1
|
Jiang NW, Chen YY, Lin XJ, Yu H. Impact of cathepsin K-induced proteoglycans degradation on dentin collagen. Arch Oral Biol 2025; 169:106091. [PMID: 39270423 DOI: 10.1016/j.archoralbio.2024.106091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
OBJECTIVES This study aimed to investigate the effects of cathepsin K (catK) on proteoglycans (PGs) and the subsequent impacts on dentin collagen degradation. MATERIALS AND METHODS Demineralized dentin samples were prepared and divided into the following groups: deionized water (DW), 0.1 U/mL chondroitinase ABC (C-ABC), and 1 μM odanacatib (ODN). Then, they were immersed for 48 h and then incubated in 1 mL of PBS (pH=5.5) at 37 °C for 5 d. Glycosaminoglycan (GAG) were examined to explore the degradation of PGs by catK. To determine the effect of catK-mediated PGs on dentin collagen degradation, hydroxyproline (HYP) assays, assessment of the degree of dentin crosslinking, and scanning electron microscopy (SEM) were assessed. Statistical analysis was conducted using one-way ANOVA followed by Tukey's tests or Welch's ANOVA followed by Dunnett's tests at a significance level of 0.05. RESULTS The production of GAG was significantly lower in the ODN group than in the DW group (P < 0.05), revealing that PG degradation was reduced in dentin after ODN treatment. Additionally, ODN treatment minimized the gaps in collagen fibers, improved fiber arrangement, and significantly increased the degree of collagen crosslinking, subsequently reducing the total amount of collagen fiber degradation in the dentin (P < 0.05). CONCLUSIONS CatK-mediated degradation of PGs negatively impacted the stability of collagen fibers, promoted gaps, led to a less organized arrangement of dentin collagen fibers, ultimately increasing collagen degradation.
Collapse
Affiliation(s)
- Neng-Wu Jiang
- Department of Stomatology, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, China; Fujian Key Laboratory of Oral Diseases and Fujian Provincial Engineering Research Center of Oral Biomaterial and Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Yi-Ying Chen
- Fujian Key Laboratory of Oral Diseases and Fujian Provincial Engineering Research Center of Oral Biomaterial and Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China; The Second Hospital of Zhangzhou, Zhangzhou, China
| | - Xiu-Jiao Lin
- Fujian Key Laboratory of Oral Diseases and Fujian Provincial Engineering Research Center of Oral Biomaterial and Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China; Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, China
| | - Hao Yu
- Fujian Key Laboratory of Oral Diseases and Fujian Provincial Engineering Research Center of Oral Biomaterial and Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China; Department of Applied Prosthodontics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.
| |
Collapse
|
2
|
Liu Y, Wu Y, Hu X, Sun Y, Zeng G, Wang Q, Liu S, Sun M. The role of vitamin D receptor in predentin mineralization and dental repair after injury. Cell Tissue Res 2024; 396:343-351. [PMID: 38492000 DOI: 10.1007/s00441-024-03886-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 03/06/2024] [Indexed: 03/18/2024]
Abstract
Dentin is a permeable and complex tubular composite formed by the mineralization of predentin that mineralization and repair are of considerable clinical interest during dentin homeostasis. The role of Vdr, a receptor of vitamin D, in dentin homeostasis remains unexplored. The aim of the present study was to assess the impact of Vdr on predentin mineralization and dental repair. Vdr-knockout (Vdr-/-) mice models were constructed; histology and immunohistochemistry analyses were conducted for both WT and Vdr-/- mice. The finding revealed a thicker predentin in Vdr-/- mice, characterized by higher expression of biglycan and decorin. A dental injury model was employed to observe tertiary dentin formation in Vdr-/- mice with dental injuries. Results showed that tertiary dentin was harder to form in Vdr-/- mice with dental injury. Over time, heightened pulp invasion was observed at the injury site in Vdr-/- mice. Expression of biglycan and decorin was reduced in the predentin at the injury site in the Vdr-/- mice by immunohistochemistry. Taken together, our results imply that Vdr plays a regulatory role in predentin mineralization and tertiary dentin formation during dentin homeostasis.
Collapse
Affiliation(s)
- Yudong Liu
- Department of Histology and Embryology, Bengbu Medical College, 2600 Dong Hai Avenue, Bengbu, 233030, China
- Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, 2600 Dong Hai Avenue, Bengbu, 233030, China
| | - Yinlin Wu
- Bengbu Medical College, 2600 Dong Hai Avenue, Bengbu, 233030, China
| | - Xiaodong Hu
- Department of Histology and Embryology, Bengbu Medical College, 2600 Dong Hai Avenue, Bengbu, 233030, China
| | - Yu Sun
- Department of Biochemistry and Molecular Biology, Bengbu Medical College, 2600 Dong Hai Avenue, Bengbu, 233030, China
| | - Guojin Zeng
- Bengbu Medical College, 2600 Dong Hai Avenue, Bengbu, 233030, China
| | - Qinglong Wang
- Bengbu Medical College, 2600 Dong Hai Avenue, Bengbu, 233030, China
| | - Shanshan Liu
- Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, 2600 Dong Hai Avenue, Bengbu, 233030, China.
- Department of Stomatology, The First Affiliated Hospital of Bengbu Medical College, 287 Chuang Huai Road, Bengbu, 233004, China.
| | - Meiqun Sun
- Department of Histology and Embryology, Bengbu Medical College, 2600 Dong Hai Avenue, Bengbu, 233030, China.
| |
Collapse
|
3
|
Comparison of collagen features of distinct types of caries-affected dentin. J Dent 2022; 127:104310. [PMID: 36167234 DOI: 10.1016/j.jdent.2022.104310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES To compare the biodegradability, mechanical behavior, and physicochemical features of the collagen-rich extracellular matrix (ECM) of artificial caries-affected dentin (ACAD), natural caries-affected dentin (NCAD) and sound dentin (SD). METHODS Dentin specimens from human molars were prepared and assigned into groups according to the type of dentin: ACAD, NCAD, or SD. ACAD was produced by incubation of demineralized SD with Streptococcus mutans in a chemically defined medium (CDM) with 1% sucrose for 7 days at 37 °C under anaerobic conditions. Specimens were assessed to determine collagen birefringence, biodegradability, mechanical behavior, and chemical composition. Data were individually processed and analyzed by ANOVA and post-hoc tests (α = 0.05). RESULTS CDM-based biofilm challenge reduced loss, storage, and complex moduli in ACAD (p < 0.001), while the damping capacity remained unaffected (p = 0.066). Higher red and lower green birefringence were found in ACAD and NCAD when compared with SD (p < 0.001). Differently to ACAD, SD and NCAD presented higher biodegradability to exogenous proteases (p = 0.02). Chemical analysis of the integrated areas of characteristic bands that assess mineral quality (carbonate/phosphate and crystallinity index), mineral to matrix (phosphate/amide I) and post-translational modifications (amide III/CH2, pentosidine/CH2, and pentosidine/amide III) (p<0.05) showed that NCAD was significantly different from SD while ACAD exhibited intermediate values. CONCLUSIONS CDM-based biofilm challenge produced a dentin ECM with decreased mechanical properties and increased collagen maturity. The compositional and structural conformation of the ACAD suggested that CDM-based biofilm challenge showed potential to produce artificial lesions by revealing a transitional condition towards mimicking critical features of NCAD. CLINICAL SIGNIFICANCE This study highlights the importance of developing a tissue that mimics the features of natural caries-affected dentin ECM for in vitro studies. Our findings suggested the potential of a modified biofilm challenge protocol to produce and simulate a relevant substrate, such as caries-affected dentin.
Collapse
|
4
|
Reis M, Alania Y, Leme-Kraus A, Free R, Joester D, Ma W, Irving T, Bedran-Russo AK. The stoic tooth root: how the mineral and extracellular matrix counterbalance to keep aged dentin stable. Acta Biomater 2022; 138:351-360. [PMID: 34740855 PMCID: PMC8815755 DOI: 10.1016/j.actbio.2021.10.051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 01/17/2023]
Abstract
Aging is a physiological process with profound impact on the biology and function of biosystems, including the human dentition. While resilient, human teeth undergo wear and disease, affecting overall physical, psychological, and social human health. However, the underlying mechanisms of tooth aging remain largely unknown. Root dentin is integral to tooth function in that it anchors and dissipates mechanical load stresses of the tooth-bone system. Here, we assess the viscoelastic behavior, composition, and ultrastructure of young and old root dentin using nano-dynamic mechanical analysis, micro-Raman spectroscopy, small angle X-ray scattering, atomic force and transmission electron microscopies. We find that the root dentin overall stiffness increases with age. Unlike other mineralized tissues and even coronal dentin, however, the ability of root dentin to dissipate energy during deformation does not decay with age. Using a deconstruction method to dissect the contribution of mineral and organic matrix, we find that the damping factor of the organic matrix does deteriorate. Compositional and ultrastructural analyses revealed higher mineral-to-matrix ratio, altered enzymatic and non-enzymatic collagen cross-linking, increased collagen d-spacing and fibril diameter, and decreased abundance of proteoglycans and sulfation pattern of glycosaminoglycans . Therefore, even in the absence of remodeling, the extracellular matrix of root dentin shares traits of aging with other tissues. To explain this discrepancy, we propose that altered matrix-mineral interactions, possibly mediated by carbonate ions sequestered at the mineral interface and/or altered glycosaminoglycans counteract the deleterious effects of aging on the structural components of the extracellular matrix. STATEMENT OF SIGNIFICANCE: Globally, a quarter of the population will be over 65 years old by 2050. Because many will retain their dentition, it will become increasingly important to understand and manage how aging affects teeth. Dentin is integral to the protective, biomechanical, and regenerative features of teeth. Here, we demonstrate that older root dentin not only has altered mechanical properties, but shows characteristic shifts in mineralization, composition, and post-translational modifications of the matrix. This strongly suggests that there is a mechanistic link between mineral and matrix components to the biomechanical performance of aging dentin with implications for efforts to slow or even reverse the aging process.
Collapse
Affiliation(s)
- Mariana Reis
- Department of General Dental Sciences, Marquette University, Milwaukee, WI, USA,Department of Restorative Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| | - Yvette Alania
- Department of General Dental Sciences, Marquette University, Milwaukee, WI, USA,Department of Restorative Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| | - Ariene Leme-Kraus
- Department of Restorative Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| | - Robert Free
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
| | - Derk Joester
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
| | - Weikang Ma
- Department of Biological Sciences, Illinois Institute of Technology. Chicago, IL, USA
| | - Thomas Irving
- Department of Biological Sciences, Illinois Institute of Technology. Chicago, IL, USA
| | - Ana K. Bedran-Russo
- Department of General Dental Sciences, Marquette University, Milwaukee, WI, USA,Department of Restorative Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
5
|
Stability and remineralization of proteoglycan-infused dentin substrate. Dent Mater 2021; 37:1724-1733. [PMID: 34538503 DOI: 10.1016/j.dental.2021.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/09/2021] [Accepted: 09/03/2021] [Indexed: 11/22/2022]
Abstract
OBJECTIVE This study tested the effects of small leucine-rich proteoglycan (SLRP) proteins on phosphoric acid (PA)-treated dentin bonding overtime and the role of such SLRPs in the remineralization potential of demineralized dentin collagen. METHODS Coronal dentin sections of human molars were used. SLRPs were either decorin (DCN) or biglycan (BGN) in core or proteoglycan form (with glycosaminoglycans, GAGs). Groups were: No treatment (control), DCN core, DCN + GAGs, BGN core, BGN + GAGs. Samples were etched with PA for 15 s and prior to application of Adper Single Bond Plus and composite buildup an aliquot of the specific SLRPs was applied over dentin. Twenty-four hours or 6 months after the bonding procedure, samples were tested for microtensile bond strength (MTBS). Debonded beams were analyzed by scanning electron microscopy (SEM). For remineralization studies, dentin blocks were fully demineralized, infused with the SLRPs, placed in artificial saliva for 2 weeks, and evaluated by transmission electron microscopy (TEM). RESULTS MTBS test presented a mean of 51.4 ± 9.1 MPa in control with no statistically significant difference to DCN core (47.6 ± 8.3) and BGN core (48.3 ± 6.5). The full proteoglycan groups DCN + GAGs (27.4 ± 4.5) and BGN + GAGs (36.4 ± 13.6) showed decreased MTBS compared to control (p < 0.001). At 6 months, control or core-treated samples did not have a statistically significant difference in MTBS. However, SLRPs with GAGs showed statistically significant improvement of bonding (62.5 ± 6.0 for DCN and 52.8 ± 8.1 for BGN, p < 0.001) compared to their baseline values. SEM showed that GAGs seem to favor water retention but overtime help remineralization. TEM of demineralized dentin indicated a larger collagen fibril diameter pattern of samples treated with core proteins compared to control and a smaller diameter with DCN + GAGs in water with evidence of mineralization with DCN + GAGS, BGN core and BGN + GAGs. SIGNIFICANCE In conclusion, core proteins seem not to affect dentin adhesion significantly but the presence of GAGs can be detrimental to immediate bonding. However, after ageing of samples, full proteoglycans, particularly DCN, can significantly improve bonding overtime while promoting remineralization which can prove to be clinically beneficial.
Collapse
|
6
|
Farina AP, Cecchin D, Vidal CMP, Leme-Kraus AA, Bedran-Russo AK. Removal of water binding proteins from dentin increases the adhesion strength of low-hydrophilicity dental resins. Dent Mater 2020; 36:e302-e308. [PMID: 32811665 DOI: 10.1016/j.dental.2020.07.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 04/05/2020] [Accepted: 07/14/2020] [Indexed: 02/05/2023]
Abstract
OBJECTIVES To investigate the role of proteoglycans (PGs) on the physical properties of the dentin matrix and the bond strength of methacrylate resins with varying hydrophilicities. METHODS Dentin were obtained from crowns of human molars. Enzymatic removal of PGs followed a standard protocol using 1 mg/mL trypsin (Try) for 24 h. Controls were incubated in ammonium bicarbonate buffer. Removal of PGs was assessed by visualization of glycosaminoglycan chains (GAGs) in dentin under transmission electron microscopy (TEM). The dentin matrix swelling ratio was estimated using fully demineralized dentin. Dentin wettability was assessed on wet, dry and re-wetted dentin surfaces through water contact angle measurements. Microtensile bond strength test (TBS) was performed with experimental adhesives containing 6% HEMA (H6) and 18% HEMA (H18) and a commercial dental adhesive. Data were statistically analyzed using ANOVA and post-hoc tests (α = 0.05). RESULTS The enzymatic removal of PGs was confirmed by the absence and fragmentation of GAGs. There was statistically significant difference between the swelling ratio of Try-treated and control dentin (p < 0.001). Significantly lower contact angle was found for Try-treated on wet and dry dentin (p < 0.002). The contact angle on re-wet dentin was not recovered in Try-treated group (p = 0.9). Removal of PGs significantly improved the TBS of H6 (109% higher, p < 0.001) and H18 (29% higher, p = 0.002) when compared to control. The TBS of commercial adhesive was not affected by trypsin treatment (p = 0.9). SIGNIFICANCE Changing the surface energy of dentin by PGs removal improved resin adhesion, likely due to more efficient water displacement, aiding to improved resin infiltration and polymerization.
Collapse
Affiliation(s)
- Ana Paula Farina
- Department of Restorative Dentistry, College of Dentistry, University of Illinois at Chicago, 801 South Paulina Street, Room 531, Chicago, IL, USA; Department of Restorative Dentistry, Passo Fundo Dental School, University of Passo Fundo, UPF, Passo Fundo, RS, Brazil
| | - Doglas Cecchin
- Department of Restorative Dentistry, College of Dentistry, University of Illinois at Chicago, 801 South Paulina Street, Room 531, Chicago, IL, USA; Department of Restorative Dentistry, Passo Fundo Dental School, University of Passo Fundo, UPF, Passo Fundo, RS, Brazil
| | - Cristina M P Vidal
- Department of Restorative Dentistry, College of Dentistry, University of Illinois at Chicago, 801 South Paulina Street, Room 531, Chicago, IL, USA
| | - Ariene Arcas Leme-Kraus
- Department of Restorative Dentistry, College of Dentistry, University of Illinois at Chicago, 801 South Paulina Street, Room 531, Chicago, IL, USA
| | - Ana K Bedran-Russo
- Department of Restorative Dentistry, College of Dentistry, University of Illinois at Chicago, 801 South Paulina Street, Room 531, Chicago, IL, USA.
| |
Collapse
|