sweden
| | - Siddappa N. Byrareddy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
- Havlik Wall Professor of Oncology, Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
4
|
Molinero M, Perez-Pons M, González J, Barbé F, de Gonzalo-Calvo D. Decoding viral and host microRNA signatures in airway-derived biosamples: Insights for biomarker discovery in viral respiratory infections. Biomed Pharmacother 2024; 177:116984. [PMID: 38908203 DOI: 10.1016/j.biopha.2024.116984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/12/2024] [Accepted: 06/15/2024] [Indexed: 06/24/2024] Open
Abstract
The global public health crisis caused by the COVID-19 pandemic has intensified the global concern regarding viral respiratory tract infections. Despite their considerable impact on health, society and the economy, effective management of these conditions remains a significant challenge. Integrating high-throughput analyses is pivotal for early detection, prognostication of adverse outcomes, elucidating pathogenetic pathways and developing therapeutic approaches. In recent years, microRNAs (miRNAs), a subset of small noncoding RNAs (ncRNAs), have emerged as promising tools for molecular phenotyping. Current evidence suggests that miRNAs could serve as innovative biological markers, aiding in informed medical decision-making. The cost-effective quantification of miRNAs in standardized samples using techniques routinely employed in clinical laboratories has become feasible. In this context, samples obtained from the airways represent a valuable source of information due to their direct exposure to the infectious agent and host response within the respiratory tract. This review explores viral and host miRNA profiling in airway-derived biosamples as a source of molecular information to guide patient management, with a specific emphasis on SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Marta Molinero
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain; CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Manel Perez-Pons
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain; CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Jessica González
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain; CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - Ferran Barbé
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain; CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain
| | - David de Gonzalo-Calvo
- Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain; CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain.
| |
Collapse
|
5
|
Delcher HA, DeMeis JD, Ghobar N, Godang NL, Knight SL, Alqudah SY, Nguyen KN, Watters BC, Borchert GM. SARS-Cov-2 small viral RNA suppresses gene expression via complementary binding to mRNA 3' UTR. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.000790. [PMID: 38312351 PMCID: PMC10835431 DOI: 10.17912/micropub.biology.000790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 02/06/2024]
Abstract
SARS-CoV-2 (SC2) has been intensely studied since its emergence. However, the mechanisms of host immune dysregulation triggered by SC2 remain poorly understood. That said, it is well established that many prominent viral families encode microRNAs (miRNAs) or related small viral RNAs (svRNAs) capable of regulating human genes involved in immune function. Importantly, recent reports have shown that SC2 encodes its own svRNAs. In this study, we have identified 12 svRNAs expressed during SC2 infection and show that one of these svRNAs can regulate target gene expression via complementary binding to mRNA 3' untranslated regions (3'UTRs) much like human microRNAs.
Collapse
Affiliation(s)
- Haley A Delcher
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL
| | - Jeffrey D DeMeis
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL
| | - Nicole Ghobar
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL
| | - Noel L Godang
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL
| | - Sierra L Knight
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL
| | - Shahem Y Alqudah
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL
| | - Kevin N Nguyen
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL
| | - Brianna C Watters
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL
| | - Glen M Borchert
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL
- Department of Biology, College of Arts and Sciences, University of South Alabama, Mobile, AL
| |
Collapse
|
6
|
Narayanan SA, Jamison DA, Guarnieri JW, Zaksas V, Topper M, Koutnik AP, Park J, Clark KB, Enguita FJ, Leitão AL, Das S, Moraes-Vieira PM, Galeano D, Mason CE, Trovão NS, Schwartz RE, Schisler JC, Coelho-Dos-Reis JGA, Wurtele ES, Beheshti A. A comprehensive SARS-CoV-2 and COVID-19 review, Part 2: host extracellular to systemic effects of SARS-CoV-2 infection. Eur J Hum Genet 2024; 32:10-20. [PMID: 37938797 PMCID: PMC10772081 DOI: 10.1038/s41431-023-01462-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 09/01/2023] [Accepted: 09/13/2023] [Indexed: 11/09/2023] Open
Abstract
COVID-19, the disease caused by SARS-CoV-2, has caused significant morbidity and mortality worldwide. The betacoronavirus continues to evolve with global health implications as we race to learn more to curb its transmission, evolution, and sequelae. The focus of this review, the second of a three-part series, is on the biological effects of the SARS-CoV-2 virus on post-acute disease in the context of tissue and organ adaptations and damage. We highlight the current knowledge and describe how virological, animal, and clinical studies have shed light on the mechanisms driving the varied clinical diagnoses and observations of COVID-19 patients. Moreover, we describe how investigations into SARS-CoV-2 effects have informed the understanding of viral pathogenesis and provide innovative pathways for future research on the mechanisms of viral diseases.
Collapse
Affiliation(s)
- S Anand Narayanan
- COVID-19 International Research Team, Medford, MA, 02155, USA.
- Department of Health, Nutrition and Food Sciences, Florida State University, Tallahassee, FL, 32301, USA.
| | - David A Jamison
- COVID-19 International Research Team, Medford, MA, 02155, USA
| | - Joseph W Guarnieri
- COVID-19 International Research Team, Medford, MA, 02155, USA
- Center for Mitochondrial and Epigenomic Medicine, Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Victoria Zaksas
- COVID-19 International Research Team, Medford, MA, 02155, USA
- Center for Translational Data Science, University of Chicago, Chicago, IL, 60637, USA
- Clever Research Lab, Springfield, IL, 62704, USA
| | - Michael Topper
- COVID-19 International Research Team, Medford, MA, 02155, USA
- Departments of Oncology and Medicine and the Sidney Comprehensive Cancer Center, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Andrew P Koutnik
- Human Healthspan, Resilience, and Performance, Florida Institute for Human and Machine Cognition, Pensacola, FL, 32502, USA
- Sansum Diabetes Research Institute, Santa Barbara, CA, 93015, USA
| | - Jiwoon Park
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, 10065, USA
| | - Kevin B Clark
- COVID-19 International Research Team, Medford, MA, 02155, USA
- Cures Within Reach, Chicago, IL, 60602, USA
- Campus and Domain Champions Program, Multi-Tier Assistance, Training, and Computational Help (MATCH) Track, National Science Foundation's Advanced Cyberinfrastructure Coordination Ecosystem: Services and Support (ACCESS), Philadelphia, PA, USA
- Expert Network, Penn Center for Innovation, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Biometrics and Nanotechnology Councils, Institute for Electrical and Electronics Engineers, New York, NY, 10016, USA
- Peace Innovation Institute, The Hague 2511, Netherlands and Stanford University, Palo Alto, 94305, CA, USA
| | - Francisco J Enguita
- COVID-19 International Research Team, Medford, MA, 02155, USA
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisboa, Portugal
| | - Ana Lúcia Leitão
- MEtRICs, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| | - Saswati Das
- COVID-19 International Research Team, Medford, MA, 02155, USA
- Atal Bihari Vajpayee Institute of Medical Sciences and Dr Ram Mannohar Lohia Hospital, New Delhi, 110001, India
| | - Pedro M Moraes-Vieira
- COVID-19 International Research Team, Medford, MA, 02155, USA
- Department of Genetics, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
- Experimental Medicine Research Cluster (EMRC) and Obesity and Comorbidities Research Center (OCRC), University of Campinas, Campinas, Brazil
| | - Diego Galeano
- COVID-19 International Research Team, Medford, MA, 02155, USA
- Facultad de Ingeniería, Universidad Nacional de Asunción, San Lorenzo, Paraguay
| | - Christopher E Mason
- COVID-19 International Research Team, Medford, MA, 02155, USA
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
- New York Genome Center, New York, NY, USA
- The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Nídia S Trovão
- COVID-19 International Research Team, Medford, MA, 02155, USA
- Fogarty International Center, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Robert E Schwartz
- COVID-19 International Research Team, Medford, MA, 02155, USA
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Jonathan C Schisler
- COVID-19 International Research Team, Medford, MA, 02155, USA
- McAllister Heart Institute and Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jordana G A Coelho-Dos-Reis
- COVID-19 International Research Team, Medford, MA, 02155, USA
- Basic and Applied Virology Lab, Department of Microbiology, Institute for Biological Sciences (ICB), Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Eve Syrkin Wurtele
- COVID-19 International Research Team, Medford, MA, 02155, USA
- Genetics Program, Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 90011, USA
- Bioinformatics and Computational Biology Program, Center for Metabolomics, Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 90011, USA
| | - Afshin Beheshti
- COVID-19 International Research Team, Medford, MA, 02155, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
- Blue Marble Space Institute of Science, Space Biosciences Division, NASA Ames Research Center, Moffett Field, Santa Clara, CA, 94035, USA.
| |
Collapse
|
7
|
Acharya A, Ambikan AT, Thurman M, Malik MR, Dyavar SR, Végvári Á, Neogi U, Byrareddy SN. Proteomic landscape of astrocytes and pericytes infected with HIV/SARS-CoV-2 mono/co-infection, impacting on neurological complications. RESEARCH SQUARE 2023:rs.3.rs-3031591. [PMID: 37398206 PMCID: PMC10312942 DOI: 10.21203/rs.3.rs-3031591/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Background Although most individuals recover from coronavirus disease 2019 (COVID-19) within a few weeks, some people continue to experience a wide range of symptoms known as post-acute sequelae of SARS-CoV-2 (PASC) or long COVID. Majority of patients with PASC develop neurological disorders like brain fog, fatigue, mood swings, sleep disorders, loss of smell and test among others collectively called neuro-PASC. While the people living with HIV (PWH) do not have a higher risk of developing severe disease and mortality/morbidity due to COVID-19. As a large section of PWH suffered from HIV-associated neurocognitive disorders (HAND), it is essential to understand the impact of neuro-PASC on people with HAND. In pursuit of this, we infected HIV/SARS-CoV-2 alone or together in primary human astrocytes and pericytes and performed proteomics to understand the impact of co-infection in the central nervous system. Methods Primary human astrocytes and pericytes were infected with SARS-CoV-2 or HIV or HIV + SARS-CoV-2. The concentration of HIV and SARS-CoV-2 genomic RNA in the culture supernatant was quantified using reverse transcriptase quantitative real time polymerase chain reaction (RT-qPCR). This was followed by a quantitative proteomics analysis of mock, HIV, SARS-CoV-2, and HIV + SARS-CoV-2 infected astrocytes and pericytes to understand the impact of the virus in CNS cell types. Results Both healthy and HIV-infected astrocytes and pericytes support abortive/low level of SARS-CoV-2 replication. In both mono-infected and co-infected cells, we observe a modest increase in the expression of SARS-CoV-2 host cell entry factors (ACE2, TMPRSS2, NRP1, and TRIM28) and inflammatory mediators (IL-6, TNF-α, IL-1β and IL-18). Quantitative proteomic analysis has identified uniquely regulated pathways in mock vs SARS-CoV-2, mock vs HIV + SARS-CoV-2, and HIV vs HIV + SARS-CoV-2 infected astrocytes and pericytes. The gene set enrichment analysis revealed that the top ten enriched pathways are linked to several neurodegenerative disorders, including Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. Conclusions Our study emphasizes the significance of long-term monitoring of patients co-infected with HIV and SARS-CoV-2 to detect and understand the development of neurological abnormalities. By unraveling the molecular mechanisms involved, we can identify potential targets for future therapeutic interventions.
Collapse
|
8
|
Naaz S, Sakib N, Houserova D, Badve R, Crucello A, Borchert GM. Characterization of a novel sRNA contributing to biofilm formation in Salmonella enterica serovar Typhimurium. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000796. [PMID: 37151214 PMCID: PMC10160853 DOI: 10.17912/micropub.biology.000796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/20/2023] [Accepted: 01/01/1970] [Indexed: 05/09/2023]
Abstract
Small RNAs (sRNAs) are short noncoding RNAs of ~50-200 nucleotides believed to primarily function in regulating crucial activities in bacteria during periods of cellular stress. This study examined the relevance of specific sRNAs on biofilm formation in nutrient starved Salmonella enterica serovar Typhimurium. Eight unique sRNAs were selected for deletion primarily based on their genomic location and/or putative targets. Quantitative and qualitative analyses confirm one of these, sRNA1186573, is required for efficient biofilm formation in S. enterica further highlighting the significance of sRNAs during Salmonella stress response.
Collapse
Affiliation(s)
- Sayema Naaz
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL
| | - Najmuj Sakib
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL
| | - Dominika Houserova
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL
| | - Rani Badve
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL
| | - Aline Crucello
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL
| | - Glen M Borchert
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL
- Correspondence to: Glen M Borchert (
)
| |
Collapse
|
9
|
Cavalcante LTDF, da Fonseca GC, Amado Leon LA, Salvio AL, Brustolini OJ, Gerber AL, Guimarães APDC, Marques CAB, Fernandes RA, Ramos Filho CHF, Kader RL, Pimentel Amaro M, da Costa Gonçalves JP, Vieira Alves-Leon S, Vasconcelos ATR. Buffy Coat Transcriptomic Analysis Reveals Alterations in Host Cell Protein Synthesis and Cell Cycle in Severe COVID-19 Patients. Int J Mol Sci 2022; 23:13588. [PMID: 36362378 PMCID: PMC9659271 DOI: 10.3390/ijms232113588] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 11/25/2023] Open
Abstract
Transcriptome studies have reported the dysregulation of cell cycle-related genes and the global inhibition of host mRNA translation in COVID-19 cases. However, the key genes and cellular mechanisms that are most affected by the severe outcome of this disease remain unclear. For this work, the RNA-seq approach was used to study the differential expression in buffy coat cells of two groups of people infected with SARS-CoV-2: (a) Mild, with mild symptoms; and (b) SARS (Severe Acute Respiratory Syndrome), who were admitted to the intensive care unit with the severe COVID-19 outcome. Transcriptomic analysis revealed 1009 up-regulated and 501 down-regulated genes in the SARS group, with 10% of both being composed of long non-coding RNA. Ribosome and cell cycle pathways were enriched among down-regulated genes. The most connected proteins among the differentially expressed genes involved transport dysregulation, proteasome degradation, interferon response, cytokinesis failure, and host translation inhibition. Furthermore, interactome analysis showed Fibrillarin to be one of the key genes affected by SARS-CoV-2. This protein interacts directly with the N protein and long non-coding RNAs affecting transcription, translation, and ribosomal processes. This work reveals a group of dysregulated processes, including translation and cell cycle, as key pathways altered in severe COVID-19 outcomes.
Collapse
Affiliation(s)
| | | | - Luciane Almeida Amado Leon
- Laboratório de Desenvolvimento Tecnológico em Virologia, Instituto Oswaldo Cruz/FIOCRUZ, Rio de Janeiro 21040-360, Brazil
| | - Andreza Lemos Salvio
- Laboratório de Neurociências Translacional, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro 20211-040, Brazil
| | - Otávio José Brustolini
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Petrópolis, Rio de Janeiro 25651-076, Brazil
| | - Alexandra Lehmkuhl Gerber
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Petrópolis, Rio de Janeiro 25651-076, Brazil
| | - Ana Paula de Campos Guimarães
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Petrópolis, Rio de Janeiro 25651-076, Brazil
| | - Carla Augusta Barreto Marques
- Laboratório de Neurociências Translacional, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro 20211-040, Brazil
- Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-617, Brazil
| | - Renan Amphilophio Fernandes
- Laboratório de Neurociências Translacional, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro 20211-040, Brazil
| | | | - Rafael Lopes Kader
- Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-617, Brazil
| | - Marisa Pimentel Amaro
- Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-617, Brazil
| | - João Paulo da Costa Gonçalves
- Laboratório de Neurociências Translacional, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro 20211-040, Brazil
- Yale New Haven Hospital, New Haven, CT 06510, USA
| | - Soniza Vieira Alves-Leon
- Laboratório de Neurociências Translacional, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro 20211-040, Brazil
- Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-617, Brazil
| | - Ana Tereza Ribeiro Vasconcelos
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Petrópolis, Rio de Janeiro 25651-076, Brazil
| |
Collapse
|
10
|
Manevski M, Yogeswaran S, Rahman I, Devadoss D, Chand HS. E-cigarette synthetic cooling agent WS-23 and nicotine aerosols differentially modulate airway epithelial cell responses. Toxicol Rep 2022; 9:1823-1830. [PMID: 36518432 PMCID: PMC9742947 DOI: 10.1016/j.toxrep.2022.09.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/08/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
Electronic cigarette (e-cig) aerosol exposures are strongly associated with pulmonary dysfunctions, and the airway epithelial cells (AECs) of respiratory passages play a pivotal role in understanding this association. However, not much is known about the effect of synthetic cooling agents such as WS-23 on AECs. WS-23 is a synthetic menthol-like cooling agent widely used to enhance the appeal of e-cigs and to suppress the harshness and bitterness of other e-cig constituents. Using primary human AECs, we compared the effects of aerosolized WS-23 with propylene glycol/vegetable glycerin (PG/VG) vehicle control and nicotine aerosol exposures. AECs treated with 3 % WS-23 aerosols showed a significant increase in viable cell numbers compared to PG/VG-vehicle aerosol exposed cells and cell growth was comparable following 2.5 % nicotine aerosol exposure. AEC inflammatory factors, IL-6 and ICAM-1 levels were significantly suppressed by WS-23 aerosols compared to PG/VG-controls. When differentiated AECs were challenged with WS-23 aerosols, there was a significant increase in secretory mucin MUC5AC expression with no discernible change in airway inflammatory SCGB1A1 expression. Compared to PG/VG-controls, WS-23 or nicotine aerosols presented with increased MUC5AC expression, but there was no synergistic effect of WS-23 + nicotine combination exposure. Thus, WS-23 and nicotine aerosols modulate the AEC responses and induce goblet cell hyperplasia, which could impact the airway physiology and susceptibility to respiratory diseases.
Collapse
Affiliation(s)
- Marko Manevski
- Department of Immunology and NanoMedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Shaiesh Yogeswaran
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Dinesh Devadoss
- Department of Immunology and NanoMedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Hitendra S. Chand
- Department of Immunology and NanoMedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| |
Collapse
|
11
|
Stamoula E, Sarantidi E, Dimakopoulos V, Ainatzoglou A, Dardalas I, Papazisis G, Kontopoulou K, Anagnostopoulos AK. Serum Proteome Signatures of Anti-SARS-CoV-2 Vaccinated Healthcare Workers in Greece Associated with Their Prior Infection Status. Int J Mol Sci 2022; 23:ijms231710153. [PMID: 36077551 PMCID: PMC9456361 DOI: 10.3390/ijms231710153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/29/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022] Open
Abstract
Over the course of the pandemic, proteomics, being in the frontline of anti-COVID-19 research, has massively contributed to the investigation of molecular pathogenic properties of the virus. However, data on the proteome on anti-SARS-CoV-2 vaccinated individuals remain scarce. This study aimed to identify the serum proteome characteristics of anti-SARS-CoV-2 vaccinated individuals who had previously contracted the virus and comparatively assess them against those of virus-naïve vaccine recipients. Blood samples of n = 252 individuals, out of whom n = 35 had been previously infected, were collected in the "G. Gennimatas" General Hospital of Thessaloniki, from 4 January 2021 to 31 August 2021. All participants received the BNT162b2 mRNA COVID-19 vaccine (Pfizer/BioNTech). A label-free quantitative proteomics LC-MS/MS approach was undertaken, and the identified proteins were analyzed using the GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes) databases as well as processed by bioinformatics tools. Titers of total RBD-specific IgGs against SARS-CoV-2 were also determined using the SARS-CoV-2 IgG II Quant assay. A total of 47 proteins were significantly differentially expressed, the majority of which were down-regulated in sera of previously infected patients compared to virus-naïve controls. Several pathways were affected supporting the crucial role of the humoral immune response in the protection against SARS-CoV-2 infection provided by COVID-19 vaccination. Overall, our comprehensive proteome profiling analysis contributes novel knowledge of the mechanisms of immune response induced by anti-SARS-CoV-2 vaccination and identified protein signatures reflecting the immune status of vaccine recipients.
Collapse
Affiliation(s)
- Eleni Stamoula
- Department of Biotechnology, Centre of Systems Biology, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
- Department of Clinical Pharmacology, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Eleana Sarantidi
- Department of Biotechnology, Centre of Systems Biology, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Vasilis Dimakopoulos
- Department of Biotechnology, Centre of Systems Biology, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Alexandra Ainatzoglou
- Department of Clinical Pharmacology, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Ioannis Dardalas
- Department of Clinical Pharmacology, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Georgios Papazisis
- Department of Clinical Pharmacology, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
- Clinical Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | | | - Athanasios K. Anagnostopoulos
- Department of Biotechnology, Centre of Systems Biology, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
- Correspondence:
| |
Collapse
|