1
|
Ebrahimi M, Ahmadieh H, Rezaei Kanavi M, Safi S, Alipour-Parsa S, Advani S, Sorenson CM, Sheibani N. Shared signaling pathways and comprehensive therapeutic approaches among diabetes complications. Front Med (Lausanne) 2025; 11:1497750. [PMID: 39845838 PMCID: PMC11750824 DOI: 10.3389/fmed.2024.1497750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 12/23/2024] [Indexed: 01/24/2025] Open
Abstract
The growing global prevalence of diabetes mellitus (DM), along with its associated complications, continues to rise. When clinically detected most DM complications are irreversible. It is therefore crucial to detect and address these complications early and systematically in order to improve patient care and outcomes. The current clinical practice often prioritizes DM complications by addressing one complication while overlooking others that could occur. It is proposed that the commonly targeted cell types including vascular cells, immune cells, glial cells, and fibroblasts that mediate DM complications, might share early responses to diabetes. In addition, the impact of one complication could be influenced by other complications. Recognizing and focusing on the shared early responses among DM complications, and the impacted cellular constituents, will allow to simultaneously address all DM-related complications and limit adverse treatment impacts. This review explores the current understanding of shared pathological signaling mechanisms among DM complications and recognizes new concepts that will benefit from further investigation in both basic and clinical settings. The ultimate goal is to develop more comprehensive treatment strategies, which effectively impact DM complications in multiple organs and improve patient care and outcomes.
Collapse
Affiliation(s)
- Moein Ebrahimi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Ahmadieh
- Ophthalmic Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mozhgan Rezaei Kanavi
- Ocular Tissue Engineering Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sare Safi
- Ophthalmic Epidemiology Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeed Alipour-Parsa
- Cardiovascular Research Center, Shahid Modarres Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soroor Advani
- Neurology Department, Shohada Tajrish Hospital, Shahid-Beheshti University of Medical Sciences, Tehran, Iran
| | - Christine M. Sorenson
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Nader Sheibani
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| |
Collapse
|
2
|
Pan D, Xu L, Chen P, Miao L, Tian Y, Shi D, Guo M. Panax Quinquefolium Saponins enhances angiogenesis in rats with diabetes and myocardial infarction. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117252. [PMID: 37777023 DOI: 10.1016/j.jep.2023.117252] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/17/2023] [Accepted: 09/28/2023] [Indexed: 10/02/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Xi Yang Shen (Panax quinquefolium L.) was originally recorded in "Ben Cao Cong Xin" edited by Wu Yiluo during the Qing Dynasty. Panax Quinquefolium Saponins (PQS) is the main component derived from Panax quinquefolium L, and has been wildly used in the treatment of coronary heart disease. AIM OF THE STUDY This study aims to explore the potential role and underlying mechanisms of PQS in promoting angiogenesis in rats with diabetes and myocardial infarction. MATERIALS AND METHODS Echocardiograms were used to assess cardiac function, while the heart weight to tibia length ratio was calculated to determine cardiac hypertrophy. Hematoxylin and eosin, periodic acid-Schiff and Masson's trichrome staining were used to examine cardiac morphology, myocyte diameter, and myocardial fibrosis. Immunofluorescence staining was employed to evaluate arteriolar density. The transcriptomes were analyzed and bioinformatic analyses were conducted to predict the potential angiogenesis-promoting mechanism of PQS. In addition, RT-PCR and western blotting was utilized to examine the expression of genes and proteins influenced by PQS. RESULTS PQS improved blood glucose, ameliorated cardiac function, reduced cardiac hypertrophy, and enhanced myocardial morphology in diabetic rats with myocardial infarction. PQS was also found to decrease myocyte diameter, curtail myocardial fibrosis, and increase arteriolar density. However, the effects of PQS were abolished following the deletion of protein kinase C δ (PKCδ). Molecular docking predicted strong interactions between the major blood components of PQS and PKCδ. Transcriptomic and bioinformatic analyses indicated that PQS may bolster angiogenesis by activating the VEGF/PI3K-Akt/eNOS pathway in rats with diabetes and myocardial infarction. Finally, the study demonstrated that PQS could inhibit the expression of PKCδ and stimulate the activation of the VEGF/PI3K-Akt/eNOS pathway. CONCLUSIONS PQS improves blood glucose, enhances cardiac function, mitigates cardiac damage, and boosts arteriolar density. The angiogenic impact of PQS appears to be, at least partially, due to its modulation of the PKCδ-mediated VEGF/PI3K-Akt/eNOS signaling pathway in rats with diabetes and myocardial infarction.
Collapse
Affiliation(s)
- Deng Pan
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China; National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China; Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Lin Xu
- Gynecological Department of Traditional Chinese Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Pengfei Chen
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China; National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Lina Miao
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China; National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Yi Tian
- Beijing Anzhen Hospital of the Capital University of Medical Sciences, Beijing, China
| | - Dazhuo Shi
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China; National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China.
| | - Ming Guo
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China; National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
3
|
Sinha SK, Nicholas SB. Pathomechanisms of Diabetic Kidney Disease. J Clin Med 2023; 12:7349. [PMID: 38068400 PMCID: PMC10707303 DOI: 10.3390/jcm12237349] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/15/2023] [Accepted: 11/22/2023] [Indexed: 03/15/2024] Open
Abstract
The worldwide occurrence of diabetic kidney disease (DKD) is swiftly rising, primarily attributed to the growing population of individuals affected by type 2 diabetes. This surge has been transformed into a substantial global concern, placing additional strain on healthcare systems already grappling with significant demands. The pathogenesis of DKD is intricate, originating with hyperglycemia, which triggers various mechanisms and pathways: metabolic, hemodynamic, inflammatory, and fibrotic which ultimately lead to renal damage. Within each pathway, several mediators contribute to the development of renal structural and functional changes. Some of these mediators, such as inflammatory cytokines, reactive oxygen species, and transforming growth factor β are shared among the different pathways, leading to significant overlap and interaction between them. While current treatment options for DKD have shown advancement over previous strategies, their effectiveness remains somewhat constrained as patients still experience residual risk of disease progression. Therefore, a comprehensive grasp of the molecular mechanisms underlying the onset and progression of DKD is imperative for the continued creation of novel and groundbreaking therapies for this condition. In this review, we discuss the current achievements in fundamental research, with a particular emphasis on individual factors and recent developments in DKD treatment.
Collapse
Affiliation(s)
- Satyesh K. Sinha
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA;
- College of Medicine, Charles R Drew University of Medicine and Science, Los Angeles, CA 90059, USA
| | - Susanne B. Nicholas
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA;
| |
Collapse
|
4
|
Matić A, Šupljika F, Brkić H, Jurasović J, Karačić Z, Tomić S. Identification of an Additional Metal-Binding Site in Human Dipeptidyl Peptidase III. Int J Mol Sci 2023; 24:12747. [PMID: 37628928 PMCID: PMC10454320 DOI: 10.3390/ijms241612747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/03/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Dipeptidyl peptidase III (DPP III, EC 3.4.14.4) is a monozinc metalloexopeptidase that hydrolyzes dipeptides from the N-terminus of peptides consisting of three or more amino acids. Recently, DPP III has attracted great interest from scientists, and numerous studies have been conducted showing that it is involved in the regulation of various physiological processes. Since it is the only metalloenzyme among the dipeptidyl peptidases, we considered it important to study the process of binding and exchange of physiologically relevant metal dications in DPP III. Using fluorimetry, we measured the Kd values for the binding of Zn2+, Cu2+, and Co2+ to the catalytic site, and using isothermal titration calorimetry (ITC), we measured the Kd values for the binding of these metals to an additional binding site. The structure of the catalytic metal's binding site is known from previous studies, and in this work, the affinities for this site were calculated for Zn2+, Cu2+, Co2+, and Mn2+ using the QM approach. The structures of the additional binding sites for the Zn2+ and Cu2+ were also identified, and MD simulations showed that two Cu2+ ions bound to the catalytic and inhibitory sites exchanged less frequently than the Zn2+ ions bound to these sites.
Collapse
Affiliation(s)
- Antonia Matić
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia;
| | - Filip Šupljika
- Department of Chemistry and Biochemistry, Faculty of Food Technology and Biotechnology, Pierottijeva 6, 10000 Zagreb, Croatia;
| | - Hrvoje Brkić
- Faculty of Medicine, J. J. Strossmayer University of Osijek, 31000 Osijek, Croatia;
- Faculty of Dental Medicine and Health, J. J. Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Jasna Jurasović
- Analytical Toxicology and Mineral Metabolism Unit, Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia;
| | - Zrinka Karačić
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia;
| | - Sanja Tomić
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia;
| |
Collapse
|
5
|
Li Y, Liu Y, Liu S, Gao M, Wang W, Chen K, Huang L, Liu Y. Diabetic vascular diseases: molecular mechanisms and therapeutic strategies. Signal Transduct Target Ther 2023; 8:152. [PMID: 37037849 PMCID: PMC10086073 DOI: 10.1038/s41392-023-01400-z] [Citation(s) in RCA: 216] [Impact Index Per Article: 108.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 02/19/2023] [Accepted: 02/28/2023] [Indexed: 04/12/2023] Open
Abstract
Vascular complications of diabetes pose a severe threat to human health. Prevention and treatment protocols based on a single vascular complication are no longer suitable for the long-term management of patients with diabetes. Diabetic panvascular disease (DPD) is a clinical syndrome in which vessels of various sizes, including macrovessels and microvessels in the cardiac, cerebral, renal, ophthalmic, and peripheral systems of patients with diabetes, develop atherosclerosis as a common pathology. Pathological manifestations of DPDs usually manifest macrovascular atherosclerosis, as well as microvascular endothelial function impairment, basement membrane thickening, and microthrombosis. Cardiac, cerebral, and peripheral microangiopathy coexist with microangiopathy, while renal and retinal are predominantly microangiopathic. The following associations exist between DPDs: numerous similar molecular mechanisms, and risk-predictive relationships between diseases. Aggressive glycemic control combined with early comprehensive vascular intervention is the key to prevention and treatment. In addition to the widely recommended metformin, glucagon-like peptide-1 agonist, and sodium-glucose cotransporter-2 inhibitors, for the latest molecular mechanisms, aldose reductase inhibitors, peroxisome proliferator-activated receptor-γ agonizts, glucokinases agonizts, mitochondrial energy modulators, etc. are under active development. DPDs are proposed for patients to obtain more systematic clinical care requires a comprehensive diabetes care center focusing on panvascular diseases. This would leverage the advantages of a cross-disciplinary approach to achieve better integration of the pathogenesis and therapeutic evidence. Such a strategy would confer more clinical benefits to patients and promote the comprehensive development of DPD as a discipline.
Collapse
Affiliation(s)
- Yiwen Li
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Yanfei Liu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, 100091, China
- The Second Department of Gerontology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Shiwei Liu
- Department of Nephrology and Endocrinology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100102, China
| | - Mengqi Gao
- Department of Nephrology and Endocrinology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100102, China
| | - Wenting Wang
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Keji Chen
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, 100091, China.
| | - Luqi Huang
- China Center for Evidence-based Medicine of TCM, China Academy of Chinese Medical Sciences, Beijing, 100010, China.
| | - Yue Liu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, 100091, China.
| |
Collapse
|
6
|
Emerging Therapy for Diabetic Cardiomyopathy: From Molecular Mechanism to Clinical Practice. Biomedicines 2023; 11:biomedicines11030662. [PMID: 36979641 PMCID: PMC10045486 DOI: 10.3390/biomedicines11030662] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/08/2023] [Accepted: 02/11/2023] [Indexed: 02/24/2023] Open
Abstract
Diabetic cardiomyopathy is characterized by abnormal myocardial structure or performance in the absence of coronary artery disease or significant valvular heart disease in patients with diabetes mellitus. The spectrum of diabetic cardiomyopathy ranges from subtle myocardial changes to myocardial fibrosis and diastolic function and finally to symptomatic heart failure. Except for sodium–glucose transport protein 2 inhibitors and possibly bariatric and metabolic surgery, there is currently no specific treatment for this distinct disease entity in patients with diabetes. The molecular mechanism of diabetic cardiomyopathy includes impaired nutrient-sensing signaling, dysregulated autophagy, impaired mitochondrial energetics, altered fuel utilization, oxidative stress and lipid peroxidation, advanced glycation end-products, inflammation, impaired calcium homeostasis, abnormal endothelial function and nitric oxide production, aberrant epidermal growth factor receptor signaling, the activation of the renin–angiotensin–aldosterone system and sympathetic hyperactivity, and extracellular matrix accumulation and fibrosis. Here, we summarize several important emerging treatments for diabetic cardiomyopathy targeting specific molecular mechanisms, with evidence from preclinical studies and clinical trials.
Collapse
|
7
|
Soh JEC, Shimizu A, Molla MR, Zankov DP, Nguyen LKC, Khan MR, Tesega WW, Chen S, Tojo M, Ito Y, Sato A, Hitosugi M, Miyagawa S, Ogita H. RhoA rescues cardiac senescence by regulating Parkin-mediated mitophagy. J Biol Chem 2023; 299:102993. [PMID: 36758801 PMCID: PMC10020657 DOI: 10.1016/j.jbc.2023.102993] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/11/2023] Open
Abstract
Heart failure is one of the leading causes of death worldwide. RhoA, a small GTPase, governs actin dynamics in various tissue and cell types, including cardiomyocytes; however, its involvement in cardiac function has not been fully elucidated. Here, we generated cardiomyocyte-specific RhoA conditional knockout (cKO) mice, which demonstrated a significantly shorter lifespan with left ventricular dilation and severely impaired ejection fraction. We found that the cardiac tissues of the cKO mice exhibited structural disorganization with fibrosis and also exhibited enhanced senescence compared with control mice. In addition, we show that cardiomyocyte mitochondria were structurally abnormal in the aged cKO hearts. Clearance of damaged mitochondria by mitophagy was remarkably inhibited in both cKO cardiomyocytes and RhoA-knockdown HL-1 cultured cardiomyocytes. In RhoA-depleted cardiomyocytes, we reveal that the expression of Parkin, an E3 ubiquitin ligase that plays a crucial role in mitophagy, was reduced, and expression of N-Myc, a negative regulator of Parkin, was increased. We further reveal that the RhoA-Rho kinase axis induced N-Myc phosphorylation, which led to N-Myc degradation and Parkin upregulation. Re-expression of Parkin in RhoA-depleted cardiomyocytes restored mitophagy, reduced mitochondrial damage, attenuated cardiomyocyte senescence, and rescued cardiac function both in vitro and in vivo. Finally, we found that patients with idiopathic dilated cardiomyopathy without causal mutations for dilated cardiomyopathy showed reduced cardiac expression of RhoA and Parkin. These results suggest that RhoA promotes Parkin-mediated mitophagy as an indispensable mechanism contributing to cardioprotection in the aging heart.
Collapse
Affiliation(s)
- Joanne Ern Chi Soh
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Otsu, Japan
| | - Akio Shimizu
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Otsu, Japan
| | - Md Rasel Molla
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Otsu, Japan
| | - Dimitar P Zankov
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Otsu, Japan
| | - Le Kim Chi Nguyen
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Otsu, Japan
| | - Mahbubur Rahman Khan
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Otsu, Japan
| | - Wondwossen Wale Tesega
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Otsu, Japan
| | - Si Chen
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Otsu, Japan; Department of Emergency, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Misa Tojo
- Division of Legal Medicine, Department of Social Medicine, Shiga University of Medical Science, Otsu, Japan
| | - Yoshito Ito
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Akira Sato
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Otsu, Japan
| | - Masahito Hitosugi
- Division of Legal Medicine, Department of Social Medicine, Shiga University of Medical Science, Otsu, Japan
| | - Shigeru Miyagawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Hisakazu Ogita
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Otsu, Japan.
| |
Collapse
|
8
|
Chen SB, Zhang H, Chen S, Ye XF, Li ZK, Liu WD, Cui ZL, Huang Y. Structural and Functional Characterization of a New Bacterial Dipeptidyl Peptidase III Involved in Fruiting Body Formation in Myxobacteria. Int J Mol Sci 2022; 24:631. [PMID: 36614072 PMCID: PMC9820243 DOI: 10.3390/ijms24010631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/24/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022] Open
Abstract
Dipeptidyl peptidase III (DPP III) is a zinc-dependent enzyme that specifically hydrolyzes dipeptides from the N-terminal of different-length peptides, and it is involved in a number of physiological processes. Here, DPP III with an atypical pentapeptide zinc binding motif (HELMH) was identified from Corallococcus sp. EGB. It was shown that the activity of recombined CoDPP III was optimal at 50 °C and pH 7.0 with high thermostability up to 60 °C. Unique to CoDPP III, the crystal structure of the ligand-free enzyme was determined as a dimeric and closed form. The relatively small inter-domain cleft creates a narrower entrance to the substrate binding site and the unfavorable binding of the bulky naphthalene ring. The ectopic expression of CoDPP III in M. xanthus DK1622 resulted in a 12 h head start in fruiting body development compared with the wild type. Additionally, the A-signal prepared from the starving DK1622-CoDPP III rescued the developmental defect of the asgA mutant, and the fruiting bodies were more numerous and closely packed. Our data suggested that CoDPP III played a role in the fruiting body development of myxobacteria through the accumulation of peptides and amino acids to act as the A-signal.
Collapse
Affiliation(s)
- Si-Bo Chen
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Han Zhang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Si Chen
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xian-Feng Ye
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhou-Kun Li
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Wei-Dong Liu
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Zhong-Li Cui
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yan Huang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
9
|
Identification of the Potential Molecular Mechanism of TGFBI Gene in Persistent Atrial Fibrillation. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:1643674. [PMID: 36398072 PMCID: PMC9666036 DOI: 10.1155/2022/1643674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/12/2022] [Accepted: 10/11/2022] [Indexed: 11/09/2022]
Abstract
Background Transforming growth factor beta-induced protein (TGFBI, encoded by TGFBI gene), is an extracellular matrix protein, widely expressed in variety of tissues. It binds to collagens type I, II, and IV and plays important roles in the interactions of cell with cell, collagen, and matrix. It has been reported to be associated with myocardial fibrosis, and the latter is an important pathophysiologyical basis of atrial fibrillation (AF). However, the mechanism of TGFBI in AF remains unclear. We aimed to detect the potential mechanism of TGFBI in AF via bioinformatics analysis. Methods The microarray dataset of GSE115574 was examined to detect the genes coexpressed with TGFBI from 14 left atrial tissue samples of AF patients. TGFBI coexpression genes were then screened using the R package. Using online analytical tools, we determined the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, Gene Ontology (GO) annotation, and protein-protein interaction (PPI) network of TGFBI and its coexpression genes. The modules and hub genes of the PPI-network were then identified. Another dataset, GSE79768 was examined to verify the hub genes. DrugBank was used to detect the potential target drugs. Results In GSE115574 dataset, a total of 1818 coexpression genes (769 positive and 1049 negative) were identified, enriched in 120 biological processes (BP), 38 cellular components (CC), 36 molecular functions (MF), and 39 KEGG pathways. A PPI-network with average 12.2-degree nodes was constructed. The genes clustered in the top module constructed from this network mainly play a role in PI3K-Akt signaling pathway, viral myocarditis, inflammatory bowel disease, and platelet activation. CXCL12, C3, FN1, COL1A2, ACTB, VCAM1, and MMP2 were identified and finally verified as the hub genes, mainly enriched in pathways like leukocyte transendothelial migration, PI3K-Akt signaling pathway, viral myocarditis, rheumatoid arthritis, and platelet activation. Pegcetacoplan, ocriplasmin, and carvedilol were the potential target drugs. Conclusions We used microdataset to identify the potential functions and mechanisms of the TGFBI and its coexpression genes in AF patients. Our findings suggest that CXCL12, C3, FN1, COL1A2, ACTB, VCAM1, and MMP2 may be the hub genes.
Collapse
|
10
|
Ye P, Duan W, Leng YQ, Wang YK, Tan X, Wang WZ. DPP3: From biomarker to therapeutic target of cardiovascular diseases. Front Cardiovasc Med 2022; 9:974035. [PMID: 36312232 PMCID: PMC9605584 DOI: 10.3389/fcvm.2022.974035] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
Cardiovascular disease is the leading cause of death globally among non-communicable diseases, which imposes a serious socioeconomic burden on patients and the healthcare system. Therefore, finding new strategies for preventing and treating cardiovascular diseases is of great significance in reducing the number of deaths and disabilities worldwide. Dipeptidyl peptidase 3 (DPP3) is the first zinc-dependent peptidase found among DPPs, mainly distributes within the cytoplasm. With the unique HEXXGH catalytic sequence, it is associated with the degradation of oligopeptides with 4 to 10 amino acids residues. Accumulating evidences have demonstrated that DPP3 plays a significant role in almost all cellular activities and pathophysiological mechanisms. Regarding the role of DPP3 in cardiovascular diseases, it is currently mainly used as a biomarker for poor prognosis in patients with cardiovascular diseases, suggesting that the level of DPP3 concentration in plasma is closely linked to the mortality of diseases such as cardiogenic shock and heart failure. Interestingly, it has been reported recently that DPP3 regulates blood pressure by interacting with the renin-angiotensin system. In addition, DPP3 also participates in the processes of pain signaling, inflammation, and oxidative stress. But the exact mechanism by which DPP3 affects cardiovascular function is not clear. Hence, this review summarizes the recent advances in the structure and catalytic activity of DPP3 and its extensive biological functions, especially its role as a therapeutic target in cardiovascular diseases. It will provide a theoretical basis for exploring the potential value of DPP3 as a therapeutic target for cardiovascular diseases.
Collapse
Affiliation(s)
- Peng Ye
- Department of Marine Biomedicine and Polar Medicine, Naval Medical Center, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Wei Duan
- Department of Marine Biomedicine and Polar Medicine, Naval Medical Center, Naval Medical University (Second Military Medical University), Shanghai, China,Key Laboratory of Medical Electrophysiology of Ministry of Education, Medical Electrophysiology Key Lab of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Yue-Qi Leng
- Department of Marine Biomedicine and Polar Medicine, Naval Medical Center, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Yang-Kai Wang
- Department of Marine Biomedicine and Polar Medicine, Naval Medical Center, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Xing Tan
- Department of Marine Biomedicine and Polar Medicine, Naval Medical Center, Naval Medical University (Second Military Medical University), Shanghai, China,Xing Tan
| | - Wei-Zhong Wang
- Department of Marine Biomedicine and Polar Medicine, Naval Medical Center, Naval Medical University (Second Military Medical University), Shanghai, China,*Correspondence: Wei-Zhong Wang
| |
Collapse
|
11
|
Pan D, Xu L, Guo M. The role of protein kinase C in diabetic microvascular complications. Front Endocrinol (Lausanne) 2022; 13:973058. [PMID: 36060954 PMCID: PMC9433088 DOI: 10.3389/fendo.2022.973058] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 07/25/2022] [Indexed: 11/17/2022] Open
Abstract
Protein kinase C (PKC) is a family of serine/threonine protein kinases, the activation of which plays an important role in the development of diabetic microvascular complications. The activation of PKC under high-glucose conditions stimulates redox reactions and leads to an accumulation of redox stress. As a result, various types of cells in the microvasculature are influenced, leading to changes in blood flow, microvascular permeability, extracellular matrix accumulation, basement thickening and angiogenesis. Structural and functional disorders further exacerbate diabetic microvascular complications. Here, we review the roles of PKC in the development of diabetic microvascular complications, presenting evidence from experiments and clinical trials.
Collapse
Affiliation(s)
- Deng Pan
- Xiyuan hospital of China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Centre for Chinese Medicine Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Lin Xu
- Gynecological Department of Traditional Chinese Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Ming Guo
- Xiyuan hospital of China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Centre for Chinese Medicine Cardiology, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
12
|
Kropotova ES, Pavlova EN, Naryzhny SN, Mosevitsky MI. Dipeptidylamino-tripeptidylcarboxypeptidase NEMP3 and DPP3 (DPP III) are the same protein. Biochem Biophys Res Commun 2022; 616:110-114. [PMID: 35653825 DOI: 10.1016/j.bbrc.2022.05.078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/17/2022] [Accepted: 05/23/2022] [Indexed: 11/25/2022]
Abstract
Earlier it was shown that a group of extracellular low-specific metallopeptidases is present in the mammalian brain Kropotova and Mosevitsky (2016) [1]. These enzymes are weakly connected to the axonal ends of neurons. They were named Neuron bound Extracellular MetalloPeptidases (NEMP). The enzyme named NEMP3 turned out to be a unique exopeptidase that exhibits two activities: it removes the dipeptide from the N-end of the peptide, and it can also remove the tripeptide from the C-end of the peptide. Therefore, NEMP3 possesses the activities of dipeptidylaminopeptidase and of tripeptidylcarboxypeptidase. Mass spectrometry has revealed a homology of NEMP3 with DPP3 (DPP III, EC3.4.14.4), known as cytosolic dipeptidylaminopeptidase. We isolated DPP3 from rat and bovine liver and brain by the procedures used for this purpose by other authors. The effect of DPP3 on test peptides is the same as that of NEMP3. In particular, all DPP3 samples delete the tripeptide (AKF) from the C-end of the test peptide blocked at the N-end. The data obtained show that NEMP3 and DPP3 are the same protein (enzyme). Thus, DPP3 has two exopeptidase activities: the previously known activity of dipeptidylaminopeptidase and the activity of tripeptidylcarboxypeptidase discovered in this study. Another discovery is the extracellular activity of DPP 3 in the mammalian brain near synapses, which controls neuropeptides. DPP3 is involved in various processes, but in many cases its role remains to be clarified. The results obtained in this study will be useful for solving these questions.
Collapse
Affiliation(s)
- Ekaterina S Kropotova
- Division of Molecular and Radiation Biophysics, Petersburg Nuclear Physics Institute Named by B.P.Konstantinov of National Research Center "Kurchatov Institute", Gatchina, Russian Federation; Laboratory of Natural Polymers, Institute of Macromolecular Compounds of the Russian Academy of Sciences, Saint-Petersburg, Russian Federation
| | - Ekaterina N Pavlova
- Laboratory of Natural Polymers, Institute of Macromolecular Compounds of the Russian Academy of Sciences, Saint-Petersburg, Russian Federation
| | - Stanislav N Naryzhny
- Division of Molecular and Radiation Biophysics, Petersburg Nuclear Physics Institute Named by B.P.Konstantinov of National Research Center "Kurchatov Institute", Gatchina, Russian Federation
| | - Mark I Mosevitsky
- Division of Molecular and Radiation Biophysics, Petersburg Nuclear Physics Institute Named by B.P.Konstantinov of National Research Center "Kurchatov Institute", Gatchina, Russian Federation; Laboratory of Natural Polymers, Institute of Macromolecular Compounds of the Russian Academy of Sciences, Saint-Petersburg, Russian Federation.
| |
Collapse
|
13
|
Jiao Y, Jiang S, Wang Y, Yu T, Zou G, Zhuo L, Li W. Activation of complement C1q and C3 in glomeruli might accelerate the progression of diabetic nephropathy: Evidence from transcriptomic data and renal histopathology. J Diabetes Investig 2022; 13:839-849. [PMID: 34932275 PMCID: PMC9077730 DOI: 10.1111/jdi.13739] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 12/02/2021] [Accepted: 12/17/2021] [Indexed: 11/27/2022] Open
Abstract
AIMS/INTRODUCTION It is not unclear whether the complement system is involved in the pathogenesis of diabetic nephropathy (DN). We explored the role of the complement system in glomeruli from patients with DN using integrated transcriptomic bioinformatics analysis and renal histopathology. MATERIALS AND METHODS Four datasets (GSE30528, GSE104948, GSE96804 and GSE99339) from the Gene Expression Omnibus database were integrated. We used a protein-protein interaction network and the Molecular Complex Detection App to obtain hub genes. Gene ontology and the Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were carried out to identify significant pathways. We also investigated the associations of C1q and C3 deposition on renal histopathology with clinical data, pathological parameters and renal survival in DN patients. RESULTS We identified 47 up- and 48 downregulated genes associated with DN. C3, C1QB and C1QA were found to be complement-related hub genes. The gene ontology and Kyoto Encyclopedia of Genes and Genomes analyses identified complement activation and humoral immune response as the significant oncology terms, with C1QB and C3 positioned at the center of the pathway. Regarding renal histopathology, patients with both C1q and C3 deposition had more severe glomerular classes. Multivariate Cox proportional hazards regression showed that the deposition of glomerular C1q and C3 was an independent risk factor for kidney failure. Patients with high C1q, C3 or C4d expression in glomeruli were more likely to progress to kidney failure, whereas glomerular mannose-binding lectin was rare. CONCLUSIONS Complement activation is involved in the development of DN, and activation of the classical complement pathway in glomeruli might accelerate disease progression.
Collapse
Affiliation(s)
- Yuanyuan Jiao
- Department of NephrologyChina‐Japan Friendship HospitalBeijingChina
- Graduate School of Peking Union Medical CollegePeking Union Medical College and Chinese Academy of Medical SciencesBeijingChina
| | - Shimin Jiang
- Department of NephrologyChina‐Japan Friendship HospitalBeijingChina
| | - Ying Wang
- Department of NephrologyChina‐Japan Friendship HospitalBeijingChina
- Graduate School of Peking Union Medical CollegePeking Union Medical College and Chinese Academy of Medical SciencesBeijingChina
| | - Tianyu Yu
- Department of NephrologyChina‐Japan Friendship HospitalBeijingChina
| | - Guming Zou
- Department of NephrologyChina‐Japan Friendship HospitalBeijingChina
| | - Li Zhuo
- Department of NephrologyChina‐Japan Friendship HospitalBeijingChina
| | - Wenge Li
- Department of NephrologyChina‐Japan Friendship HospitalBeijingChina
- Graduate School of Peking Union Medical CollegePeking Union Medical College and Chinese Academy of Medical SciencesBeijingChina
| |
Collapse
|